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On the index of contact

by M. Montserrat Alonso Ferrero (Bologna)

Abstract. We use the construction of the intersection product of two algebraic cones
to prove that the multiplicity of contact of the cones at the vertex is equal to the product
of their degrees. We give an example to show that in order to calculate the index of contact
it is not sufficient to perform the analytic intersection algorithm with hyperplanes.

1. Introduction. The aim of this paper is to find a relation between
two indices which characterize locally the intersection of analytic sets: the
intersection multiplicity and the index of contact.

The index of contact has been introduced by E. Cygan [Cy] in connec-
tion with the study of Łojasiewicz inequalities and separation exponent for
analytic subsets X, Y of a complex manifold N . If N is an open subset
of Cn, fix a norm on Cn and set dist(X, z) := infx∈X ‖z − x‖. Consider a
point c ∈ X ∩ Y . Then

dist(X, z) + dist(Y, z) ≥ const · dist(X ∩ Y, z)p

in a neighbourhood of the point c for some const, p > 0 (see e.g. [Ł]). In
this situation we say that X and Y are p-separated at c, and p is called a
separation exponent .

In [T1], [CyT] and [Cy] upper bounds for p have been given. In particular,
the local degree ν(X • Y, c) of the intersection cycle X • Y (see [T2]) is an
upper bound, which can be improved in the case of an isolated intersection
(see [T1]) or improper intersection (see [Cy]). In [Cy] this improvement is
achieved by modifying the analytic intersection algorithm of Tworzewski for
the construction of the intersection cycle. This leads to the following two
numbers: the index of contact p(X,Y )(c) in the case that Y is a submanifold,
and the multiplicity of contact r(X,Y )(c) := p(X×Y,4N )(c, c), where 4N
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is the diagonal in N ×N . Immediately from the definition one has

r(X,Y )(c) ≤ ν(X • Y, c)
and in [Cy] it is proved that also r(X,Y )(c) is a separation exponent. We
note that the difference between ν(X•Y, c) and r(X,Y )(c) can be arbitrarily
large (see our Remark 3.5), but in a Zariski open subset of each component
of X ∩ Y the two numbers coincide (see [R]). Note also that the index of
multiplicity is not the sharp upper bound for the separation exponent.

Whereas ν(X • Y, c) can be expressed as a Samuel multiplicity of an
associated graded ring (see [N3], [AR]), at present there are no algebraic or
geometric characterizations of the index or multiplicity of contact.

In this note we characterize the index of contact of an algebraic cone
Z and a subspace S. As a consequence we determine the multiplicity of
contact of two algebraic cones (see Section 3). In Section 2, we recall some
basic notions of intersection theory. In the last section we give an example
which shows that the “Linear Testing Theorem” of [N3] and [AR] for the
extended index of intersection fails to be true in the case of the index of
contact.

2. Notation

2.1. Analytic cycles. Let A =
∑

j∈J αjCj be an analytic cycle on a
complex manifold N of dimension n. As a natural extension of the local
degree of analytic sets we can define the degree of the cycle A at the point c
as

ν(A, c) =
∑

j∈J
αjν(Cj , c) ∈ N,

where ν(Cj, c) denotes the degree of the irreducible analytic set Cj at c.
Any cycle A has a unique decomposition A = T(n) + T(n−1) + . . .+ T(0),

where T(j) is a j-cycle (i.e. a formal combination of irreducible analytic sets
of dimension j), and the extended degree of the cycle A at c is

ν̃(A, c) = (ν(T(n), c), ν(T(n−1), c), . . . , ν(T(0), c)) ∈ Nn+1.

The analytic set
⋃
j∈J Cj is called the support of A and is denoted by |A|.

Let S be a closed submanifold inN . For the analytic cycleA=
∑

j∈J αjCj
the part of A supported by S is defined to be

AS =
∑

j∈J, Cj⊂S
αjCj .

2.2. Proper intersection of cycles. Let A1, . . . , Ak be analytic cycles on
a complex manifold N of dimension n, with supports |Aj | of respective pure
dimensions dj . We say that these cycles intersect properly if the dimension
of
⋂k
j=1 |Aj | is (

∑k
j=1 dj) − n(k − 1). In this case we have the intersection
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product A1 · . . . · Ak of the analytic cycles A1, . . . , Ak as defined in [D] (see
also [Ch]).

