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Parametrization of Riemann-measurable
selections for multifunctions of two variables

with application to differential inclusions

by Giovanni Anello and Paolo Cubiotti (Messina)

Abstract. We consider a multifunction F : T × X → 2E , where T , X and E are
separable metric spaces, with E complete. Assuming that F is jointly measurable in the
product and a.e. lower semicontinuous in the second variable, we establish the existence of
a selection for F which is measurable with respect to the first variable and a.e. continuous
with respect to the second one. Our result is in the spirit of [11], where multifunctions of
only one variable are considered.

1. Introduction. If X is a topological space, we denote by B(X) the
Borel σ-algebra ofX. Moreover, if µ is measure on B(X), we denote by Tµ(X)
the completion of B(X) with respect to µ. We briefly put Tµ = Tµ(X) when
ambiguities do not occur. For the basic definitions about multifunctions, we
refer the reader to [6] and [7].

This note is motivated by the main result of [11], which concerns the
existence of Riemann-measurable selections (i.e., selections which are a.e.
continuous) for a given multifunction. For the reader’s convenience, we now
state the main result of [11] (as usual, by a Polish space we mean a complete
separable metric space).

Theorem 1 (Theorem 3 of [11]). Let X be a Polish space equipped with
a σ-finite regular Borel measure, E a metric space and F : X → 2E a
multifunction with nonempty complete values. If F is lower semicontinu-
ous at almost every point of X, then there exists a selection of F which is
continuous at almost every point of X.

We refer to [11] for motivations leading to Theorem 1. Applications of
Theorem 1 to implicit integral equations and to elliptic differential equations
can be found in [2] and [8], respectively.
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Our aim in this paper is to prove a parametrized version of Theorem 1 for
multifunctions of two variables, obtaining, in particular, sufficient conditions
for the existence of a selection which is measurable with respect to the first
variable and a.e. continuous with respect to the second one. More precisely,
we prove the following result.

Theorem 2. Let T,X be two Polish spaces and let µ, ψ be two positive
regular Borel measures on T and X, respectively , with µ finite and ψ σ-finite.
Let S be a separable metric space, F : T × X → 2S a multifunction with
nonempty complete values, and let E ⊆ X be a given set. Assume that :

(i) F is Tµ ⊗ B(X)-measurable;
(ii) for a.a. t ∈ T ,

{x ∈ X : F (t, ·) is not lower semicontinuous at x} ⊆ E.(1)

Then there exist a selection φ : T ×X → S of F and a set R ∈ B(X), with
ψ(R) = 0, such that

(i)′ φ(·, x) is Tµ-measurable for each x ∈ X \ (E ∪R);
(ii)′ for a.a. t ∈ T ,

{x ∈ X : φ(t, ·) is not continuous at x} ⊆ E ∪R.
The proof of Theorem 2 will be given in Section 2, while in Section 3 we

shall provide an application of Theorem 2 to differential inclusions.

2. Proof of Theorem 2. Before proving Theorem 2, we need the fol-
lowing preliminary results.

Lemma 1. Let T,X be two Polish spaces and let µ, ψ be two positive
σ-finite regular Borel measure on X and Y , respectively. Then there exist
two sets Q ∈ B(T ) and R ∈ B(X), with µ(Q) = ψ(R) = 0, a continuous
open function π : NN → T × X, and a function σ : T × X → NN which is
continuous at each point of (T \Q)× (X \R) and satisfies π(σ(t, x)) = (t, x)
for all (t, x) ∈ T ×X.

