Natural affinors on the (r, s, q)-cotangent bundle of a fibered manifold

by J. Kurek (Lublin) and W. M. Mikulski (Kraków)

Abstract

For natural numbers r, s, q, m, n with $s \geq r \leq q$ we describe all natural affinors on the (r, s, q)-cotangent bundle $T^{r, s, q *} Y$ over an (m, n)-dimensional fibered manifold Y.

Introduction. Let r, s, q, m, n be natural numbers with $s \geq r \leq q$.
Let $T^{r, s, q^{*}}: \mathcal{F} \mathcal{M}_{m, n} \rightarrow \mathcal{V B}$ be the (r, s, q)-cotangent bundle functor from the category $\mathcal{F} \mathcal{M}_{m, n}$ of (m, n)-dimensional fibered manifolds (m is the base dimension and n is the fiber dimension) and their fibered local diffeomorphisms into the category of vector bundles and their homomorphisms (see [4], [8]).

An $\mathcal{F} \mathcal{M}_{m, n}$-natural affinor on $T^{r, s, q *}$ is an $\mathcal{F} \mathcal{M}_{m, n}$-invariant system of affinors $A: T T^{r, s, q *} Y \rightarrow T T^{r, s, q *} Y$ on $T^{r, s, q *} Y$ for any $\mathcal{F} \mathcal{M}_{m, n}$-object Y.

In the present note we describe completely all $\mathcal{F} \mathcal{M}_{m, n}$-natural affinors on $T^{r, s, q *}$. In the proof we will use the classification of all natural affinors on the r-cotangent bundle functor $T^{r *}$ over n-manifolds by the first author [6].

At the end of the paper we record a similar result for $T^{r, s *}$ in place of $T^{r, s, q *}$.

Natural affinors can be used to study torsions of connections (see [5]). That is why they have been classified in many papers ([1]-[4], [6]-[8], etc).

The standard (m, n)-fibered manifold $\mathbb{R}^{m} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ will be denoted by $\mathbb{R}^{m, n}$. The usual coordinates on $\mathbb{R}^{m, n}$ will be denoted by $x^{1}, \ldots, x^{m}, y^{1}, \ldots$, \ldots, y^{n}.

All manifolds and maps are assumed to be smooth, i.e. of class \mathcal{C}^{∞}.

1. The (r, s, q)-cotangent bundle $T^{r, s, q^{*}}$. Let r, s, q, m, n be natural numbers with $s \geq r \leq q$.

2000 Mathematics Subject Classification: 58A20, 53A55.
Key words and phrases: natural bundles, bundle functors, natural affinors.

The concept of r-jets can be generalized as follows (see [3]). Let $Y \rightarrow M$ and $Z \rightarrow N$ be fibered manifolds. We recall that two fibered maps f, g : $Y \rightarrow Z$ with base maps $f, g: M \rightarrow N$ determine the same (r, s, q)-jet $j_{y}^{r, s, q} f=j_{y}^{r, s, q} g$ at $y \in Y_{x}, x \in M$, if $j_{y}^{r} f=j_{y}^{r} g, j_{y}^{s}\left(f \mid Y_{x}\right)=j_{y}^{s}\left(g \mid Y_{x}\right)$ and $j_{x}^{q} \underline{f}=j_{x}^{q} \underline{g}$. The space of all (r, s, q)-jets of Y into Z is denoted by $J^{r, s, q}(Y, Z)$. The composition of fibered maps induces the composition of (r, s, q)-jets [3, p. 126].