2.3. Algorithm. Let N be an n-dimensional complex manifold, Z an
analytic subset of pure dimension d of N , and S an s-dimensional closed
submanifold of N . Let U be an open subset of N such that U ∩S 6= ∅. Then
(U \ S) ∩ Z is an analytic subset of U \ S of pure dimension d (or empty).
In the open subset U of N we consider a system H = (H1, . . . ,Hn−s) that
satisfies the following conditions:

1. Hi is a smooth hypersurface in U containing U ∩ S for all i = 1, . . . ,
n− s.

2.
⋂n−s
i=1 TyHi = TyS for each y ∈ U ∩ S.

3. ((U \ S) ∩ Z) ∩H1 ∩ H2 ∩ . . . ∩Hi is an analytic subset of U \ S of
pure dimension d− i, or an empty set, for i = 1, . . . , d.

We denote by H(U,Z) the set of all systems H which have these three
properties. For an element H = (H1, . . . ,Hn−s) ∈ H(U,Z) we define an
analytic cycle Z · H in S ∩ U following the Tworzewski algorithm ([T2,
Algorithm 4.1]). Set ` = `(H) = max{j ∈ {1, 2, . . . , n− s} : |Zj−1 − ZSj−1| ∩
Hj 6= ∅}, or ` = `(H) = 0 if Z ∩ U ⊂ S ∩ U .

Algorithm:

Step 0. Let Z0 = Z ∩ U . Then Z0 = (Z0 − ZS0 ) + ZS0 , with ZS0 := part of
Z0 supported by S ∩ U .

Step 1. Let Z1 = (Z0 − ZS0 ) ·H1. Then Z1 = (Z1 − ZS1 ) + ZS1 , with ZS1 :=
part of Z1 supported by S ∩ U .

Step 2. Let Z2 = (Z1 − ZS1 ) ·H2. Then Z2 = (Z2 − ZS2 ) + ZS2 , with ZS2 :=
part of Z2 supported by S ∩ U .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Step `. Let Z` = (Z`−1−ZS`−1) ·H`. Then Z` = (Z`−ZS` )+ZS` , with ZS` :=
part of Z` supported by S ∩ U , and |Z` − ZS` | ∩ S = ∅.

The positive analytic cycle Z · H = ZS0 + . . . + ZS` on S ∩ U is called the
result of the above algorithm.

2.4. Definitions. Using the algorithm we can define, for c ∈ S:

g̃(Z, S)(c) := minlex{ν̃(Z · H, c) : H ∈ H(U,Z) and U 3 c} ∈ Ns+1,

g(Z, S)(c) := sum of the coordinates of g̃(Z, S)(c),

p(Z, S)(c) := min{ν(Z · H, c) : H ∈ H(U,Z) and U 3 c} ∈ N;

we call these the extended index of intersection, the index of intersection
and the index of contact (this last has been introduced in [Cy]) of Z with
the submanifold S at the point c, respectively.
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2.5. Improper intersection of analytic sets. Let X and Y be irreducible
analytic sets of an n-dimensional manifold N and let c ∈ N . By standard
diagonal construction the multiplicity of intersection of X and Y at c is
defined to be

d(X,Y )(c) = g(X × Y,4N)(c, c).

The intersection product of X and Y is the unique analytic cycle X •Y in N
such that ν(X•Y ) = d(X,Y ) (see [T2, Definition 6.1]). This definition can be
naturally extended to the case of arbitrary analytic cycles by multilinearity.

Now, if X and Y are pure dimensional analytic subsets of a manifold N ,
for c ∈ X ∩ Y , we introduce the following index (see [CyKT]):

r(c) = r(X,Y )(c) := p(X × Y,4N )(c, c),

which we call the multiplicity of contact of X and Y at the point c.

3. Intersection of algebraic cones with subspaces. We will see
that the index of contact and the index of intersection of a cone with a
linear subspace at the vertex, and the degree of the cone at the vertex are
all equal. Thus the index of contact and the index of intersection, in this
case, do not depend on the linear subspace.

Let us start with the following lemmas.

Lemma 3.1. Let A1, . . . , Ak be positive analytic cycles of pure dimen-
sions in a domain D ⊂ Cn, intersecting properly in D, and let a ∈ ⋂k

j=1 |Aj|.
Then

ν(A1 · . . . ·Ak, a) ≥ ν(A1, a) · . . . · ν(Ak, a).

