A note on Costara's paper

by Armen Edigarian (Kraków)

Abstract. We show that the symmetrized bidisc $\mathbb{G}_2 = \{(\lambda_1 + \lambda_2, \lambda_1\lambda_2) : |\lambda_1|, |\lambda_2| < 1\} \subset \mathbb{C}^2$ cannot be exhausted by domains biholomorphic to convex domains.

Let \mathbb{D} be the unit disc in \mathbb{C} . The open symmetrized bidisc \mathbb{G}_2 is the image of the bidisc \mathbb{D}^2 under the "symmetrization map" $\pi : (\lambda_1, \lambda_2) \mapsto (\lambda_1 + \lambda_2, \lambda_1 \lambda_2).$

A well-known theorem of L. Lempert states that on convex domains Carathéodory and Kobayashi pseudodistances coincide (see [4], and also [3, 2]). It turns out that the same is true on \mathbb{G}_2 . So, it is important to know whether \mathbb{G}_2 can be presented as an exhaustion of domains biholomorphic to convex domains.

In [1] C. Costara proved that \mathbb{G}_2 is not biholomorphic to a convex domain. Using similar arguments we show the following improvement.

THEOREM 1. \mathbb{G}_2 cannot be exhausted by domains biholomorphic to convex domains.

Proof. Note that π is a proper holomorphic mapping. Let $\varrho(s,p) = \max\{|\lambda_1|, |\lambda_2|\}$, where λ_1, λ_2 are such that $\pi(\lambda_1, \lambda_2) = (s, p)$. It is easy to see that ϱ is a continuous plurisubharmonic function in \mathbb{C}^2 . Moreover, $\varrho(\lambda s, \lambda^2 p) = |\lambda| \varrho(s, p)$ for any $\lambda \in \mathbb{C}$ and any $(s, p) \in \mathbb{C}^2$. We put $\varphi_{\lambda}(z_1, z_2) = (\lambda z_1, \lambda^2 z_2)$. Then $\varrho(\varphi_{\lambda}(z)) = |\lambda| \varrho(z)$.

One can check that $\mathbb{G}_2 = \{(s, p) \in \mathbb{C}^2 : \varrho(s, p) < 1\}$. For any $\varepsilon > 0$ we put $G_{\varepsilon} := \{(s, p) \in \mathbb{C}^2 : \varrho(s, p) < 1 - \varepsilon\}$.

Assume that U_{ε} is a neighborhood of $\overline{G}_{\varepsilon}$ and $f_{\varepsilon} : U_{\varepsilon} \to V_{\varepsilon}$ is a biholomorphic mapping, where V_{ε} is a convex domain. We may assume that $f_{\varepsilon}(0) = 0$ and that $f'_{\varepsilon}(0) = \text{id}$ (see [1]).

²⁰⁰⁰ Mathematics Subject Classification: Primary 32H35.

Key words and phrases: symmetrized bidisc.

The author was supported in part by the KBN grant No. 5 P03A 033 21.

A. Edigarian

Fix
$$(s_1, p_1), (s_2, p_2) \in \mathbb{C}^2$$
 and $r \in [0, 1]$. Put
 $R := \max\{\varrho(s_1, p_1), \varrho(s_2, p_2)\},$
 $g_{\varepsilon}(\lambda) := f_{\varepsilon}^{-1}(rf_{\varepsilon}(\lambda s_1, \lambda^2 p_1) + (1 - r)f_{\varepsilon}(\lambda s_2, \lambda^2 p_2)).$