The vector r-cotangent bundle functor $T^{r *}=J^{r}(\cdot, \mathbb{R})_{0}: \mathcal{M} f_{m} \rightarrow \mathcal{V} \mathcal{B}$ can be generalized as follows (see [4], [7]). Let $\mathbb{R}^{1,1}=\mathbb{R} \times \mathbb{R}$ be the trivial bundle over \mathbb{R}. The space $T^{r, s, q *}=J^{r, s, q}\left(Y, \mathbb{R}^{1,1}\right)_{0}, 0 \in \mathbb{R}^{2}$, has an induced structure of a vector bundle over Y. Every $\mathcal{F} \mathcal{M}_{m, n}$-map $f: Y \rightarrow Z$ induces a vector bundle map $T^{r, s, q *} f: T^{r, s, q *} Y \rightarrow T^{r, s, q *} Z$ covering $f, T^{r, s, q *} f\left(j_{y}^{r, s, q} \gamma\right)=$ $j_{f(y)}^{r, s, q}\left(\gamma \circ f^{-1}\right)$ for $\gamma: Y \rightarrow \mathbb{R}^{1,1}$ with $\gamma(y)=0$. The correspondence $T^{r, s, q *}$: $\mathcal{F} \mathcal{M}_{m, n} \rightarrow \mathcal{V B}$ is a vector bundle functor in the sense of [3]. We call it the (r, s, q)-cotangent bundle functor.
2. Natural affinors on $T^{r, s, q^{*}}$. An $\mathcal{F} \mathcal{M}_{m, n}$-natural affinor on $T^{r, s, q *}$ is an $\mathcal{F} \mathcal{M}_{m, n}$-invariant system of affinors

$$
A: T T^{r, s, q *} Y \rightarrow T T^{r, s, q *} Y
$$

on $T^{r, s, q *} Y$ for any $\mathcal{F} \mathcal{M}_{m, n}$-object Y. The invariance means that for any $\mathcal{F} \mathcal{M}_{m, n}$-morphism $f: Y \rightarrow Z$ we have $T T^{r, s, q *} f \circ A=A \circ T T^{r, s, q *} f$.

We present some examples of natural affinors on $T^{r, s, q *}$.
Example 1. There is the identity affinor Id on $T^{r, s, q *} Y$ for any fibered manifold Y from $\mathcal{F} \mathcal{M}_{m, n}$.

To present next examples we need some observations.
(a) There are two canonical 1-forms $\theta^{\tau}, \tau=1,2$, on $T^{r, s, q *} Y$ given by

$$
\theta_{j_{y}^{r, s, q} \gamma}^{\tau}=d_{y}\left(\gamma_{\tau}^{V}\right),
$$

where $y \in Y, \gamma=\left(\gamma_{1}, \gamma_{2}\right): Y \rightarrow \mathbb{R}^{1,1}$ is a fibered map with $\gamma(y)=0$, and $f^{V}=f \circ \pi: T^{r, s, q *} Y \rightarrow \mathbb{R}$ is the vertical lifting of $f: Y \rightarrow \mathbb{R}$ to $T^{r, s, q *} Y$.
(b) For $a=1, \ldots, q$ there is a canonical vertical vector field $L^{[a]}$ on $T^{r, s, q *} Y$ given by

$$
L^{[a]} j_{y}^{r, s, q} \gamma=\left(j_{y}^{r, s, q} \gamma, j_{y}^{r, s, q}\left(\gamma_{1}^{a}, 0\right)\right) \in\left\{j_{y}^{r, s, q} \gamma\right\} \times T_{y}^{r, s, q *} Y \cong V_{j_{y}^{r, s, q}} T^{r, s, q *} Y
$$

where $y \in Y$ and $\gamma=\left(\gamma_{1}, \gamma_{2}\right): Y \rightarrow \mathbb{R}^{1,1}$ is a fibered map with $\gamma(y)=0$.
(c) For non-negative integers b and c with $1 \leq b+c \leq r$ and $b \neq 0$ there is a canonical vertical vector field $L^{[b, c]}$ on $T^{r, s, q *} Y$ given by

$$
\begin{aligned}
L^{[b, c]} j_{y}^{r, s, q} \gamma & =\left(j_{y}^{r, s, q} \gamma, j_{y}^{r, s, q}\left(0, \gamma_{1}^{b} \gamma_{2}^{c}\right)\right) \\
& \in\left\{j_{y}^{r, s, q} \gamma\right\} \times T_{y}^{r, s, q *} Y \cong V_{j_{y}^{r, s, q}} T^{r, s, q *} Y
\end{aligned}
$$

where $y \in Y, \gamma=\left(\gamma_{1}, \gamma_{2}\right): Y \rightarrow \mathbb{R}^{1,1}$ is a fibered map with $\gamma(y)=0$, and γ_{1}^{a} is the a th power of γ_{1}.
(d) For $e=1, \ldots, s$ there is a canonical vertical vector field $L^{\langle e\rangle}$ on $T^{r, s, q *} Y$ given by

