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Parametrization of Riemann-measurable
selections for multifunctions of two variables
with application to differential inclusions

by GIOVANNI ANELLO and PAoLo CuBIOTTI (Messina)

Abstract. We consider a multifunction F : T x X — 2E, where T', X and F are
separable metric spaces, with E complete. Assuming that F' is jointly measurable in the
product and a.e. lower semicontinuous in the second variable, we establish the existence of
a selection for F' which is measurable with respect to the first variable and a.e. continuous
with respect to the second one. Our result is in the spirit of [11], where multifunctions of
only one variable are considered.

1. Introduction. If X is a topological space, we denote by B(X) the
Borel o-algebra of X . Moreover, if 1 is measure on B(X), we denote by 7,(X)
the completion of B(X) with respect to . We briefly put 7,, = 7,,(X) when
ambiguities do not occur. For the basic definitions about multifunctions, we
refer the reader to [6] and [7].

This note is motivated by the main result of [11], which concerns the
existence of Riemann-measurable selections (i.e., selections which are a.e.
continuous) for a given multifunction. For the reader’s convenience, we now
state the main result of [11] (as usual, by a Polish space we mean a complete
separable metric space).

THEOREM 1 (Theorem 3 of [11]). Let X be a Polish space equipped with
a o-finite reqular Borel measure, E a metric space and F : X — 2F ¢
multifunction with nonempty complete values. If F is lower semicontinu-
ous at almost every point of X, then there exists a selection of F' which is
continuous at almost every point of X.

We refer to [11] for motivations leading to Theorem 1. Applications of
Theorem 1 to implicit integral equations and to elliptic differential equations
can be found in [2] and [8], respectively.
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Our aim in this paper is to prove a parametrized version of Theorem 1 for
multifunctions of two variables, obtaining, in particular, sufficient conditions
for the existence of a selection which is measurable with respect to the first
variable and a.e. continuous with respect to the second one. More precisely,
we prove the following result.

THEOREM 2. Let T, X be two Polish spaces and let u,1) be two positive
regular Borel measures onT' and X, respectively, with p finite and v o-finite.
Let S be a separable metric space, F : T x X — 25 a multifunction with
nonempty complete values, and let E C X be a given set. Assume that:

(i) Fis T, ® B(X)-measurable;
(ii) for a.a. t €T,

(1) {z € X : F(t,-) is not lower semicontinuous at v} C E.

Then there exist a selection ¢ : T x X — S of F and a set R € B(X), with
Y(R) =0, such that

(i) ¢(-,x) is T,-measurable for each v € X \ (EU R);
(ii)" for a.a. t €T,

{zx € X : ¢(t,-) is not continuous at x} C EU R.

The proof of Theorem 2 will be given in Section 2, while in Section 3 we
shall provide an application of Theorem 2 to differential inclusions.

2. Proof of Theorem 2. Before proving Theorem 2, we need the fol-
lowing preliminary results.

LEMMA 1. Let T, X be two Polish spaces and let u,1 be two positive
o-finite reqular Borel measure on X and Y, respectively. Then there exist
two sets @ € B(T) and R € B(X), with u(Q) = ¥(R) = 0, a continuous
open function ™ : NN — T x X, and a function o : T x X — NN which is
continuous at each point of (T\ Q) x (X \ R) and satisfies n(o(t,z)) = (¢, x)
forall (t,x) e T x X.

Proof. By Lemma 1 of [11], there exist @ € B(T) and R € B(X) with
w(Q) = ¥(R) = 0, two continuous open functions 71 : NV — T 79 : NN —
X, a function oy : T — NY which is continuous at each point of T\ Q,
and a function o2 : X — NN which is continuous at each point of X \ R,
such that m(o1(t)) = ¢ and ma(o2(z)) = = for all (t,2) € T x X. For
each o := {n;}r € NV, we denote by a. and a, the sequences {ng}, and
{nak_1}, respectively. If we put 7(a) = (m1(ce), m2(ap)) for all a € NN,
then 7 : NN — T x X is a continuous open function. Moreover, if we put
o(t,z) = {n(t,z)}r, where {n(t,z)ox }r = o1(t) and {n(t, x)ox_1}r = o2(x),
then o : T x X — NN is continuous at each point of (T'\ Q) x (X \ R) and
one has m(o(t,z)) = (t,z) for all (t,z) € T x X.
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LEMMA 2. LetT, X,Q, R, i, v, m,0 be as in Lemma 1. Let E be a metric
space, BC T x X and V C B two given sets, and F : B — 2F a multifunc-
tion with nonempty complete values which is lower semicontinuous at each
point of B\ V. Then there exists a selection g of F' which is continuous at

each point of [ BN ((T'\ Q) x (X \ R))]\ V.

