On scalar-valued nonlinear absolutely summing mappings

by DANIEL PELLEGRINO (Campina Grande)

Abstract. We investigate cases ("coincidence situations") in which every scalarvalued continuous *n*-homogeneous polynomial (or every continuous *n*-linear mapping) is absolutely (p;q)-summing. We extend some well known coincidence situations and obtain several non-coincidence results, inspired by a linear technique due to Lindenstrauss and Pełczyński.

1. Introduction. Throughout this note X, X_1, \ldots, X_n, Y will stand for Banach spaces and the scalar field \mathbb{K} can be either the real or the complex numbers.

An *m*-homogeneous polynomial P from X into Y is said to be *absolutely* (p;q)-summing $(p \ge q/m)$ if there is a constant L so that

(1.1)
$$\left(\sum_{j=1}^{k} \|P(x_j)\|^p\right)^{1/p} \le L\|(x_j)_{j=1}^k\|_{w,q}^m$$

for every natural k, where $\|(x_j)_{j=1}^k\|_{w,q} = \sup_{\varphi \in B_{X'}} (\sum_{j=1}^k |\varphi(x_j)|^q)^{1/q}$. This is a natural generalization of the concept of (p;q)-summing operators and in the last years it has been studied by several authors. The infimum of the L > 0 for which the inequality holds defines a norm $\|\cdot\|_{\operatorname{as}(p;q)}$ for $p \ge 1$, or a p-norm for p < 1, on the space of (p;q)-summing homogeneous polynomials. The space of all *m*-homogeneous (p;q)-summing polynomials from X into Y is denoted by $\mathcal{P}_{\operatorname{as}(p;q)}({}^mX;Y)$ ($\mathcal{P}_{\operatorname{as}(p;q)}({}^mX)$ if $Y = \mathbb{K}$).

When p = q/m we have an important particular case, since in this situation there is an analogue of the Grothendieck–Pietsch Domination Theorem. The (q/m;q)-summing *m*-homogeneous polynomials from X into Y are said to be *q*-dominated and this space is denoted by $\mathcal{P}_{d,q}(^{m}X;Y)$ ($\mathcal{P}_{d,q}(^{m}X)$) if $Y = \mathbb{K}$).

The Banach space of all continuous *m*-homogeneous polynomials *P* from *X* into *Y* with the sup norm is denoted by $\mathcal{P}(^{m}X, Y)$ ($\mathcal{P}(^{m}X)$ if *Y* is

²⁰⁰⁰ Mathematics Subject Classification: Primary 46B15; Secondary 46G25.

Key words and phrases: absolutely summing, dominated, polynomial.

Research partially supported by Instituto do Milênio, IMPA.

the scalar field). Analogously, the space of all continuous *m*-linear mappings from $X_1 \times \cdots \times X_m$ into *Y* (with the sup norm) is denoted by $\mathcal{L}(X_1, \ldots, X_m; Y)$ ($\mathcal{L}(X_1, \ldots, X_m)$ if $Y = \mathbb{K}$). The concept of absolutely summing multilinear mapping follows the same pattern (for details we refer to [5]). Henceforth every polynomial and multilinear mapping are supposed to be continuous and every \mathcal{L}_p -space is assumed to be infinite-dimensional.

A natural problem is to find situations in which the space of absolutely summing polynomials coincides with the space of continuous polynomials (*coincidence situations*). When Y is the scalar field, these situations are not rare as we can see in the next two well known results:

THEOREM 1. Every scalar-valued n-linear mapping is absolutely (1; 1)-summing. In particular, every scalar-valued n-homogeneous polynomial is absolutely (1; 1)-summing (and, a fortiori, (q; 1)-summing for every $q \ge 1$).

THEOREM 2 (D. Pérez-García [6]). If $n \geq 2$ and X is an \mathcal{L}_{∞} -space, then every scalar-valued n-linear mapping on X is (1; 2)-summing. In particular, every scalar-valued n-homogeneous polynomial on X is (1; 2)-summing (and, a fortiori, (q; 2)-summing for every $q \geq 1$).

The proof of Theorem 1 can be found in [1] and is credited to A. Defant and J. Voigt. The case n = 2 of Theorem 2 was previously proved by Botelho [2] and is the unique known coincidence result for dominated polynomials.

In Section 2 we obtain new coincidence situations, generalizing Theorem 1 and extending the results of Theorem 2. Section 3 has a different purpose: to obtain a technical estimate (inspired by a linear result due to Lindenstrauss and Pełczyński [3]) and to explore its consequences. In particular, it is shown that Theorems 1 and 2 cannot be generalized in some other directions, and converses for the aforementioned theorems are obtained.

