Natural affinors on the (r, s, q)-cotangent bundle of a fibered manifold

by J. KUREK (Lublin) and W. M. MIKULSKI (Kraków)

Abstract. For natural numbers r, s, q, m, n with $s \ge r \le q$ we describe all natural affinors on the (r, s, q)-cotangent bundle $T^{r,s,q*}Y$ over an (m, n)-dimensional fibered manifold Y.

Introduction. Let r, s, q, m, n be natural numbers with $s \ge r \le q$.

Let $T^{r,s,q*} : \mathcal{FM}_{m,n} \to \mathcal{VB}$ be the (r, s, q)-cotangent bundle functor from the category $\mathcal{FM}_{m,n}$ of (m, n)-dimensional fibered manifolds (m is the basedimension and n is the fiber dimension) and their fibered local diffeomorphisms into the category of vector bundles and their homomorphisms (see [4], [8]).

An $\mathcal{FM}_{m,n}$ -natural affinor on $T^{r,s,q*}$ is an $\mathcal{FM}_{m,n}$ -invariant system of affinors $A: TT^{r,s,q*}Y \to TT^{r,s,q*}Y$ on $T^{r,s,q*}Y$ for any $\mathcal{FM}_{m,n}$ -object Y.

In the present note we describe completely all $\mathcal{FM}_{m,n}$ -natural affinors on $T^{r,s,q*}$. In the proof we will use the classification of all natural affinors on the *r*-cotangent bundle functor T^{r*} over *n*-manifolds by the first author [6].

At the end of the paper we record a similar result for $T^{r,s*}$ in place of $T^{r,s,q*}$.

Natural affinors can be used to study torsions of connections (see [5]). That is why they have been classified in many papers ([1]-[4], [6]-[8], etc).

The standard (m, n)-fibered manifold $\mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^m$ will be denoted by $\mathbb{R}^{m,n}$. The usual coordinates on $\mathbb{R}^{m,n}$ will be denoted by $x^1, \ldots, x^m, y^1, \ldots, \ldots, y^n$.

All manifolds and maps are assumed to be smooth, i.e. of class \mathcal{C}^{∞} .

1. The (r, s, q)-cotangent bundle $T^{r,s,q*}$. Let r, s, q, m, n be natural numbers with $s \ge r \le q$.

²⁰⁰⁰ Mathematics Subject Classification: 58A20, 53A55.

Key words and phrases: natural bundles, bundle functors, natural affinors.

The concept of r-jets can be generalized as follows (see [3]). Let $Y \to M$ and $Z \to N$ be fibered manifolds. We recall that two fibered maps f, g : $Y \to Z$ with base maps $\underline{f}, \underline{g} : M \to N$ determine the same (r, s, q)-jet $j_y^{r,s,q}f = j_y^{r,s,q}g$ at $y \in Y_x, x \in M$, if $j_y^r f = j_y^r g, j_y^s(f|Y_x) = j_y^s(g|Y_x)$ and $j_x^q \underline{f} = j_x^q \underline{g}$. The space of all (r, s, q)-jets of Y into Z is denoted by $J^{r,s,q}(Y, Z)$. The composition of fibered maps induces the composition of (r, s, q)-jets [3, p. 126].

The vector r-cotangent bundle functor $T^{r*} = J^r(\cdot, \mathbb{R})_0 : \mathcal{M}f_m \to \mathcal{VB}$ can be generalized as follows (see [4], [7]). Let $\mathbb{R}^{1,1} = \mathbb{R} \times \mathbb{R}$ be the trivial bundle over \mathbb{R} . The space $T^{r,s,q*} = J^{r,s,q}(Y, \mathbb{R}^{1,1})_0, 0 \in \mathbb{R}^2$, has an induced structure of a vector bundle over Y. Every $\mathcal{FM}_{m,n}$ -map $f: Y \to Z$ induces a vector bundle map $T^{r,s,q*}f: T^{r,s,q*}Y \to T^{r,s,q*}Z$ covering $f, T^{r,s,q*}f(j_y^{r,s,q}\gamma) =$ $j_{f(y)}^{r,s,q}(\gamma \circ f^{-1})$ for $\gamma: Y \to \mathbb{R}^{1,1}$ with $\gamma(y) = 0$. The correspondence $T^{r,s,q*}:$ $\mathcal{FM}_{m,n} \to \mathcal{VB}$ is a vector bundle functor in the sense of [3]. We call it the (r, s, q)-cotangent bundle functor.