$$
L^{\langle e\rangle} j_{y}^{r, s, q} \gamma=\left(j_{y}^{r, s, q} \gamma, j_{y}^{r, s, q}\left(0, \gamma_{2}^{e}\right)\right) \in\left\{j_{y}^{r, s, q} \gamma\right\} \times T_{y}^{r, s, q *} Y \cong V_{j_{y}^{r, s, q}} T^{r, s, q *} Y,
$$ where $y \in Y$ and $\gamma=\left(\gamma_{1}, \gamma_{2}\right): Y \rightarrow \mathbb{R}^{1,1}$ is a fibered map with $\gamma(y)=0$.

(e) If θ is the canonical 1-form on $T^{r, s, q *} Y$ and L is the canonical vector field on $T^{r, s, q *} Y$, then $\theta \otimes L$ is the canonical affinor on $T^{r, s, q *} Y$.

Example 2. For $a=1, \ldots, q$ and $\tau=1,2$ there is an $\mathcal{F} \mathcal{M}_{m, n}$-natural affinor

$$
A^{[a, \tau]}=\theta^{\tau} \otimes L^{[a]}
$$

on $T^{r, s, q *} Y$ for any fibered manifold Y in $\mathcal{F} \mathcal{M}_{m, n}$.
Example 3. For non-negative integers b and c with $1 \leq b+c \leq r$ and $b \neq 0$ and $\tau=1,2$ there is an $\mathcal{F} \mathcal{M}_{m, n}$-natural affinor

$$
A^{[b, c, \tau]}=\theta^{\tau} \otimes L^{[b, c]}
$$

on $T^{r, s, q^{*}} Y$ for any fibered manifold Y in $\mathcal{F} \mathcal{M}_{m, n}$.
Example 4. For $e=1, \ldots, s$ and $\tau=1,2$ there is an $\mathcal{F} \mathcal{M}_{m, n}$-natural affinor

$$
A^{\langle e, \tau\rangle}=\theta^{\tau} \otimes L^{\langle e\rangle}
$$

on $T^{r, s, q *} Y$ for any fibered manifold Y in $\mathcal{F} \mathcal{M}_{m, n}$.
The main result of the present paper is the following classification theorem.

Theorem 1. Let m, n, r, s, q be integers such that $m \geq 2, n \geq 2, r \geq 1$ and $s \geq r \leq q$. The vector space of all $\mathcal{F} \mathcal{M}_{m, n}$-natural affinors on $T^{r, s, q *}$ is $\left(r^{2}+r+2 s+2 q+1\right)$-dimensional. The natural affinors from Examples $1-4$ form an \mathbb{R}-basis of this vector space.

The proof of Theorem 1 will occupy the rest of the paper.
From now on we consider an $\mathcal{F} \mathcal{M}_{m, n}$-natural affinor A on $T^{r, s, q *}$ and assume that m, n, s, r, q are as in Theorem 1.

Since the natural affinors from Examples 1-4 are linearly independent, it is sufficient to prove that A is their linear combination.

3. A decomposition lemma

Lemma 1. There is a real number α such that $A-\alpha$ Id is of vertical type, i.e. $\operatorname{im}(A-\alpha \mathrm{Id}) \subset V T^{r, s, q *} Y$ for any Y in $\mathcal{F} \mathcal{M}_{m, n}$.

Proof. Let $\pi: T^{r, s, q *} Y \rightarrow Y$ be the bundle projection. We define α by

$$
\alpha=d_{0} y^{1}\left(T \pi \circ A\left(\left(\frac{\partial}{\partial x^{1}}\right)_{j_{0}^{r, s, q}(0)}^{C}\right)\right)
$$

where X^{C} is the complete lifting of a projectable vector field on Y to $T^{r, s, q *} Y$ and $x^{1}, \ldots, x^{m}, y^{1}, \ldots, y^{n}$ are the usual coordinates on $\mathbb{R}^{m, n}$.