Proof. Put Z = 7—Y(B) and G = For|z. Observe that Z is 0-dimension-
al and G is lower semicontinuous at each point of Z\ 7 ~1(V'). Consequently,
by the proof of Lemma 2 of [11], there exists a selection s of G which
is continuous at each point of Z \ 7= (V). Since o(t,z) € 7 1(t,x) C Z
for all (t,x) € B, we can put g(t,z) = s(o(t,z)) for all (¢,z) € B. Then
g(t,z) € F(n(o(t,x)) = F(t,z) for all (t,z) € B. Further, it is easily seen
that ¢ is continuous at each point of [BN ((T'\ Q) x (X \ R))]\ V.

The next lemma follows from the proof of Lemma 2.3 of [1].

LEMMA 3. Let X and S be metric spaces, with S separable, F : X — 25
a multifunction with nonempty values, {s,} a dense sequence in S, and
xg € X. Denote by d the distance in S.

(i) If F is lower semicontinuous at xq, then for each s € S the function
x € X —d(s,F(x)) is upper semicontinuous at xg.

(ii) If for each n € N the function x € X > d(sn, F(z)) is upper semi-
continuous at xq, then F is lower semicontinuous at x.

LEMMA 4. Let T, X, p, ¢ be as in Lemma 1, with p finite. Let f : T x X
— R be a single-valued function and E C X a given set. Assume that:

(i) fis T, ® B(X)-measurable;
(ii) infry.x f > —0Q;
(iii) for a.a. t €T,
(2) {z € X : f(t,-) is not lower semicontinuous at z} C E.

Then for each € > 0 there exists a T,-measurable set K C T such that

w(T\ K) < e and the function f|xxx is lower semicontinuous at each point
(t,z) e K x (X \ E).

Proof. Without loss of generality, we can suppose f > 0in T x X. Let
To € B(X) be such that u(T\ Tp) = 0 and (2) holds for all ¢t € Ty. For each
n €N, let f, : T x X — [0,00[ be the function defined by putting, for all
(t,z) e T x X,

(3) falt, @) =
We observe the following facts.

(a) For each z € X, the function f,(-,z) is 7,-measurable over T'. This
follows from Lemma III.39 of [3], since the function

yig)f([nd(:c, y) + f(t,y)l.
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(t,y) = nd(z,y) + f(t,y)
is 7, ® B(X)-measurable for each fixed n € N and z € X.
(b) For each n € N and each (¢,x2) € T x X, one has

(4) fa(t,x) < f(t,2).
Indeed, it is enough to put y = x in (3).

(c) For each n € N and each ¢t € T, the function f,(t,-) is n-Lipschitzian
over X. Indeed, if n € N and ¢t € T are fixed, then for each x,z € X one has

Fult,@) < Inf [nd(z, 2) +nd(z.y) + F(t.9)) = nd(@. 2) + fult. ),

hence

fn(ta 33‘) - fn(t, Z) < nd(x, Z)'
By the latter inequality, upon interchanging the roles of z and z, our asser-

tion follows.
(d) For all (t,z) € T x X, set

fr(t,x) :=sup fr(t,x).

neN
Then
(5) [(t,x) = f(t,x) forall (t,z) € To x (X \ E).

To see this, let (t,z) € Top x (X \ F) and n > 0. Since f(¢,-) is lower
semicontinuous at x, there exists § > 0 such that for each y € X with
d(x,y) < 0 one has

Pick n* > (/4. For each y € X we get
R fty) >p if d(z,y) <9,
>

wd(my) + 1hy) 2 {n*6+f<t,y> > B+ f(ty) =6 i dley) >o.
It follows that f,«(t,x) > [ and thus, by taking into account (4), the equality
(5) holds.