Proof. See [Ch, 12.5].

Lemma 3.2. Let Z be a pure d-dimensional analytic subset of an n-
dimensional complex manifold N , S an s-dimensional closed submanifold of
N , and c ∈ Z ∩ S a point. Then

p(Z, S)(c) ≥ ν(Z, c).

Proof. We choose a neighbourhood U of c and a system

H = (H1, . . . ,Hn−s) ∈ H(U,Z)

such that ν(Z · H, c) = p(Z, S)(c). For this system of hypersurfaces the
(positive analytic cycle) result of the Tworzewski Algorithm will be of the
form

Z · H = ZS0 + ZS1 + . . .+ ZS` ,

where ` = 0 if Z ∩ U ⊂ S ∩ U , or ` ∈ {1, . . . , n− s} is the maximum of the
indices for which |Z`−1 − ZS`−1| ∩H` 6= ∅.

Set `′ = `′(H, c) = max{j ∈ {1, . . . , `} : c ∈ |Zj−1 − ZSj−1|}, or `′ =
`′(H, c) = 0 if ` = 0. For simplicity let us still write `′ = `. From the
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algorithm and by Z-bilinearity of the degree we get the equalities

ν(Z0, c) = ν(Z ∩ U, c) = ν(Z, c) = ν(ZS0 , c) + ν(Z0 − ZS0 , c),
ν(Z1, c) = ν((Z0 − ZS0 ) ·H1, c) = ν(ZS1 , c) + ν(Z1 − ZS1 , c),
ν(Z2, c) = ν((Z1 − ZS1 ) ·H2, c) = ν(ZS2 , c) + ν(Z2 − ZS2 , c),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ν(Z`, c) = ν((Z`−1 − ZS`−1) ·H`, c) = ν(ZS` , c) + ν(Z` − ZS` , c).
Since the degree is Z-linear, we can write

p(Z, S)(c) = ν(ZS0 , c) + ν(ZS1 , c) + . . .+ ν(ZS` , c)

and by the above equalities this is equal to

[ν(Z, c)− ν(Z0 − ZS0 , c)] + [ν((Z0 − ZS0 ) ·H1, c)− ν(Z1 − ZS1 , c)] + . . .

+ [ν((Z`−1 − ZS`−1) ·H`, c)− ν(Z` − ZS` , c)].
We group in the following way:

ν(Z, c) + [−ν(Z0 − ZS0 , c) + ν((Z0 − ZS0 ) ·H1, c)]

+ [−ν(Z1 − ZS1 , c) + ν((Z1 − ZS1 ) ·H2, c)] + . . .

+ [−ν(Z`−1 − ZS`−1, c) + ν((Z`−1 − ZS`−1) ·H`, c)]− ν(Z` − ZS` , c).
Since |Z`−ZS` | ∩H`+1 = ∅, or, in the case ` = n− s, |Zn−s−ZSn−s| ∩S = ∅,
we have ν(Z` − ZS` , c) = 0; and, by Lemma 3.1, ν((Zj − ZSj ) · Hj+1, c) ≥
ν(Zj − ZSj , c) for j = 0, . . . , `− 1. Thus

p(Z, S)(c) ≥ ν(Z, c).

Theorem 3.3. If Z ⊂ Cn is an algebraic cone of pure dimension d and
S ⊂ Cn is a linear subspace of dimension s, then

g(Z, S)(c) = ν(Z, c) = p(Z, S)(c),

where c = 0 ∈ Cn denotes the vertex of the cone.

Proof. By [N2, Cor. 7] (see also [N3, Chap. III, Sect. 3]), g(Z, S)(c) =
g(Z × S,4N )(c, c), which is by definition d(Z, S)(c), i.e. the multiplicity of
intersection of the sets Z and S at the point c. Now by construction of the
intersection product cycle we have

d(Z, S)(c) = ν(Z • S)(c)

and from Bézout’s theorem for algebraic varieties in Pn−1 (see [SV], also e.g.
[FSV, Chap. 2]), that is, for algebraic cones in Cn (see e.g. [N2, Cor. 7] and
[N4]) we get

ν(Z • S)(c) = ν(Z, c) · ν(S, c) = ν(Z, c)

(S is linear and therefore ν(S, c) = 1). Thus we have proved g(Z, S)(c) =
ν(Z, c).
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We note that also in the general case, that is, Z an analytic subset
of pure dimension d on an n-dimensional complex manifold N , S a closed
submanifold of N of dimension s and c ∈ Z ∩ S a point, we have

p(Z, S)(c) ≤ g(Z, S)(c).