2. Natural affinors on $T^{r,s,q*}$. An $\mathcal{FM}_{m,n}$ -natural affinor on $T^{r,s,q*}$ is an $\mathcal{FM}_{m,n}$ -invariant system of affinors

$$A: TT^{r,s,q*}Y \to TT^{r,s,q*}Y$$

on $T^{r,s,q*}Y$ for any $\mathcal{FM}_{m,n}$ -object Y. The invariance means that for any $\mathcal{FM}_{m,n}$ -morphism $f: Y \to Z$ we have $TT^{r,s,q*}f \circ A = A \circ TT^{r,s,q*}f$.

We present some examples of natural affinors on $T^{r,s,q*}$.

EXAMPLE 1. There is the identity affinor Id on $T^{r,s,q*}Y$ for any fibered manifold Y from $\mathcal{FM}_{m,n}$.

To present next examples we need some observations.

(a) There are two canonical 1-forms θ^{τ} , $\tau = 1, 2$, on $T^{r,s,q*}Y$ given by

$$\theta^{\tau}_{j^{r,s,q}_{y}} = d_y(\gamma^V_{\tau}),$$

where $y \in Y$, $\gamma = (\gamma_1, \gamma_2) : Y \to \mathbb{R}^{1,1}$ is a fibered map with $\gamma(y) = 0$, and $f^V = f \circ \pi : T^{r,s,q*}Y \to \mathbb{R}$ is the vertical lifting of $f : Y \to \mathbb{R}$ to $T^{r,s,q*}Y$.

(b) For a = 1, ..., q there is a canonical vertical vector field $L^{[a]}$ on $T^{r,s,q*}Y$ given by

$$L^{[a]}j_{y}^{r,s,q}\gamma = (j_{y}^{r,s,q}\gamma, j_{y}^{r,s,q}(\gamma_{1}^{a}, 0)) \in \{j_{y}^{r,s,q}\gamma\} \times T_{y}^{r,s,q*}Y \cong V_{j_{y}^{r,s,q}\gamma}T^{r,s,q*}Y,$$

where $y \in Y$ and $\gamma = (\gamma_1, \gamma_2) : Y \to \mathbb{R}^{1,1}$ is a fibered map with $\gamma(y) = 0$.

(c) For non-negative integers b and c with $1 \le b + c \le r$ and $b \ne 0$ there is a canonical vertical vector field $L^{[b,c]}$ on $T^{r,s,q*}Y$ given by

$$\begin{split} L^{[b,c]} j_{y}^{r,s,q} \gamma &= (j_{y}^{r,s,q} \gamma, j_{y}^{r,s,q} (0, \gamma_{1}^{b} \gamma_{2}^{c})) \\ &\in \{ j_{y}^{r,s,q} \gamma \} \times T_{y}^{r,s,q*} Y \cong V_{j_{y}^{r,s,q} \gamma} T^{r,s,q*} Y, \end{split}$$

where $y \in Y$, $\gamma = (\gamma_1, \gamma_2) : Y \to \mathbb{R}^{1,1}$ is a fibered map with $\gamma(y) = 0$, and γ_1^a is the *a*th power of γ_1 .

(d) For $e = 1, \ldots, s$ there is a canonical vertical vector field $L^{\langle e \rangle}$ on $T^{r,s,q*}Y$ given by

$$L^{\langle e \rangle} j_{y}^{r,s,q} \gamma = (j_{y}^{r,s,q} \gamma, j_{y}^{r,s,q}(0,\gamma_{2}^{e})) \in \{j_{y}^{r,s,q} \gamma\} \times T_{y}^{r,s,q*} Y \cong V_{j_{y}^{r,s,q}} \gamma T^{r,s,q*} Y,$$

where $y \in Y$ and $\gamma = (\gamma_1, \gamma_2) : Y \to \mathbb{R}^{1,1}$ is a fibered map with $\gamma(y) = 0$.

(e) If θ is the canonical 1-form on $T^{r,s,q*}Y$ and L is the canonical vector field on $T^{r,s,q*}Y$, then $\theta \otimes L$ is the canonical affinor on $T^{r,s,q*}Y$.