Proof. By Lemma 1 of [11], there exist Q ∈ B(T ) and R ∈ B(X) with
µ(Q) = ψ(R) = 0, two continuous open functions π1 : NN → T , π2 : NN →
X, a function σ1 : T → NN which is continuous at each point of T \ Q,
and a function σ2 : X → NN which is continuous at each point of X \ R,
such that π1(σ1(t)) = t and π2(σ2(x)) = x for all (t, x) ∈ T × X. For
each α := {nk}k ∈ NN, we denote by αe and αo the sequences {n2k}k and
{n2k−1}k, respectively. If we put π(α) = (π1(αe), π2(αo)) for all α ∈ NN,
then π : NN → T × X is a continuous open function. Moreover, if we put
σ(t, x) = {n(t, x)k}k, where {n(t, x)2k}k = σ1(t) and {n(t, x)2k−1}k = σ2(x),
then σ : T ×X → NN is continuous at each point of (T \Q)× (X \R) and
one has π(σ(t, x)) = (t, x) for all (t, x) ∈ T ×X.
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Lemma 2. Let T,X,Q,R, µ, ψ, π, σ be as in Lemma 1. Let E be a metric
space, B ⊆ T ×X and V ⊆ B two given sets, and F : B → 2E a multifunc-
tion with nonempty complete values which is lower semicontinuous at each
point of B \ V . Then there exists a selection g of F which is continuous at
each point of [B ∩ ((T \Q)× (X \R))] \ V .

Proof. Put Z = π−1(B) and G = F ◦π|Z . Observe that Z is 0-dimension-
al and G is lower semicontinuous at each point of Z \π−1(V ). Consequently,
by the proof of Lemma 2 of [11], there exists a selection s of G which
is continuous at each point of Z \ π−1(V ). Since σ(t, x) ∈ π−1(t, x) ⊆ Z
for all (t, x) ∈ B, we can put g(t, x) = s(σ(t, x)) for all (t, x) ∈ B. Then
g(t, x) ∈ F (π(σ(t, x)) = F (t, x) for all (t, x) ∈ B. Further, it is easily seen
that g is continuous at each point of [B ∩ ((T \Q)× (X \R))] \ V .

The next lemma follows from the proof of Lemma 2.3 of [1].

Lemma 3. Let X and S be metric spaces, with S separable, F : X → 2S

a multifunction with nonempty values, {sn} a dense sequence in S, and
x0 ∈ X. Denote by d the distance in S.

(i) If F is lower semicontinuous at x0, then for each s ∈ S the function
x ∈ X 7→ d(s, F (x)) is upper semicontinuous at x0.

(ii) If for each n ∈ N the function x ∈ X 7→ d(sn, F (x)) is upper semi-
continuous at x0, then F is lower semicontinuous at x0.

Lemma 4. Let T,X, µ, ψ be as in Lemma 1, with µ finite. Let f : T ×X
→ R be a single-valued function and E ⊆ X a given set. Assume that :

(i) f is Tµ ⊗ B(X)-measurable;
(ii) infT×X f > −∞;

(iii) for a.a. t ∈ T ,

{x ∈ X : f(t, ·) is not lower semicontinuous at x} ⊆ E.(2)

Then for each ε > 0 there exists a Tµ-measurable set K ⊆ T such that
µ(T \K) ≤ ε and the function f |K×X is lower semicontinuous at each point
(t, x) ∈ K × (X \E).

Proof. Without loss of generality, we can suppose f ≥ 0 in T ×X. Let
T0 ∈ B(X) be such that µ(T \ T0) = 0 and (2) holds for all t ∈ T0. For each
n ∈ N, let fn : T × X → [0,∞[ be the function defined by putting, for all
(t, x) ∈ T ×X,

fn(t, x) := inf
y∈X

[nd(x, y) + f(t, y)].(3)

We observe the following facts.
(a) For each x ∈ X, the function fn(·, x) is Tµ-measurable over T . This

follows from Lemma III.39 of [3], since the function
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(t, y) 7→ nd(x, y) + f(t, y)

is Tµ ⊗ B(X)-measurable for each fixed n ∈ N and x ∈ X.
(b) For each n ∈ N and each (t, x) ∈ T ×X, one has

fn(t, x) ≤ f(t, x).(4)

Indeed, it is enough to put y = x in (3).
(c) For each n ∈ N and each t ∈ T , the function fn(t, ·) is n-Lipschitzian

over X. Indeed, if n ∈ N and t ∈ T are fixed, then for each x, z ∈ X one has

fn(t, x) ≤ inf
y∈X

[nd(x, z) + nd(z, y) + f(t, y)] = nd(x, z) + fn(t, z),

hence

fn(t, x)− fn(t, z) ≤ nd(x, z).