Thus, in our case, it is enough to prove p(Z, S)(c) ≥ g(Z, S)(c). But from
Lemma 3.2, p(Z, S)(c) ≥ ν(Z, c). So the theorem is proved.

The next examples indicate that the index of contact may be less than
the index of intersection if the analytic set is not a cone, and that the index
of intersection may not be equal to the degree of the cone at the vertex if
the submanifold is not linear.

Example 1. (See [N3, Chap. III, Sect. 3, Ex. 3].) In C3 take the in-
tersection of Z = {(x, y, z) ∈ C3 : yx2 = z2} with the linear subspace
S = {y = z = 0}. Using the computer program CALI, [G], together with the
script Segre, [AA], for commutative algebra, we calculate g̃(Z, S)(0, 0, 0) =
(0, 1, 2) and g(Z, S)(0, 0, 0) = 3. But if we do the algorithm with the system
H = (H1,H2), where H1 = {y = 0}, the total result of the intersection
algorithm is the cycle 2 · S, so p(Z, S)(0, 0, 0) ≤ 2. But g̃(Z, S)(0, 0, 0) :=
minlex{ν̃(Z · H, (0, 0, 0)) : H ∈ H(Z,U), U a neighbourhood of (0, 0, 0)} =
(0, 1, 2) and the germ of Z at (0, 0, 0) is irreducible. Hence p(Z, S)(0, 0, 0)
= 2 (if p(Z, S)(0, 0, 0) = 1 then it would come from a cycle Z · H with
ν̃(Z · H, (0, 0, 0)) = (1, 0, 0), which is not possible).

Example 2. Let N = C3, Z = {x2 + y2 = xz} and S = {y2 + x = z2}.
By computer (see [G] and [AA]), we calculate g̃(Z, S)(0, 0, 0) = (0, 4, 0).
Hence g(Z, S)(0, 0, 0) = 4, and obviously in this case p(Z, S)(0, 0, 0) = 4.
But we have ν(Z, (0, 0, 0)) = 2.

As a consequence of the previous theorem we obtain our main result:

Theorem 3.4. Let X, Y be pure dimensional algebraic cones of Cn.
Then

r(X,Y )(0) = ν(X, 0) · ν(Y, 0).

Proof. The definition of the multiplicity of contact and Theorem 3.3 give

r(X,Y )(0) = p(X × Y,4Cn)(0, 0) = ν(X × Y, (0, 0)).

Now, the Bézout Theorem for algebraic cones (see e.g. [N3]) shows that this
is equal to ν(X, 0) · ν(Y, 0), and the proof is complete.

As the following example shows, we cannot extend Theorem 3.4 to gen-
eral analytic sets.

Example 3. In C6 take coordinates (x, y, z, u, v, w) and calculate
r(X,Y )(c) for X = {(x, y, z) ∈ C3 : yx2 = z2}, Y = {y = z = 0} and
c = (0, 0, 0). By definition r(0) = p(X × Y,4C3)(0, 0), where X × Y =
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{(x, y, z, u, v, w) ∈ C6 : yx2 = z2, v = w = 0} and 4C3 = {(x, y, z, u, v, w) ∈
C6 : x = u, y = v, z = w}. Let H = (H1,H2,H3) be defined by H1 =
{y = v}, H2 = {x = u} and H3 = {z = w}. The total result of the intersec-
tion algorithm for this system is the cycle 2·T , where T = {(x, y, z, u, v, w) ∈
C6 : x = u, y = z = v = w = 0}. Thus p(X × Y,4C3)(0, 0) ≤ 2. So
r(X,Y )(0) 6= ν(X, 0) · ν(Y, 0) = 3.

Remark 3.5. If in the previous example we take X = {(x, y, z) ∈ C3 :
yxn = z2}, n ∈ N, we obtain r(X,Y )(0) ≤ 2 and g(X,Y )(0) = ν(X •Y, 0) =
n+1. So the difference between ν(X •Y, c) and r(X,Y )(c) can be arbitrarily
large.