Using the invariance of $T \pi \circ(A-\alpha \mathrm{Id})_{\mid V T^{r, s, q} \mathbb{R}^{m, n}}$ with respect to the homotheties $t^{-1} \mathrm{id}_{\mathbb{R}^{m, n}}$ for $t>0$ and next letting $t \rightarrow 0$ we deduce that

$$
T \pi \circ(A-\alpha \mathrm{Id})_{\mid V T^{r, s, q}} \mathbb{R}^{m, n}=0 .
$$

It remains to prove that $T \pi \circ(A-\alpha \mathrm{Id})\left(X_{u}^{C}\right)=0$ for any constant vector field X on $\mathbb{R}^{m, n}$ and any $u=j_{0}^{r, s, q} \gamma \in T_{0}^{r, s, q *} \mathbb{R}^{m, n}$.

Because of the invariance of A we can assume that $X=\partial / \partial x^{1}$. Write

$$
T \pi \circ(A-\alpha \operatorname{Id})\left(\left(\frac{\partial}{\partial x^{1}}\right)_{u}^{C}\right)=\sum_{i=1}^{m} \alpha_{i} \frac{\partial}{\partial x^{i}}{ }_{0}+\sum_{j=1}^{n} \beta_{j} \frac{\partial}{\partial y^{j}}
$$

Using the invariance of $A-\alpha \operatorname{Id}$ with respect to $\left(x^{1}, t^{-1} x^{2}, \ldots, t^{-1} x^{m}, t^{-1} y^{1}\right.$, $\ldots, t^{-1} y^{n}$) for $t>0$ and then letting $t \rightarrow 0$ we deduce that $\alpha_{2}=\ldots=\alpha_{m}=$ $\beta_{1}=\ldots=\beta_{n}=0$. Then using the invariance of $A-\alpha \mathrm{Id}$ with respect to $t^{-1} \mathrm{id}_{\mathbb{R}^{m, n}}$ for $t>0$ and then letting $t \rightarrow 0$ and using the definition of α we deduce that

$$
T \pi \circ(A-\alpha \mathrm{Id})\left(\left(\frac{\partial}{\partial x^{1}}\right)_{u}^{C}\right)=T \pi \circ(A-\alpha \mathrm{Id})\left(\left(\frac{\partial}{\partial x^{1}}\right)_{0}^{C}\right)=0
$$

Because of Lemma 1, replacing A by $A-\alpha$ Id we can and do assume that A is of vertical type.

4. A reducibility lemma

Lemma 2. Assume that

$$
A\left(\left(\frac{\partial}{\partial x^{1}}\right)_{j_{0}^{r, s, q}\left(x^{1}, y^{1}\right)}^{C}\right)=A\left(\left(\frac{\partial}{\partial y^{1}}\right)_{j_{0}^{r, s, q}\left(x^{1}, y^{1}\right)}^{C}\right)=0
$$

and

$$
\begin{aligned}
A\left(\frac { d } { d t } _ { 0 } \left(j_{0}^{r, s, q}\left(x^{1}, y^{1}\right)+\right.\right. & \left.\left.t j_{0}^{r, s, q}\left(x^{2}, 0\right)\right)\right) \\
& =A\left(\frac{d}{d t}_{0}\left(j_{0}^{r, s, q}\left(x^{1}, y^{1}\right)+t j_{0}^{r, s, q}\left(0, y^{2}\right)\right)\right)=0
\end{aligned}
$$

Then $A=0$.
Proof. It is sufficient to show that $A(w)=0$ for any $w \in T_{u}^{r, s, q *} Y$.

By the fibered version of the rank theorem, $j_{0}^{r, s, q}\left(x^{1}, y^{1}\right) \in T_{0}^{r, s, q *} \mathbb{R}^{m, n}$ has dense orbit in $T^{r, s, q *} Y$ with respect to $\mathcal{F} \mathcal{M}_{m, n}$-maps. Therefore we can assume $u=j_{0}^{r, s, q}\left(x^{1}, y^{1}\right)$.