EXAMPLE 2. For $a = 1, \ldots, q$ and $\tau = 1, 2$ there is an $\mathcal{FM}_{m,n}$ -natural affinor

$$A^{[a,\tau]} = \theta^\tau \otimes L^{[a]}$$

on $T^{r,s,q*}Y$ for any fibered manifold Y in $\mathcal{FM}_{m,n}$.

EXAMPLE 3. For non-negative integers b and c with $1 \le b + c \le r$ and $b \ne 0$ and $\tau = 1, 2$ there is an $\mathcal{FM}_{m,n}$ -natural affinor

$$A^{[b,c,\tau]} = \theta^{\tau} \otimes L^{[b,c]}$$

on $T^{r,s,q*}Y$ for any fibered manifold Y in $\mathcal{FM}_{m,n}$.

EXAMPLE 4. For $e = 1, \ldots, s$ and $\tau = 1, 2$ there is an $\mathcal{FM}_{m,n}$ -natural affinor

$$A^{\langle e,\tau\rangle} = \theta^\tau \otimes L^{\langle e\rangle}$$

on $T^{r,s,q*}Y$ for any fibered manifold Y in $\mathcal{FM}_{m,n}$.

The main result of the present paper is the following classification theorem.

THEOREM 1. Let m, n, r, s, q be integers such that $m \ge 2, n \ge 2, r \ge 1$ and $s \ge r \le q$. The vector space of all $\mathcal{FM}_{m,n}$ -natural affinors on $T^{r,s,q*}$ is $(r^2 + r + 2s + 2q + 1)$ -dimensional. The natural affinors from Examples 1–4 form an \mathbb{R} -basis of this vector space.

The proof of Theorem 1 will occupy the rest of the paper.

From now on we consider an $\mathcal{FM}_{m,n}$ -natural affinor A on $T^{r,s,q*}$ and assume that m, n, s, r, q are as in Theorem 1.

Since the natural affinors from Examples 1–4 are linearly independent, it is sufficient to prove that A is their linear combination.

3. A decomposition lemma

LEMMA 1. There is a real number α such that $A - \alpha \operatorname{Id}$ is of vertical type, i.e. $\operatorname{im}(A - \alpha \operatorname{Id}) \subset VT^{r,s,q*}Y$ for any Y in $\mathcal{FM}_{m,n}$.

Proof. Let $\pi: T^{r,s,q*}Y \to Y$ be the bundle projection. We define α by

$$\alpha = d_0 y^1 \bigg(T\pi \circ A\bigg(\bigg(\frac{\partial}{\partial x^1} \bigg)_{j_0^{r,s,q}(0)}^C \bigg) \bigg),$$

where X^C is the complete lifting of a projectable vector field on Y to $T^{r,s,q*}Y$ and $x^1, \ldots, x^m, y^1, \ldots, y^n$ are the usual coordinates on $\mathbb{R}^{m,n}$.

Using the invariance of $T\pi \circ (A - \alpha \operatorname{Id})_{|VT^{r,s,q}\mathbb{R}^{m,n}}$ with respect to the homotheties $t^{-1}\operatorname{id}_{\mathbb{R}^{m,n}}$ for t > 0 and next letting $t \to 0$ we deduce that

 $T\pi \circ (A - \alpha \operatorname{Id})_{|VT^{r,s,q}\mathbb{R}^{m,n}} = 0.$

It remains to prove that $T\pi \circ (A - \alpha \operatorname{Id})(X_u^C) = 0$ for any constant vector field X on $\mathbb{R}^{m,n}$ and any $u = j_0^{r,s,q} \gamma \in T_0^{r,s,q*} \mathbb{R}^{m,n}$.