Remark 3.6. In the previous example, using the Reduction Theorem
for improper intersections (see [N3], [AR]), we can write g(X,Y )(0) =
g(X × Y,4C3)(0, 0) = 3, i.e., g(X,Y )(0) = d(X,Y )(0). By the same rea-
sons of Example 1, we must have p(X × Y,4C3)(0, 0) = 2, so in this case
p(X,Y )(0) = p(X × Y,4C3)(0, 0). We have not been able to settle this
question in general: given a pure dimensional analytic subset Z, a closed
submanifold S and c ∈ Z ∩ S of a complex manifold N , is it true that
p(Z, S)(c) = r(Z, S)(c)?

We have seen that in some cases we have the equality

p(Z, S)(c) = g(Z, S)(c),

if for example Z is an algebraic cone and S a subspace (Theorem 3.3), if
Z = {x2 + y2 = xz}, S = {y2 + x = z2} and c = 0 (Example 2), or for all c
in a Zariski open set of each component of Z ∩ S (see [R]).

We have
g(Z, S)(c) = g(Z × S,4N )(c, c),

and, as noted in the proof of Theorem 3.3,

g(Z × S,4N )(c, c) ≥ p(Z × S,4N )(c, c).

But p(Z × S,4N )(c, c) is by definition r(Z, S)(c). Thus, in the cases men-
tioned above, we have

p(Z, S)(c) ≥ r(Z, S)(c).

So we can say that in the general case, that is, Z an analytic subset of
pure dimension d on an n-dimensional complex manifold N , S a closed
submanifold of N of dimension s, and c ∈ Z ∩ S a point, the multiplicity of
contact of Z and S at c cannot be strictly greater than the index of contact
of Z and S at c.

4. Index of contact and Linear Testing Theorem. Let N be an
n-dimensional complex manifold, Z an analytic subset of pure dimension
d of N , and S an s-dimensional closed submanifold of N . As the analytic
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intersection algorithm (of [T2]) is local in the vicinity of the fixed point
c ∈ S, we may assume that N is the germ of Cn at c = 0:

N = Cn = Csu × Cn−sv ,

where u = (u1, . . . , us) and v = (v1, . . . , vn−s) are the coordinates in Cs and
Cn−s, respectively, and

S = {(u, v) : v = 0} ⊂ Csu × Cn−sv .

As Nowak has shown in his Linear Testing Theorem ([N2], [N3]), or
Achilles and Rams have shown in [AR], to obtain the extended index of
intersection of Z with S at the point c ∈ S, g̃(Z, S)(c), we can reduce the
analytic intersection algorithm for systems H = (H1, . . . ,Hn−s) of smooth
hypersurfaces near c to the case of systems of linear hyperplanes. More
precisely we have the following theorem.

Theorem 4.1 (Linear Testing Theorem). Let N be an affine space, S a
vector subspace of N , and Z a pure dimensional analytic subset of N . Then
the extended index of intersection of Z with S at the point c = 0 is realized
by the intersection algorithm for systems H of linear hyperplanes in N .

Proof. See [N2, p. 138, Corollary 6] or [AR, p. 396, Corollary 3].

Remark 4.2. As an immediate consequence of the previous theorem,
also the index of intersection of Z with S at the point c ∈ S, g(Z, S)(c), is
realized by the intersection algorithm for suitable systems of linear hyper-
planes in N .

As we will see in the next example, the index of contact of an analytic
set Z with a subspace S at a point c ∈ S, p(Z, S)(c), cannot be realized
using only linear hyperplanes.

Example 4. Let
f : C3 3 (x, y, z) 7→ (x, y + xz, z) ∈ C3.

It is easily seen that f is a biholomorphism.
As in Example 1, let Z = {(x, y, z) ∈ C3 : yx2 = z2}, S = {y = z = 0},

and c = 0 in C3. Then f(Z), f(S), and f(c) are Z ′ = {(x, y, z) ∈ C3 :
(y − xz)x2 = z2}, S′ = {(x, y, z) ∈ C3 : y − xz = z = 0} = {y = z = 0} and
c′ = 0, respectively.