Because of the fiber linearity of A we can assume that either $w=X_{u}^{C}$ for $u=j_{0}^{r, s, q}\left(x^{1}, y^{1}\right)$ and a constant vector field X on $\mathbb{R}^{m, n}$, or $w=$ $\frac{d}{d t} 0\left(j_{0}^{r, s, q}\left(x^{1}, y^{1}\right)+t j_{0}^{r, s, q} \gamma\right)$ for a fibered map $\gamma=\left(\gamma_{1}, \gamma_{2}\right): \mathbb{R}^{m, n} \rightarrow \mathbb{R}^{1,1}$ with $\gamma(0)=0$.

In the first case because of the invariance of A with respect to linear $\mathcal{F} \mathcal{M}_{m, n}$-maps we can assume that $X=\partial / \partial x^{1}$ or $X=\partial / \partial y^{1}$. In the second case by the fibered version of the rank theorem we can assume that $\gamma=$ $\left(x^{2}, y^{2}\right)$. Then by the fiber linearity of A we can assume that $\gamma=\left(x^{2}, 0\right)$ or $\gamma=\left(0, y^{2}\right)$.

Now, applying the assumptions of the lemma completes the proof.
Lemma 2 means that A is determined by the four vectors

$$
\begin{gathered}
A\left(\left(\frac{\partial}{\partial x^{1}}\right)_{j_{0}^{r, s, q}\left(x^{1}, y^{1}\right)}^{C}\right), \quad A\left(\left(\frac{\partial}{\partial y^{1}}\right)_{j_{0}^{r, s, q}\left(x^{1}, y^{1}\right)}^{C}\right), \\
A\left(\frac{d}{d t}_{0}\left(j_{0}^{r, s, q}\left(x^{1}, y^{1}\right)+t j_{0}^{r, s, q}\left(x^{2}, 0\right)\right)\right) \\
A\left(\frac{d}{d t}_{0}\left(j_{0}^{r, s, q}\left(x^{1}, y^{1}\right)+t j_{0}^{r, s, q}\left(0, y^{2}\right)\right)\right)
\end{gathered}
$$

We study these vectors in the next sections.
5. An inessential assumption. We can write

$$
A\left(\left(\frac{\partial}{\partial x^{1}}\right)_{j_{0}^{r, s, q}\left(x^{1}, y^{1}\right)}^{C}\right)=\frac{d}{d t_{0}}\left(j_{0}^{r, s, q}\left(x^{1}, y^{1}\right)+t j_{0}^{r, s, q} \gamma\right)
$$

for a fibered map $\gamma=\left(\gamma_{1}, \gamma_{2}\right): \mathbb{R}^{m, n} \rightarrow \mathbb{R}^{1,1}$ with $\gamma(0)=0$. Using the invariance of A with respect to $\left(x^{1}, t x^{2}, \ldots, t x^{m}, y^{1}, t y^{2}, \ldots, t y^{n}\right)$ for $t>0$ and then letting $t \rightarrow 0$ we get

$$
\begin{aligned}
& A\left(\left(\frac{\partial}{\partial x^{1}}\right)_{j_{0}^{r, s, q}\left(x^{1}, y^{1}\right)}^{C}\right)=\sum_{a=1}^{q} \alpha_{a}^{1} \frac{d}{d t_{0}}\left(j_{0}^{r, s, q}\left(x^{1}, y^{1}\right)+t j_{0}^{r, s, q}\left(\left(x^{1}\right)^{a}, 0\right)\right) \\
& +\sum_{1 \leq b+c \leq r, b \neq 0} \beta_{b, c}^{1} \frac{d}{d t}\left(j_{0}^{r, s, q}\left(x^{1}, y^{1}\right)+t j_{0}^{r, s, q}\left(0,\left(x^{1}\right)^{b}\left(y^{1}\right)^{c}\right)\right) \\
& \quad+\sum_{e=1}^{s} \delta_{e}^{1} \frac{d}{d t}\left(j_{0}^{r, s, q}\left(x^{1}, y^{1}\right)+t j_{0}^{r, s, q}\left(0,\left(y^{1}\right)^{c}\right)\right)
\end{aligned}
$$

for some real numbers $\alpha_{a}^{1}, \beta_{b, c}^{1}$ and δ_{e}^{1}.