Because of the invariance of A we can assume that $X = \partial/\partial x^1$. Write

$$T\pi \circ (A - \alpha \operatorname{Id}) \left(\left(\frac{\partial}{\partial x^1} \right)_u^C \right) = \sum_{i=1}^m \alpha_i \frac{\partial}{\partial x^i}_0 + \sum_{j=1}^n \beta_j \frac{\partial}{\partial y^j}_0.$$

Using the invariance of $A - \alpha$ Id with respect to $(x^1, t^{-1}x^2, \ldots, t^{-1}x^m, t^{-1}y^1, \ldots, t^{-1}y^n)$ for t > 0 and then letting $t \to 0$ we deduce that $\alpha_2 = \ldots = \alpha_m = \beta_1 = \ldots = \beta_n = 0$. Then using the invariance of $A - \alpha$ Id with respect to $t^{-1} \mathrm{id}_{\mathbb{R}^{m,n}}$ for t > 0 and then letting $t \to 0$ and using the definition of α we deduce that

$$T\pi \circ (A - \alpha \operatorname{Id}) \left(\left(\frac{\partial}{\partial x^1} \right)_u^C \right) = T\pi \circ (A - \alpha \operatorname{Id}) \left(\left(\frac{\partial}{\partial x^1} \right)_0^C \right) = 0. \quad \blacksquare$$

Because of Lemma 1, replacing A by $A - \alpha$ Id we can and do assume that A is of vertical type.

4. A reducibility lemma

LEMMA 2. Assume that

$$A\left(\left(\frac{\partial}{\partial x^1}\right)_{j_0^{r,s,q}(x^1,y^1)}^C\right) = A\left(\left(\frac{\partial}{\partial y^1}\right)_{j_0^{r,s,q}(x^1,y^1)}^C\right) = 0$$

and

$$A\left(\frac{d}{dt_0}\left(j_0^{r,s,q}(x^1,y^1) + tj_0^{r,s,q}(x^2,0)\right)\right)$$
$$= A\left(\frac{d}{dt_0}\left(j_0^{r,s,q}(x^1,y^1) + tj_0^{r,s,q}(0,y^2)\right)\right) = 0.$$

Then A = 0.

Proof. It is sufficient to show that A(w) = 0 for any $w \in T_u^{r,s,q*}Y$.

By the fibered version of the rank theorem, $j_0^{r,s,q}(x^1, y^1) \in T_0^{r,s,q*}\mathbb{R}^{m,n}$ has dense orbit in $T^{r,s,q*}Y$ with respect to $\mathcal{FM}_{m,n}$ -maps. Therefore we can assume $u = j_0^{r,s,q}(x^1, y^1)$.

Because of the fiber linearity of A we can assume that either $w = X_u^C$ for $u = j_0^{r,s,q}(x^1, y^1)$ and a constant vector field X on $\mathbb{R}^{m,n}$, or $w = \frac{d}{dt_0}(j_0^{r,s,q}(x^1, y^1) + tj_0^{r,s,q}\gamma)$ for a fibered map $\gamma = (\gamma_1, \gamma_2) : \mathbb{R}^{m,n} \to \mathbb{R}^{1,1}$ with $\gamma(0) = 0$.

In the first case because of the invariance of A with respect to linear $\mathcal{FM}_{m,n}$ -maps we can assume that $X = \partial/\partial x^1$ or $X = \partial/\partial y^1$. In the second case by the fibered version of the rank theorem we can assume that $\gamma = (x^2, y^2)$. Then by the fiber linearity of A we can assume that $\gamma = (x^2, 0)$ or $\gamma = (0, y^2)$.

Now, applying the assumptions of the lemma completes the proof. \blacksquare

Lemma 2 means that A is determined by the four vectors

$$A\left(\left(\frac{\partial}{\partial x^{1}}\right)_{j_{0}^{r,s,q}(x^{1},y^{1})}^{C}\right), \quad A\left(\left(\frac{\partial}{\partial y^{1}}\right)_{j_{0}^{r,s,q}(x^{1},y^{1})}^{C}\right), \\A\left(\frac{d}{dt_{0}}(j_{0}^{r,s,q}(x^{1},y^{1})+tj_{0}^{r,s,q}(x^{2},0))\right), \\A\left(\frac{d}{dt_{0}}(j_{0}^{r,s,q}(x^{1},y^{1})+tj_{0}^{r,s,q}(0,y^{2}))\right).$$

We study these vectors in the next sections.