At this point, fix € > 0. For each n € N, by the Scorza Dragoni Theorem,
there exists a 7,-measurable set K,, C Ty such that

W\ K,) < 2/2"

and fn|k, xx is continuous. The set K := ﬂneN K, is 7,-measurable and

w(T\K) = J T\ K)) < Zu T\ Kn)
neN
Since each f,|xxx is continuous, f*|xxx is lower semicontinuous (as the
upper envelope of a sequence of continuous functions). Now, choose any
(t*,2*) € K x (X \ E), and let us show that f|xxx is lower semicontinuous
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at (t*,x*). To this end, fix 7 > 0. Since f*|gxx is lower semicontinuous,
there exists a neighborhood U of (¢*,z*) in K x X such that

[t 2%) —y < f*(t,x) forall (¢,x) € U.
Taking into account (4) and (5), it follows that for all (¢, ) € U one has
f(t7x> > f*(ta .’IJ) > f*(t*,.%'*) -7 = f(t*vx*) -7

Hence, f|xxx is lower semicontinuous at (t*,z*), as claimed. The proof is
complete.

LEMMA 5. Let T, X, u, v be as in Lemma 1, with p finite, S a separable
metric space, F : T x X — 25 a multifunction with nonempty closed values,
and E C X a given set. Assume that:

(i) F'is 7, ® B(X)-measurable;
(i) for a.a. t € T,

{z € X : F(t,-) is not lower semicontinuous at v} C E.

Then for each € > 0 there exists a T,-measurable set K C T such that

w(T\ K) < e and the multifunction F|gxx is lower semicontinuous at each
(t,z) e K x (X \ E).

Proof. Let o be an equivalent distance over S such that o < 1, and let
{yn} be a dense sequence in S. By Proposition 13.2.2 of [7], for each y € S the
function o(y, F(-,-)) is 7, ® B(X)-measurable. Moreover, by Lemma 3, for
each y € F and for a.a. t € T the function o(y, F'(t,-)) is upper semicontinu-
ous at each x € X \ E. Now, fix ¢ > 0. For each n € N, by Lemma 4 applied
to the function —o(yy, F(-,-)), there exists a 7,-measurable set K,, C T such
that

T\ Kn) <e/2"

and the function o(yn, F'(+, )|k, xx is upper semicontinuous at each (¢,x) €
K, x (X \ E). Putting K := (1, .y Kyn, we see that K is 7,-measurable,
u(T\ K) < ¢, and for each n € N the function o(yn, F(-,-))|kxx is upper
semicontinuous at each (¢,z) € K x (X \ E). By Lemma 3, this implies our
conclusion.

Proof of Theorem 2. By Lemma 5, there exists a sequence {Kp, }nen of
pairwise disjoint 7,-measurable subsets of T" such that the set

Y =T\ |JKn
neN
is negligible and, for each n € N, the multifunction F|k, «x is lower semi-
continuous at each point of K, x (X \ E). We can assume that inclusion (1)

holds for all ¢ € |,y Kn- Let Q and R be as in Lemma 1. By Lemma 2,
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for each n € N there exists a selection g, : K;, x X — S of F|g, «x which
is continuous at each point of

(Kn \ Q) x (X\ (RUE)).
For all t € Y, let hy : X — S be any selection of the multifunction F'(¢,-).
Define ¢ : T' x X — S by putting
 Jogn(t,x) ifte K,,
ot 2) = { h(z)  ifteY.
Clearly, ¢ is a selection of F'. Let us show that ¢ satisfies our conclusion. To
this end, choose any z* € X \ (F U R). Since by construction each function
gn (-, )| k,\@ is continuous, it is 7,-measurable. Since Y U @ is negligible,
¢ satisfies (i)’. In order to prove (ii)”, choose any t* € T'\ (Y U Q), and let
n € N be such that t* € K,,. Since

{z € X : go(t*,") is discontinuous at z} C EUR
and g, (t*,-) = ¢(t*,), our claim follows. This completes the proof.

3. An application to differential inclusions. In this section we pro-
vide an application of Theorem 2 to differential inclusions. In particular we
stress that a multifunction F' satisfying the assumptions of Theorem 3 below
can fail to be lower semicontinuous in the second variable at each = € R.
Moreover, unlike other recent results in the field (see, for instance, [10] and
references therein), the convexity of the values of F' is not assumed. Our
result is as follows (as usual, we denote by m the Lebesgue measure in R).