Similarly, we get

$$
\begin{aligned}
& A\left(\left(\frac{\partial}{\partial y^{1}}\right)_{j_{0}^{r, s, q}\left(x^{1}, y^{1}\right)}^{C}\right)=\sum_{a=1}^{q} \alpha_{a}^{2} \frac{d}{d t}\left(j_{0}^{r, s, q}\left(x^{1}, y^{1}\right)+t j_{0}^{r, s, q}\left(\left(x^{1}\right)^{a}, 0\right)\right) \\
& \quad+\sum_{1 \leq b+c \leq r, b \neq 0} \beta_{b, c}^{2} \frac{d}{d t}\left(j_{0}^{r, s, q}\left(x^{1}, y^{1}\right)+t j_{0}^{r, s, q}\left(0,\left(x^{1}\right)^{b}\left(y^{1}\right)^{c}\right)\right) \\
& \quad+\sum_{e=1}^{s} \delta_{e}^{2} \frac{d}{d t}\left(j_{0}^{r, s, q}\left(x^{1}, y^{1}\right)+t j_{0}^{r, s, q}\left(0,\left(y^{1}\right)^{c}\right)\right)
\end{aligned}
$$

for some real numbers $\alpha_{a}^{2}, \beta_{b, c}^{2}$ and δ_{e}^{2}.
So, replacing A by

$$
A-\sum_{\tau=1,2} \sum_{a=1}^{q} \alpha_{a}^{\tau} A^{[a, \tau]}-\sum_{\tau=1,2} \sum_{1 \leq b+c \leq r, b \neq 0} \beta_{b, c}^{\tau} A^{[b, c, \tau]}-\sum_{\tau=1,2} \sum_{e=1}^{s} \delta_{e}^{\tau} A^{\langle e, \tau\rangle}
$$

we can assume that

$$
\begin{equation*}
A\left(\left(\frac{\partial}{\partial x^{1}}\right)_{j_{0}^{r, s, q}\left(x^{1}, y^{1}\right)}^{C}\right)=A\left(\left(\frac{\partial}{\partial y^{1}}\right)_{j_{0}^{r, s, q}\left(x^{1}, y^{1}\right)}^{C}\right)=0 \tag{*}
\end{equation*}
$$

6. Proof of Theorem 1. Because of Lemma 2 and the assumption (*) of Section 5 it is sufficient to verify that

$$
\begin{aligned}
& A\left(\frac{d}{d t_{0}}\left(j_{0}^{r, s, q}\left(x^{1}, y^{1}\right)+t j_{0}^{r, s, q}\left(x^{2}, 0\right)\right)\right) \\
&=A\left(\frac{d}{d t}_{0}\left(j_{0}^{r, s, q}\left(x^{1}, y^{1}\right)+t j_{0}^{r, s, q}\left(0, y^{2}\right)\right)\right)=0
\end{aligned}
$$

We prove the first equality only. The proof of the second one is similar. Set $A\left(\frac{d}{d t}_{0}\left(j_{0}^{r, s, q}\left(x^{1}, y^{1}\right)+t j_{0}^{r, s, q}\left(x^{2}, 0\right)\right)\right)=\frac{d}{d t}_{0}\left(j_{0}^{r, s, q}\left(x^{1}, y^{1}\right)+t j_{0}^{r, s, q}\left(\gamma^{1}, \gamma^{2}\right)\right)$.
We have to show that $j_{0}^{q}\left(\gamma^{1}\right)=0, j_{0}^{s}\left(\gamma^{2}(0, \cdot)=0\right.$ and $j_{0}^{r}\left(\gamma_{2}\right)=0$.
We prove $j_{0}^{r}\left(\gamma_{2}\right)=0$ only. The proof of the first two equalities is similar.
Given an n-manifold N we have the inclusion $T^{s *} N \subset T^{r, s, q *}\left(\mathbb{R}^{m} \times N\right)$ given by $j_{z}^{s} \eta \mapsto j_{(0, z)}^{r, s, q}\left(x^{1}, \eta\right)$ for $\eta: N \rightarrow \mathbb{R}, z \in N, \eta(z)=0$, where we identify η with $\eta \circ \operatorname{pr}_{N}, \operatorname{pr}_{N}: \mathbb{R}^{m} \times N \rightarrow N$ being the projection. Then for any $j_{z}^{s} \eta \in T^{s *} N$ we have the induced inclusion $T_{j_{z}^{r}} \eta^{s *} N \subset$ $T_{j_{(0, z)}^{r, s, q}\left(x^{1}, \eta\right)} T^{r, s, q *}\left(\mathbb{R}^{m} \times N\right)$.