By the latter inequality, upon interchanging the roles of x and z, our asser-
tion follows.

(d) For all (t, x) ∈ T ×X, set

f∗(t, x) := sup
n∈N

fn(t, x) .

Then

f∗(t, x) = f(t, x) for all (t, x) ∈ T0 × (X \ E).(5)

To see this, let (t, x) ∈ T0 × (X \ E) and η > 0. Since f(t, ·) is lower
semicontinuous at x, there exists δ > 0 such that for each y ∈ X with
d(x, y) < δ one has

f(t, y) > β := f(t, x)− η.
Pick n∗ > β/δ. For each y ∈ X we get

n∗d(x, y) + f(t, y) ≥
{
f(t, y) > β if d(x, y) < δ,
n∗δ + f(t, y) > β + f(t, y) ≥ β if d(x, y) ≥ δ.

It follows that fn∗(t, x) ≥ β and thus, by taking into account (4), the equality
(5) holds.

At this point, fix ε > 0. For each n ∈ N, by the Scorza Dragoni Theorem,
there exists a Tµ-measurable set Kn ⊆ T0 such that

µ(T \Kn) ≤ ε/2n

and fn|Kn×X is continuous. The set K :=
⋂
n∈NKn is Tµ-measurable and

µ(T \K) = µ
( ⋃

n∈N
(T \Kn)

)
≤
∞∑

n=1

µ(T \Kn) ≤ ε.

Since each fn|K×X is continuous, f∗|K×X is lower semicontinuous (as the
upper envelope of a sequence of continuous functions). Now, choose any
(t∗, x∗) ∈ K × (X \E), and let us show that f |K×X is lower semicontinuous
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at (t∗, x∗). To this end, fix γ > 0. Since f ∗|K×X is lower semicontinuous,
there exists a neighborhood U of (t∗, x∗) in K ×X such that

f∗(t∗, x∗)− γ < f∗(t, x) for all (t, x) ∈ U.
Taking into account (4) and (5), it follows that for all (t, x) ∈ U one has

f(t, x) ≥ f∗(t, x) > f∗(t∗, x∗)− γ = f(t∗, x∗)− γ.
Hence, f |K×X is lower semicontinuous at (t∗, x∗), as claimed. The proof is
complete.

Lemma 5. Let T,X, µ, ψ be as in Lemma 1, with µ finite, S a separable
metric space, F : T ×X → 2S a multifunction with nonempty closed values,
and E ⊆ X a given set. Assume that :

(i) F is Tµ ⊗ B(X)-measurable;
(ii) for a.a. t ∈ T ,

{x ∈ X : F (t, ·) is not lower semicontinuous at x} ⊆ E.
Then for each ε > 0 there exists a Tµ-measurable set K ⊆ T such that
µ(T \K) ≤ ε and the multifunction F |K×X is lower semicontinuous at each
(t, x) ∈ K × (X \E).

Proof. Let % be an equivalent distance over S such that % ≤ 1, and let
{yn} be a dense sequence in S. By Proposition 13.2.2 of [7], for each y ∈ S the
function %(y, F (·, ·)) is Tµ ⊗ B(X)-measurable. Moreover, by Lemma 3, for
each y ∈ E and for a.a. t ∈ T the function %(y, F (t, ·)) is upper semicontinu-
ous at each x ∈ X \E. Now, fix ε > 0. For each n ∈ N, by Lemma 4 applied
to the function −%(yn, F (·, ·)), there exists a Tµ-measurable set Kn ⊆ T such
that

µ(T \Kn) ≤ ε/2n

and the function %(yn, F (·, ·))|Kn×X is upper semicontinuous at each (t, x) ∈
Kn × (X \ E). Putting K :=

⋂
n∈NKn, we see that K is Tµ-measurable,

µ(T \K) ≤ ε, and for each n ∈ N the function %(yn, F (·, ·))|K×X is upper
semicontinuous at each (t, x) ∈ K × (X \E). By Lemma 3, this implies our
conclusion.