THEOREM 3. Let [a,b] be a real interval, F : [a,b] x R — 2% a multifunc-
tion and p € [1,00[. Assume that there exists a multifunction G : [a,b] x R
— 2R with nonempty closed values, satisfying the following conditions:

(i) G is L([a,b]) ® B(R)-measurable;
(ii) there exists Ey C R, with m(Ey) = 0, such that for a.a. t € [a,b],
{zx € R: G(t,-) is not lower semicontinuous at x}
U{zeR:G(t,z) L F(t,z)} C Ey;
(iii) there exist § € LP(]a,b]) and « : [a,b] — ]0,00[ such that for a.a.
t € la,b] and all z € R
G(t,x) € [a(t), B()]-
Then there exists u € W2P([a,b]) such that
u’(t) € F(t,u(t)) for a.a.t € a,b],
u(a) = u(b) = 0.

Proof. By Theorem 2, there exist a selection ¢ : [a,b] x R — R of the
multifunction G, and two m-negligible sets Ky C [a,b] and E C R, with
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Ey C E, such that for all x € R\ E the function ¢(-, x) is measurable and
for all t € [a,b] \ Ko one has

{z € R: ¢(t,-) is discontinuous at z} C E.

Since R\ E a separable dense subset of R, we can find a countable set
P C R\ E which is dense in R.
Without loss of generality we can assume that

G(t,x) Cla(t),B(t)] forallz eR,t € [a,b]\ K.
Let ¢* : [a,b] x R — R be defined by

* _ ¢(t’x) ift e [CL, b] \K07
¢(Lx”‘{ﬁ@) it t e Ko.
Since ¢ is a selection of G, by assumption (iii) we have
a(t) < ¢*(t,x) < B(t) forallz e R, ¢ € [a,b].

In particular, observe that ¢*(t,-) is bounded for each t € [a,b], and ¢*(-, x)
is measurable for each x € P. Consequently, by Proposition 2 of [4], the
multifunction H : [a,b] x R — 2F defined by setting

Hita)= Nw( | Aew))

meN y€D, ly—z|<1/m

satisfies the following conditions:
(a) H has nonempty closed convex values;
(b) for all x € R, the multifunction H (-, x) is measurable;
(c) for each t € [a,b], the multifunction H (¢, -) has closed graph;
(d) for all t € [a,b] \ Ko and all z € R\ E,

H(t,x) = {o(t,x)}.

Moreover, by the above construction it follows that
(6) H(t,x) C[a(t),B5(t)] forall x € R, t € [a,b.
Now we want to apply Theorem 1 of [10] to the multifunction H, taking
T=lab], X=Y =R, s=q=p,

b

vz{uew&%mmygmnﬁ:o}

a
U(u) =, &(u)(t) = SZ u(t)dr, ¢ = +o0 and 7 = ||B||1r((a,s)- To this end,
we observe that the operators ¥ and @ satisfy all the conditions of Theorem
1 of [10] (see the proof of Theorem 3 of [10]) as does the multifunction H.

Consequently, there exist a function v € V' and a negligible set K C [a, b],
with Ko C K, such that

(7) W(v)(t) € H(t,d(v)(t)) forallt e [a,b]\ K.
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Without loss of generality we can assume that v is continuous. Put v = &(v).
By (6) and (7) we have v”(t) = v/(t) > «(t) > 0 a.e. in [a, b], hence 7/ = v
is strictly increasing. Since y(a) = v(b), there exists ¢ € ]a, b[ such that

7(t) <0 forallte€ [a,c|,
7'(t) >0 for all t € ]c,b].

By Theorem 2 of [12], the functions (y|5,q) " and (7[j.4) " are absolutely
continuous. By assumption (ii), there exists K1 C [a,b], with m(K;) = 0,
such that for all ¢ € [a,b] \ K7 one has

{zeR:G(t,x) £ F(t,x)} C Ey.
Clearly, we can assume that K C K;. Put
S =~y YE)UK;.

Since by Theorem 18.25 of [5] the sets (|j4,q) ' (E) and (y|4) ' (E) are
negligible, it follows that m(S) = 0. Now, observe that for all ¢ € [a,b] \ S
one has &(v)(t) € R\ E, hence,

H(t, @(v)(t) = {o(t,2(v)(1)} € G(t, P(v)(t)) € F(t, 2(v)(t)).
Consequently, by (7) we get

V'(t) € F(t,SU(T) d’T) for all t € [a,b] \ S.

a

Then our conclusion follows by taking u(t) = Si v(T)dT.
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