Since the extended index of intersection is invariant under biholomor-
phism, it follows that

g̃(Z, S)(0) = (0, 1, 2) = g̃(Z ′, S′)(0);
also the index of contact is invariant under biholomorphism (this can be
seen step by step in the algorithm), and we have

p(Z, S)(0) = 2 = p(Z ′, S′)(0).
As we have seen in Example 1, the index of contact of Z and S at c = 0

is realized by the intersection algorithm for a suitable system H = (H1,H2)
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such that the hypersurfaces H1,H2 are linear, and

p(Z, S)(0) = 2 = ν(Z · H, 0),

where Z · H is the result of the intersection algorithm using the system
H = (H1,H2) with H1 = {y = 0}. But we will see that the index of contact
of Z ′ and S′ at c′ = 0, although these are the biholomorphic images of Z,
S and c = 0, respectively, cannot be realized by the intersection algorithm
for an appropriate system of hyperplanes in C3, i.e.,

p(Z ′, S′)(0) < ν(Z ′ · H′, 0)

for every suitable system H′ = (H ′1,H
′
2), where H ′1 and H ′2 are linear. Hence

there is no Linear Testing Theorem for the index of contact.
Let U ′ be some neighbourhood of c′ = 0. Take a system H̃ = (H̃1, H̃2) ∈

H(U ′, Z ′), where H̃1 is a hyperplane, i.e., H̃1 = {(x, y, z) ∈ C3 : ax +
by+ cz = 0} for some a, b, c in C. Note that as the hyperplane H̃1 contains
S′ = {y = z = 0}, it must be of the form H̃1 = {(x, y, z) ∈ C3 : by+cz = 0}.
Now we do the intersection algorithm with a system H̃ = (H̃1, H̃2), where
H̃1 = {(x, y, z) ∈ C3 : by + cz = 0}.
Step 0. Let Z ′0 = Z ′ ∩U ′ = (Z ′0 −Z ′0S

′
) +Z ′0

S′ . It is clear that S′ does not
contain components of the cycle Z ′0.

Step 1. Let Z ′1 = (Z ′0 − Z ′0S
′
) · H̃1 = (Z ′1 − Z ′1S

′
) + Z ′1

S′ . Straightforward
calculation shows that the cycle Z ′1 has always two components, one
of them S′ with multiplicity 1 and the other an irreducible analytic
set with multiplicity 1 which is in the support of (Z ′1 − Z ′1S

′
).

Step 2. Let Z ′2 = (Z ′1−Z ′1S
′
) · H̃2 = (Z ′2−Z ′2S

′
) +Z ′2

S′ . We do not need to
calculate it.

As we have

g̃(Z ′, S′)(0) = minlex{ν̃(Z ′ · H′, 0) : H′ ∈ H(U ′, Z ′) and U ′ 3 0} = (0, 1, 2),

the extended degree of the cycle result of the algorithm with H̃ = (H̃1, H̃2)
for H̃1 = {(x, y, z) ∈ C3 : by + cz = 0} and any H̃2 will be of the form

ν̃(Z ′ · H̃, 0) = (ν(Z ′0
S′ , 0), ν(Z ′1

S′ , 0), ν(Z ′2
S′ , 0)) = (0, 1,m)

with m ∈ N and m ≥ 2.
Therefore we cannot obtain the index of contact

p(Z ′, S′)(0) = 2 = min{ν(Z ′ · H′, 0) : H′ ∈ H(U ′, Z ′) and U ′ 3 0}
if we test only with hyperplanes.

Acknowledgements. I am grateful to Piotr Tworzewski for his essen-
tial help, useful suggestions and comments. I also thank the Jagiellonian
University, in particular, the Institute of Mathematics, where this paper
was prepared, for the hospitality during my stay.



86 M. M. Alonso Ferrero

References

[AA] R. Achilles and D. Aliffi, Segre: a script for the REDUCE package CALI. Bolo-
gna, 1999–2001. Available at http://www.dm.unibo.it/˜achilles/segre/.

[AR] R. Achilles and S. Rams, Intersection numbers, Segre numbers and generalized
Samuel multiplicities, Arch. Math. (Basel) 77 (2001), 391–398.

[ATW] R. Achilles, P. Tworzewski and T. Winiarski, On improper isolated intersection
in complex analytic geometry , Ann. Polon. Math. 51 (1990), 21–36.

[Ch] E. M. Chirka, Complex Analytic Sets, Kluwer, 1989.
[Cy] E. Cygan, Intersection theory and separation exponent in complex analytic ge-

ometry , Ann. Polon. Math. 69 (1998), 287–299.
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Reçu par la Rédaction le 14.8.2003
Révisé le 8.10.2003 (1461)