5. An inessential assumption. We can write

$$A\bigg(\bigg(\frac{\partial}{\partial x^{1}}\bigg)_{j_{0}^{r,s,q}(x^{1},y^{1})}^{C}\bigg) = \frac{d}{dt_{0}}(j_{0}^{r,s,q}(x^{1},y^{1}) + tj_{0}^{r,s,q}\gamma)$$

for a fibered map $\gamma = (\gamma_1, \gamma_2) : \mathbb{R}^{m,n} \to \mathbb{R}^{1,1}$ with $\gamma(0) = 0$. Using the invariance of A with respect to $(x^1, tx^2, \ldots, tx^m, y^1, ty^2, \ldots, ty^n)$ for t > 0 and then letting $t \to 0$ we get

$$\begin{split} A\bigg(\bigg(\frac{\partial}{\partial x^{1}}\bigg)_{j_{0}^{r,s,q}(x^{1},y^{1})}^{C}\bigg) &= \sum_{a=1}^{q} \alpha_{a}^{1} \frac{d}{dt_{0}} \left(j_{0}^{r,s,q}(x^{1},y^{1}) + t j_{0}^{r,s,q}((x^{1})^{a},0)\right) \\ &+ \sum_{1 \leq b+c \leq r, \ b \neq 0} \beta_{b,c}^{1} \frac{d}{dt_{0}} \left(j_{0}^{r,s,q}(x^{1},y^{1}) + t j_{0}^{r,s,q}(0,(x^{1})^{b}(y^{1})^{c})\right) \\ &+ \sum_{e=1}^{s} \delta_{e}^{1} \frac{d}{dt_{0}} \left(j_{0}^{r,s,q}(x^{1},y^{1}) + t j_{0}^{r,s,q}(0,(y^{1})^{c})\right) \end{split}$$

for some real numbers α_a^1 , $\beta_{b,c}^1$ and δ_e^1 .

Similarly, we get

$$\begin{split} A\bigg(\bigg(\frac{\partial}{\partial y^1}\bigg)_{j_0^{r,s,q}(x^1,y^1)}^C\bigg) &= \sum_{a=1}^q \alpha_a^2 \frac{d}{dt_0} (j_0^{r,s,q}(x^1,y^1) + tj_0^{r,s,q}((x^1)^a,0)) \\ &+ \sum_{1 \le b+c \le r, \ b \ne 0} \beta_{b,c}^2 \frac{d}{dt_0} (j_0^{r,s,q}(x^1,y^1) + tj_0^{r,s,q}(0,(x^1)^b(y^1)^c))) \\ &+ \sum_{e=1}^s \delta_e^2 \frac{d}{dt_0} (j_0^{r,s,q}(x^1,y^1) + tj_0^{r,s,q}(0,(y^1)^c))) \end{split}$$

for some real numbers α_a^2 , $\beta_{b,c}^2$ and δ_e^2 .

So, replacing A by

$$A - \sum_{\tau=1,2} \sum_{a=1}^{q} \alpha_{a}^{\tau} A^{[a,\tau]} - \sum_{\tau=1,2} \sum_{1 \le b+c \le r, \ b \ne 0} \beta_{b,c}^{\tau} A^{[b,c,\tau]} - \sum_{\tau=1,2} \sum_{e=1}^{s} \delta_{e}^{\tau} A^{\langle e,\tau \rangle}$$

we can assume that

(*)
$$A\left(\left(\frac{\partial}{\partial x^{1}}\right)_{j_{0}^{r,s,q}(x^{1},y^{1})}^{C}\right) = A\left(\left(\frac{\partial}{\partial y^{1}}\right)_{j_{0}^{r,s,q}(x^{1},y^{1})}^{C}\right) = 0.$$

6. Proof of Theorem 1. Because of Lemma 2 and the assumption (*) of Section 5 it is sufficient to verify that

$$A\left(\frac{d}{dt_0}(j_0^{r,s,q}(x^1,y^1) + tj_0^{r,s,q}(x^2,0))\right) = A\left(\frac{d}{dt_0}\left(j_0^{r,s,q}(x^1,y^1) + tj_0^{r,s,q}(0,y^2)\right)\right) = 0.$$

We prove the first equality only. The proof of the second one is similar. Set

$$A\left(\frac{d}{dt_0}(j_0^{r,s,q}(x^1,y^1) + tj_0^{r,s,q}(x^2,0))\right) = \frac{d}{dt_0}(j_0^{r,s,q}(x^1,y^1) + tj_0^{r,s,q}(\gamma^1,\gamma^2)).$$

We have to show that $j_0^q(\gamma^1) = 0$, $j_0^s(\gamma^2(0, \cdot) = 0$ and $j_0^r(\gamma_2) = 0$.