Proof of Theorem 2. By Lemma 5, there exists a sequence {Kn}n∈N of
pairwise disjoint Tµ-measurable subsets of T such that the set

Y := T \
⋃

n∈N
Kn

is negligible and, for each n ∈ N, the multifunction F |Kn×X is lower semi-
continuous at each point of Kn× (X \E). We can assume that inclusion (1)
holds for all t ∈ ⋃n∈NKn. Let Q and R be as in Lemma 1. By Lemma 2,
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for each n ∈ N there exists a selection gn : Kn ×X → S of F |Kn×X which
is continuous at each point of

(Kn \Q)× (X \ (R ∪ E)).

For all t ∈ Y , let ht : X → S be any selection of the multifunction F (t, ·).
Define φ : T ×X → S by putting

φ(t, x) =
{
gn(t, x) if t ∈ Kn,
ht(x) if t ∈ Y .

Clearly, φ is a selection of F . Let us show that φ satisfies our conclusion. To
this end, choose any x∗ ∈ X \ (E ∪R). Since by construction each function
gn(·, x∗)|Kn\Q is continuous, it is Tµ-measurable. Since Y ∪ Q is negligible,
φ satisfies (i)′. In order to prove (ii)′′, choose any t∗ ∈ T \ (Y ∪Q), and let
n ∈ N be such that t∗ ∈ Kn. Since

{x ∈ X : gn(t∗, ·) is discontinuous at x} ⊆ E ∪R
and gn(t∗, ·) = φ(t∗, ·), our claim follows. This completes the proof.

3. An application to differential inclusions. In this section we pro-
vide an application of Theorem 2 to differential inclusions. In particular we
stress that a multifunction F satisfying the assumptions of Theorem 3 below
can fail to be lower semicontinuous in the second variable at each x ∈ R.
Moreover, unlike other recent results in the field (see, for instance, [10] and
references therein), the convexity of the values of F is not assumed. Our
result is as follows (as usual, we denote by m the Lebesgue measure in R).

Theorem 3. Let [a, b] be a real interval , F : [a, b]×R→ 2R a multifunc-
tion and p ∈ [1,∞[. Assume that there exists a multifunction G : [a, b]× R
→ 2R, with nonempty closed values, satisfying the following conditions:

(i) G is L([a, b])⊗ B(R)-measurable;
(ii) there exists E0 ⊆ R, with m(E0) = 0, such that for a.a. t ∈ [a, b],

{x ∈ R : G(t, ·) is not lower semicontinuous at x}
∪ {x ∈ R : G(t, x) 6⊆ F (t, x)} ⊆ E0;

(iii) there exist β ∈ Lp([a, b]) and α : [a, b] → ]0,∞[ such that for a.a.
t ∈ [a, b] and all x ∈ R

G(t, x) ⊆ [α(t), β(t)].

Then there exists u ∈W 2,p([a, b]) such that
{
u′′(t) ∈ F (t, u(t)) for a.a. t ∈ [a, b],
u(a) = u(b) = 0.

Proof. By Theorem 2, there exist a selection φ : [a, b] × R → R of the
multifunction G, and two m-negligible sets K0 ⊆ [a, b] and E ⊆ R, with



Riemann-measurable selections 185

E0 ⊆ E, such that for all x ∈ R \ E the function φ(·, x) is measurable and
for all t ∈ [a, b] \K0 one has

{x ∈ R : φ(t, ·) is discontinuous at x} ⊆ E.
Since R \ E a separable dense subset of R, we can find a countable set
P ⊂ R \E which is dense in R.