For m-tuples α with $|\alpha| \leq r$ define an $\mathcal{M} f_{n}$-natural affinor $B_{\alpha}: T T^{s *} N$ $\rightarrow T T^{s *} N$ on $T^{s *} N$ as follows.

Let $w \in T_{j_{z}^{s} \eta} T^{s *} N$, where $\eta: N \rightarrow \mathbb{R}, z \in N, \eta(z)=0$. Then $w \in$ $T_{j_{(0, z)}^{r, s, q}\left(x^{1}, \eta\right)} T^{r, s, q^{*}}\left(\mathbb{R}^{m} \times N\right)$, and we can apply A to w. We have the ele-
ments $j_{z}^{r-|\alpha|}\left(\eta_{\alpha}^{w}\right) \in J_{z}^{r-|\alpha|}(N, \mathbb{R})$ (with $\eta_{\alpha}^{w}: N \rightarrow \mathbb{R}, \eta_{(0)}^{w}(z)=0$) linearly depending on w by

$$
A(w)=\frac{d}{d t}_{0}\left(j_{(0, z)}^{r, s, q}\left(x^{1}, \eta\right)+t j_{(0, z)}^{r, s, q}\left(\varrho^{w}, \sum_{\alpha} x^{\alpha} \eta_{\alpha}^{w}\right)\right)
$$

We put

$$
B_{\alpha}(w)=\frac{d}{d t_{0}}\left(j_{z}^{s} \eta+t j_{z}^{s}\left(\eta^{s-r+|\alpha|} \eta_{\alpha}^{w}\right)\right) \in T_{j_{z}^{s} \eta} T^{s *} N
$$

From $(*)$ we deduce that $B_{\alpha}\left(\left(\partial / \partial y^{1}\right)_{j_{0}^{r}\left(y^{1}\right)}^{C}\right)=0$. Then by the classification result from [6] we obtain $B_{\alpha}=0$ for all α as above. Then (in particular) $j_{0}^{r} \gamma^{2}=0$.
7. The (r, s)-cotangent bundle $T^{r, s *}$. Let r, s, m, n be natural numbers with $s \geq r$. The concept of r-jets can be generalized as follows (see [3]). Let $Y \rightarrow M$ be a fibered manifold and N be a manifold. We recall that two maps $f, g: Y \rightarrow N$ determine the same (r, s)-jet $j_{y}^{r, s} f=j_{y}^{r, s} g$ at $y \in Y_{x}$, $x \in M$, if $j_{y}^{r} f=j_{y}^{r} g$ and $j_{y}^{s}\left(f \mid Y_{x}\right)=j_{y}^{s}\left(g \mid Y_{x}\right)$. The space of all (r, s)-jets of Y into N is denoted by $J^{r, s}(Y, N)$.

The vector r-cotangent bundle functor $T^{r *}=J^{r}(\cdot, \mathbb{R})_{0}: \mathcal{M} f_{m} \rightarrow \mathcal{V} \mathcal{B}$ can be generalized as follows (see [4], [7]). The space $T^{r, s *}=J^{r, s}(Y, \mathbb{R})_{0}$, $0 \in \mathbb{R}$, has an induced structure of a vector bundle over Y. Every $\mathcal{F} \mathcal{M}_{m, n^{-}}$ $\operatorname{map} f: Y \rightarrow Z$ induces a vector bundle map $T^{r, s *} f: T^{r, s *} Y \rightarrow T^{r, s *} Z$ covering $f, T^{r, s *} f\left(j_{y}^{r, s} \gamma\right)=j_{f(y)}^{r, s}\left(\gamma \circ f^{-1}\right)$ for $\gamma: Y \rightarrow \mathbb{R}$ with $\gamma(y)=0$. The correspondence $T^{r, s *}: \mathcal{F} \mathcal{M}_{m, n} \rightarrow \mathcal{V B}$ is a vector bundle functor in the sense of [3]. We call it the (r, s)-cotangent bundle functor.
8. Natural affinors on $T^{r, s, q *}$. We present some examples of natural affinors on $T^{r, s *}$.