We prove $j_0^r(\gamma_2) = 0$ only. The proof of the first two equalities is similar. Given an *n*-manifold N we have the inclusion $T^{s*}N \subset T^{r,s,q*}(\mathbb{R}^m \times N)$ given by $j_z^s \eta \mapsto j_{(0,z)}^{r,s,q}(x^1,\eta)$ for $\eta : N \to \mathbb{R}, z \in N, \eta(z) = 0$, where we identify η with $\eta \circ \operatorname{pr}_N$, $\operatorname{pr}_N : \mathbb{R}^m \times N \to N$ being the projection. Then for any $j_z^s \eta \in T^{s*}N$ we have the induced inclusion $T_{j_z^r \eta}T^{s*}N \subset T_{j_{(0,z)}^{r,s,q}(x^1,\eta)}T^{r,s,q*}(\mathbb{R}^m \times N)$.

For *m*-tuples α with $|\alpha| \leq r$ define an $\mathcal{M}f_n$ -natural affinor $B_\alpha : TT^{s*}N \to TT^{s*}N$ on $T^{s*}N$ as follows.

Let $w \in T_{j_z^{s,\eta}}T^{s*N}$, where $\eta : N \to \mathbb{R}$, $z \in N$, $\eta(z) = 0$. Then $w \in T_{j_{(0,z)}^{r,s,q}(x^1,\eta)}T^{r,s,q*}(\mathbb{R}^m \times N)$, and we can apply A to w. We have the ele-

ments $j_z^{r-|\alpha|}(\eta_{\alpha}^w) \in J_z^{r-|\alpha|}(N,\mathbb{R})$ (with $\eta_{\alpha}^w: N \to \mathbb{R}$, $\eta_{(0)}^w(z) = 0$) linearly depending on w by

$$A(w) = \frac{d}{dt_0} \Big(j^{r,s,q}_{(0,z)}(x^1,\eta) + t j^{r,s,q}_{(0,z)} \Big(\varrho^w, \sum_{\alpha} x^{\alpha} \eta^w_{\alpha} \Big) \Big).$$

We put

$$B_{\alpha}(w) = \frac{d}{dt} _{0} (j_{z}^{s} \eta + t j_{z}^{s} (\eta^{s-r+|\alpha|} \eta_{\alpha}^{w})) \in T_{j_{z}^{s} \eta} T^{s*} N.$$

From (*) we deduce that $B_{\alpha}((\partial/\partial y^1)_{j_0^r(y^1)}^C) = 0$. Then by the classification result from [6] we obtain $B_{\alpha} = 0$ for all α as above. Then (in particular) $j_0^r \gamma^2 = 0$.

7. The (r, s)-cotangent bundle $T^{r,s*}$. Let r, s, m, n be natural numbers with $s \ge r$. The concept of r-jets can be generalized as follows (see [3]). Let $Y \to M$ be a fibered manifold and N be a manifold. We recall that two maps $f, g: Y \to N$ determine the same (r, s)-jet $j_y^{r,s}f = j_y^{r,s}g$ at $y \in Y_x$, $x \in M$, if $j_y^r f = j_y^r g$ and $j_y^s(f|Y_x) = j_y^s(g|Y_x)$. The space of all (r, s)-jets of Y into N is denoted by $J^{r,s}(Y, N)$.

The vector r-cotangent bundle functor $T^{r*} = J^r(\cdot, \mathbb{R})_0 : \mathcal{M}f_m \to \mathcal{VB}$ can be generalized as follows (see [4], [7]). The space $T^{r,s*} = J^{r,s}(Y, \mathbb{R})_0$, $0 \in \mathbb{R}$, has an induced structure of a vector bundle over Y. Every $\mathcal{FM}_{m,n}$ map $f: Y \to Z$ induces a vector bundle map $T^{r,s*}f: T^{r,s*}Y \to T^{r,s*}Z$ covering $f, T^{r,s*}f(j_y^{r,s}\gamma) = j_{f(y)}^{r,s}(\gamma \circ f^{-1})$ for $\gamma: Y \to \mathbb{R}$ with $\gamma(y) = 0$. The correspondence $T^{r,s*}: \mathcal{FM}_{m,n} \to \mathcal{VB}$ is a vector bundle functor in the sense of [3]. We call it the (r, s)-cotangent bundle functor.