Without loss of generality we can assume that

G(t, x) ⊆ [α(t), β(t)] for all x ∈ R, t ∈ [a, b] \K0.

Let φ∗ : [a, b]× R→ R be defined by

φ∗(t, x) =
{
φ(t, x) if t ∈ [a, b] \K0,
β(t) if t ∈ K0.

Since φ is a selection of G, by assumption (iii) we have

α(t) ≤ φ∗(t, x) ≤ β(t) for all x ∈ R, t ∈ [a, b].

In particular, observe that φ∗(t, · ) is bounded for each t ∈ [a, b], and φ∗(·, x)
is measurable for each x ∈ P . Consequently, by Proposition 2 of [4], the
multifunction H : [a, b]× R→ 2R defined by setting

H(t, x) =
⋂

m∈N
co
( ⋃

y∈D, |y−x|≤1/m

{φ∗(t, y)}
)

satisfies the following conditions:

(a) H has nonempty closed convex values;
(b) for all x ∈ R, the multifunction H(·, x) is measurable;
(c) for each t ∈ [a, b], the multifunction H(t, ·) has closed graph;
(d) for all t ∈ [a, b] \K0 and all x ∈ R \E,

H(t, x) = {φ(t, x)}.
Moreover, by the above construction it follows that

H(t, x) ⊆ [α(t), β(t)] for all x ∈ R, t ∈ [a, b].(6)

Now we want to apply Theorem 1 of [10] to the multifunction H, taking
T = [a, b], X = Y = R, s = q = p,

V =
{
u ∈W 1,p([a, b]) :

b�
a

u(t) dt = 0
}
,

Ψ(u) = u′, Φ(u)(t) = � ta u(τ) dτ , ϕ ≡ +∞ and r = ‖β‖Lp([a,b]). To this end,
we observe that the operators Ψ and Φ satisfy all the conditions of Theorem
1 of [10] (see the proof of Theorem 3 of [10]) as does the multifunction H.
Consequently, there exist a function v ∈ V and a negligible set K ⊆ [a, b],
with K0 ⊆ K, such that

Ψ(v)(t) ∈ H(t, Φ(v)(t)) for all t ∈ [a, b] \K.(7)
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Without loss of generality we can assume that v is continuous. Put γ = Φ(v).
By (6) and (7) we have γ′′(t) = v′(t) ≥ α(t) > 0 a.e. in [a, b], hence γ ′ = v
is strictly increasing. Since γ(a) = γ(b), there exists c ∈ ]a, b[ such that

γ′(t) < 0 for all t ∈ [a, c[,

γ′(t) > 0 for all t ∈ ]c, b].

By Theorem 2 of [12], the functions (γ|[a,c])−1 and (γ|[c,b])−1 are absolutely
continuous. By assumption (ii), there exists K1 ⊆ [a, b], with m(K1) = 0,
such that for all t ∈ [a, b] \K1 one has

{x ∈ R : G(t, x) 6⊆ F (t, x)} ⊆ E0.

Clearly, we can assume that K ⊆ K1. Put

S := γ−1(E) ∪K1.

Since by Theorem 18.25 of [5] the sets (γ|[a,c])−1(E) and (γ|[c,b])−1(E) are
negligible, it follows that m(S) = 0. Now, observe that for all t ∈ [a, b] \ S
one has Φ(v)(t) ∈ R \E, hence,

H(t, Φ(v)(t)) = {φ(t, Φ(v)(t))} ⊆ G(t, Φ(v)(t)) ⊆ F (t, Φ(v)(t)).

Consequently, by (7) we get

v′(t) ∈ F
(
t,

t�
a

v(τ) dτ
)

for all t ∈ [a, b] \ S.

Then our conclusion follows by taking u(t) = � ta v(τ) dτ .
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