We have $g_{\varepsilon}(0) = 0$. Note that g_{ε} is well defined for $|\lambda| < (1 - \varepsilon)/R$. Indeed, $\varrho(\varphi_{\lambda}(s_j, p_j)) = |\lambda| \varrho(s_j, p_j) \leq R |\lambda| < 1 - \varepsilon$ for j = 1, 2. Moreover, we have $\varrho(g_{\varepsilon}(\lambda)) \leq 1$ for any $|\lambda| < (1 - \varepsilon)/R$. Let $h_{\varepsilon}(\lambda) = \varphi_{1/\lambda}(g_{\varepsilon}(\lambda))$. Then h_{ε} : $\mathbb{D}(0, (1 - \varepsilon)/R) \setminus \{0\} \to \mathbb{C}^2$ is a holomorphic mapping. Moreover, it extends holomorphically to 0. Set $g_{\varepsilon} = ((g_{\varepsilon})_1, (g_{\varepsilon})_2)$. Simple calculations show

(1)
$$((g_{\varepsilon})_{1})'(0) = rs_{1} + (1 - r)s_{2};$$

(2) $((g_{\varepsilon})_{2})'(0) = 0;$
(3) $((g_{\varepsilon})_{2})''(0) = 2(rp_{1} + (1 - r)p_{2})$
 $+ \frac{\partial^{2}((f_{\varepsilon})_{2})}{\partial s^{2}}(0)(rs_{1}^{2} + (1 - r)s_{2}^{2} - (rs_{1} + (1 - r)s_{2})^{2}).$

Put

$$t_{\varepsilon} = \frac{1}{2} \cdot \frac{\partial^2((f_{\varepsilon})_2)}{\partial s^2}(0).$$

Then

$$h_{\varepsilon}(0) = (rs_1 + (1 - r)s_2, rp_1 + (1 - r)p_2 + t_{\varepsilon}r(1 - r)(s_1 - s_2)^2).$$

By the maximum principle $\varrho(h_{\varepsilon}(\lambda)) \leq \max_{|\mu|=t} \varrho(h_{\varepsilon}(\mu))$. But for $\lambda \neq 0$ we have

$$\varrho(h_{\varepsilon}(\lambda)) = \varrho(\varphi_{1/\lambda}(g_{\varepsilon}(\lambda))) = \frac{1}{|\lambda|} \, \varrho(g_{\varepsilon}(\lambda)) \le \frac{1}{|\lambda|}$$

Hence,

(1)
$$\varrho(h_{\varepsilon}(0)) \le \frac{R}{1-\varepsilon}$$

Write $t_{\varepsilon} = e^{i\theta}|t_{\varepsilon}|$. Take r = 1/2, $(s_1, p_1) = \pi(\zeta, -1)$, and $(s_2, p_2) = \pi(\zeta, 1)$, where $\zeta = e^{i(\theta + \pi)/2}$. Note that $t_{\varepsilon} = -\zeta^2 |t_{\varepsilon}|$. We have $\varrho(1, -|t_{\varepsilon}|) = \varrho(\zeta, t_{\varepsilon}) \le 1/(1-\varepsilon)$. From this we get

$$\frac{1+\sqrt{1+4|t_{\varepsilon}|}}{2} = \varrho(1,-|t_{\varepsilon}|) \le \frac{1}{1-\varepsilon}.$$

So, $t_{\varepsilon} \to 0$ as $\varepsilon \to 0$. Letting $\varepsilon \to 0$ in (1) we get (2) $\varrho(rs_1 + (1-r)s_2, rp_1 + (1-r)p_2) \le \max\{\varrho(s_1, p_1), \varrho(s_2, p_2)\},$

which contradicts the non-convexity of \mathbb{G}_2 .

References

[1] C. Costara, The symmetrized bidisc as a counterexample to the converse of Lempert's theorem, Bull. London Math. Soc., to appear (2003).

190

- [2] A. Edigarian, A remark on the Lempert theorem, Univ. Iag. Acta Math. 32 (1995), 83–86.
- [3] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, de Gruyter, 1993.
- [4] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427–474.

Institute of Mathematics Jagiellonian University Reymonta 4/526 30-059 Kraków, Poland E-mail: Armen.Edigarian@im.uj.edu.pl

Reçu par la Rédaction le 22.12.2003

(1492)