Example 5. There is the identity affinor Id on $T^{r, s *} Y$ for any fibered manifold Y from $\mathcal{F} \mathcal{M}_{m, n}$.

To present next examples we need some observations.
(a) There is a canonical 1-form θ on $T^{r, s *} Y$ given by

$$
\theta_{j_{y}^{r, s} \gamma}=d_{y}\left(\gamma^{V}\right)
$$

where $y \in Y, \gamma: Y \rightarrow \mathbb{R}$ is a fibered map with $\gamma(y)=0$, and $f^{V}=f \circ \pi$: $T^{r, s *} Y \rightarrow \mathbb{R}$ is the vertical lifting of $f: Y \rightarrow \mathbb{R}$ to $T^{r, s *} Y$.
(b) For $e=1, \ldots, s$ there is a canonical vertical vector field $L^{(e)}$ on $T^{r, s *} Y$ given by

$$
L^{(e)} j_{y}^{r, s} \gamma=\left(j_{y}^{r, s} \gamma, j_{y}^{r, s}\left(\gamma^{e}\right)\right) \in\left\{j_{y}^{r, s} \gamma\right\} \times T_{y}^{r, s *} Y \cong V_{j_{y}^{r, s} \gamma} T^{r, s *} Y
$$

where $y \in Y$ and $\gamma: Y \rightarrow \mathbb{R}$ is a fibered map with $\gamma(y)=0$.
(c) If θ is the canonical 1-form on $T^{r, s *} Y$ and L is the canonical vector field on $T^{r, s *} Y$, then $\theta \otimes L$ is the canonical affinor on $T^{r, s *} Y$.

Example 6. For $e=1, \ldots, s$ there is an $\mathcal{F} \mathcal{M}_{m, n}$-natural affinor

$$
A^{(e)}=\theta \otimes L^{(e)}
$$

on $T^{r, s *} Y$ for any fibered manifold Y in $\mathcal{F} \mathcal{M}_{m, n}$.
The second main result in the present paper is the following classification theorem.

Theorem 2. Let m, n, r, s be integers such that $m \geq 2, n \geq 2, r \geq 1$ and $s \geq r$. The vector space of all $\mathcal{F} \mathcal{M}_{m, n}$-natural affinors on $T^{r, s *}$ is $(s+1)$ dimensional. The natural affinors from Examples 5 and 6 form an \mathbb{R}-basis of this vector space.

The proof of Theorem 2 is quite similar to the one of Theorem 1.

References

[1] M. Doupovec and I. Kolář, Natural affinors on time-dependent Weil bundles, Arch. Math. (Brno) 27 (1991), 205-209.
[2] J. Gancarzewicz and I. Kolář, Natural affinors on the extended rth order tangent bundles, Rend. Circ. Mat. Palermo Suppl. 30 (1993), 95-100.
[3] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, Berlin, 1993.
[4] I. Kolář and W. M. Mikulski, Contact elements on fibered manifolds, Czechoslovak Math. J., to appear.
[5] I. Kolář and M. Modugno, Torsions of connections on some natural bundles, Differential Geom. Appl. 2 (1992), 1-16.
[6] J. Kurek, Natural affinors on higher order cotangent bundle, Arch. Math. (Brno) 28 (1992), 175-180.
[7] W. M. Mikulski, Natural affinors on r-jet prolongation of the tangent bundle, ibid. 34 (1998), 321-328.
[8] —, Natural affinors on $\left(J^{r, s, q}\left(\cdot, \mathbb{R}^{1,1}\right)_{0}\right)^{*}$, Comment. Math. Univ. Carolin. 42 (2001), 655-663.

Institute of Mathematics
Maria Curie-Skłodowska University
Pl. Marii Curie-Skłodowskiej 1
20-031 Lublin, Poland
E-mail: kurek@golem.umcs.lublin.pl

Institute of Mathematics
Jagiellonian University Reymonta 4
30-059 Kraków, Poland
E-mail: mikulski@im.uj.edu.pl