2. Coincidence situations. The next theorem, inspired by a result of C. A. Soares, leads us to extensions of the two theorems stated in the first section:

THEOREM 3. Let $A \in \mathcal{L}(X_1, \ldots, X_n; Y)$ and suppose that there exists C > 0 so that for any $x_1 \in X_1, \ldots, x_r \in X_r$, the s-linear (s = n - r) mapping $A_{x_1 \ldots x_r}(x_{r+1}, \ldots, x_n) = A(x_1, \ldots, x_n)$ is absolutely $(1; q_1, \ldots, q_s)$ -summing and

 $||A_{x_1...x_r}||_{\mathrm{as}(1;q_1,...,q_s)} \le C ||A|| ||x_1|| \dots ||x_r||.$

Then A is absolutely $(1; 1, \ldots, 1, q_1, \ldots, q_s)$ -summing.

Proof. For $x_1^{(1)}, \ldots, x_1^{(m)} \in X_1, \ldots, x_n^{(1)}, \ldots, x_n^{(m)} \in X_n$, consider $\varphi_j \in B_{Y'}$ such that

$$||A(x_1^{(j)},\ldots,x_n^{(j)})|| = \varphi_j(A(x_1^{(j)},\ldots,x_n^{(j)}))$$

for every j = 1, ..., m. Then, denoting by $r_j(t)$ the Rademacher functions on [0, 1] and by λ the Lebesgue measure on $I = [0, 1]^r$, we have

$$\begin{split} & \prod_{I=1}^{m} \prod_{j=1}^{r} r_{j}(t_{l}) \\ & \qquad \times \varphi_{j} A \Big(\sum_{j_{1}=1}^{m} r_{j_{1}}(t_{1}) x_{1}^{(j_{1})}, \dots, \sum_{j_{r}=1}^{m} r_{j_{r}}(t_{r}) x_{r}^{(j_{r})}, x_{r+1}^{(j)}, \dots, x_{n}^{(j)} \Big) \, d\lambda \\ & = \sum_{j,j_{1},\dots,j_{r}=1}^{m} \varphi_{j} A(x_{1}^{(j_{1})},\dots,x_{r}^{(j_{r})},x_{r+1}^{(j)},\dots,x_{n}^{(j)}) \\ & \qquad \times \int_{0}^{1} r_{j}(t_{1}) r_{j_{1}}(t_{1}) \, dt_{1} \dots \int_{0}^{1} r_{j}(t_{r}) r_{j_{r}}(t_{r}) \, dt_{r} \\ & = \sum_{j=1}^{m} \sum_{j_{1}=1}^{m} \dots \sum_{j_{r}=1}^{m} \varphi_{j} A(x_{1}^{(j_{1})},\dots,x_{r}^{(j_{r})},x_{r+1}^{(j)},\dots,x_{n}^{(j)}) \delta_{jj_{1}}\dots\delta_{jj_{r}} \\ & = \sum_{j=1}^{m} \varphi_{j} A(x_{1}^{(j)},\dots,x_{n}^{(j)}) = \sum_{j=1}^{m} \|A(x_{1}^{(j)},\dots,x_{n}^{(j)})\| = (*). \end{split}$$

So, for each l = 1, ..., r, assuming $z_l = \sum_{j=1}^m r_j(t_l) x_l^{(j)}$ we obtain

$$\begin{aligned} (*) &= \int_{I} \sum_{j=1}^{m} \left(\prod_{l=1}^{r} r_{j}(t_{l}) \right) \\ &\times \varphi_{j} A \left(\sum_{j_{1}=1}^{m} r_{j_{1}}(t_{1}) x_{1}^{(j_{1})}, \dots, \sum_{j_{r}=1}^{m} r_{j_{r}}(t_{r}) x_{r}^{(j_{r})}, x_{r+1}^{(j)}, \dots, x_{n}^{(j)} \right) d\lambda \\ &\leq \int_{I} \left| \sum_{j=1}^{m} \left(\prod_{l=1}^{r} r_{j}(t_{l}) \right) \right. \\ &\times \varphi_{j} A \left(\sum_{j_{1}=1}^{m} r_{j_{1}}(t_{1}) x_{1}^{(j_{1})}, \dots, \sum_{j_{r}=1}^{m} r_{j_{r}}(t_{r}) x_{r}^{(j_{r})}, x_{r+1}^{(j)}, \dots, x_{n}^{(j)} \right) \right| d\lambda \\ &\leq \int_{I} \sum_{j=1}^{m} \left\| A \left(\sum_{j_{1}=1}^{m} r_{j_{1}}(t_{1}) x_{1}^{(j_{1})}, \dots, \sum_{j_{r}=1}^{m} r_{j_{r}}(t_{r}) x_{r}^{(j_{r})}, x_{r+1}^{(j)}, \dots, x_{n}^{(j)} \right) \right\| d\lambda \end{aligned}$$