8. Natural affinors on $T^{r,s,q*}$. We present some examples of natural affinors on $T^{r,s*}$.

EXAMPLE 5. There is the identity affinor Id on $T^{r,s*}Y$ for any fibered manifold Y from $\mathcal{FM}_{m,n}$.

To present next examples we need some observations.

(a) There is a canonical 1-form θ on $T^{r,s*}Y$ given by

$$\theta_{j_y^{r,s}\gamma} = d_y(\gamma^V),$$

where $y \in Y$, $\gamma : Y \to \mathbb{R}$ is a fibered map with $\gamma(y) = 0$, and $f^V = f \circ \pi : T^{r,s*}Y \to \mathbb{R}$ is the vertical lifting of $f : Y \to \mathbb{R}$ to $T^{r,s*}Y$.

(b) For e = 1, ..., s there is a canonical vertical vector field $L^{(e)}$ on $T^{r,s*}Y$ given by

$$L^{(e)}j_y^{r,s}\gamma = (j_y^{r,s}\gamma, j_y^{r,s}(\gamma^e)) \in \{j_y^{r,s}\gamma\} \times T_y^{r,s*}Y \cong V_{j_y^{r,s}\gamma}T^{r,s*}Y,$$

where $y \in Y$ and $\gamma: Y \to \mathbb{R}$ is a fibered map with $\gamma(y) = 0$.

(c) If θ is the canonical 1-form on $T^{r,s*}Y$ and L is the canonical vector field on $T^{r,s*}Y$, then $\theta \otimes L$ is the canonical affinor on $T^{r,s*}Y$.

EXAMPLE 6. For $e = 1, \ldots, s$ there is an $\mathcal{FM}_{m,n}$ -natural affinor

$$A^{(e)} = \theta \otimes L^{(e)}$$

on $T^{r,s*}Y$ for any fibered manifold Y in $\mathcal{FM}_{m,n}$.

The second main result in the present paper is the following classification theorem.

THEOREM 2. Let m, n, r, s be integers such that $m \ge 2, n \ge 2, r \ge 1$ and $s \ge r$. The vector space of all $\mathcal{FM}_{m,n}$ -natural affinors on $T^{r,s*}$ is (s + 1)-dimensional. The natural affinors from Examples 5 and 6 form an \mathbb{R} -basis of this vector space.

The proof of Theorem 2 is quite similar to the one of Theorem 1.

References

- M. Doupovec and I. Kolář, Natural affinors on time-dependent Weil bundles, Arch. Math. (Brno) 27 (1991), 205–209.
- [2] J. Gancarzewicz and I. Kolář, Natural affinors on the extended rth order tangent bundles, Rend. Circ. Mat. Palermo Suppl. 30 (1993), 95–100.
- [3] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, Berlin, 1993.
- [4] I. Kolář and W. M. Mikulski, Contact elements on fibered manifolds, Czechoslovak Math. J., to appear.
- [5] I. Kolář and M. Modugno, Torsions of connections on some natural bundles, Differential Geom. Appl. 2 (1992), 1–16.
- [6] J. Kurek, Natural affinors on higher order cotangent bundle, Arch. Math. (Brno) 28 (1992), 175–180.
- [7] W. M. Mikulski, Natural affinors on r-jet prolongation of the tangent bundle, ibid. 34 (1998), 321–328.
- [8] —, Natural affinors on $(J^{r,s,q}(\cdot,\mathbb{R}^{1,1})_0)^*$, Comment. Math. Univ. Carolin. 42 (2001), 655–663.

Institute of Mathematics	Institute of Mathematics
Maria Curie-Skłodowska University	Jagiellonian University
Pl. Marii Curie-Skłodowskiej 1	Reymonta 4
20-031 Lublin, Poland	30-059 Kraków, Poland
E-mail: kurek@golem.umcs.lublin.pl	E-mail: mikulski@im.uj.edu.pl

Reçu par la Rédaction le 9.5.2003

(1443)