$$\leq \sup_{t_{l}\in[0,1],\,l=1,\dots,r} \sum_{j=1}^{m} \left\| A \Big(\sum_{j_{1}=1}^{m} r_{j_{1}}(t_{1}) x_{1}^{(j_{1})},\dots, \sum_{j_{r}=1}^{m} r_{j_{r}}(t_{r}) x_{r}^{(j_{r})}, x_{r+1}^{(j)},\dots, x_{n}^{(j)} \Big) \right\|$$

$$\leq \sup_{t_{l}\in[0,1],\,l=1,\dots,r} \|A_{z_{1}\dots z_{r}}\|_{\mathrm{as}(1;q_{1},\dots,q_{s})} \|(x_{r+1}^{(j)})_{j=1}^{m}\|_{w,q_{1}} \cdots \|(x_{n}^{(j)})_{j=1}^{m}\|_{w,q_{s}}$$

$$\leq \sup_{t_{l}\in[0,1],\,l=1,\dots,r} C\|A\| \|z_{1}\|\cdots\|z_{r}\| \|(x_{r+1}^{(j)})_{j=1}^{m}\|_{w,q_{1}}\cdots\|(x_{n}^{(j)})_{j=1}^{m}\|_{w,q_{s}}$$

$$\leq C\|A\| \Big(\prod_{l=1}^{r} \|(x_{l}^{(j)})_{j=1}^{m}\|_{w,1}\Big) \Big(\prod_{l=r+1}^{n} \|(x_{l}^{(j)})_{j=1}^{m}\|_{w,q_{l}}\Big).$$

We have the following straightforward consequence, generalizing Theorem 1:

Corollary 1. If

$$\mathcal{L}(X_1, \dots, X_m; Y) = \mathcal{L}_{\mathrm{as}(1;q_1,\dots,q_m)}(X_1, \dots, X_m; Y)$$

then, for any Banach spaces X_{m+1}, \ldots, X_n , we have

 $\mathcal{L}(X_1,\ldots,X_n;Y) = \mathcal{L}_{\mathrm{as}(1;q_1,\ldots,q_m,1,\ldots,1)}(X_1,\ldots,X_n;Y).$

The following corollary (whose proof is simple and we omit it) is a consequence of Theorems 2 and 3.

COROLLARY 2. If X_1, \ldots, X_s are \mathcal{L}_{∞} -spaces then, for any Banach spaces X_{s+1}, \ldots, X_n , we have

$$\mathcal{L}(X_1, \dots, X_n) = \mathcal{L}_{\mathrm{as}(1;q_1,\dots,q_n)}(X_1, \dots, X_n),$$

where $q_1 = \dots = q_s = 2$ and $q_{s+1} = \dots = q_n = 1.$

It is obvious that Corollary 2 is still true if we replace the scalar field by any finite-dimensional Banach space. A natural question is whether Corollary 2 can be stated for some infinite-dimensional Banach space in place of \mathbb{K} . Precisely, the question is:

• If X_1, \ldots, X_k are \mathcal{L}_{∞} -spaces, is there some infinite-dimensional Banach space Y such that

 $\mathcal{L}(X_1,\ldots,X_k,\ldots,X_n;Y) = \mathcal{L}_{\mathrm{as}(1;q_1,\ldots,q_n)}(X_1,\ldots,X_k,\ldots,X_n;Y),$

where $q_1 = \cdots = q_k = 2$ and $q_{k+1} = \cdots = q_n = 1$, regardless of the chioce of the Banach spaces X_{k+1}, \ldots, X_n ?

The answer to this question is no, as shown by the following proposition:

PROPOSITION 1. Suppose that X_1, \ldots, X_k are \mathcal{L}_{∞} -spaces. If $q_1 = \cdots = q_k = 2, q_{k+1} = \cdots = q_n = 1$ and

 $\mathcal{L}(X_1, \ldots, X_k, \ldots, X_n; Y) = \mathcal{L}_{\mathrm{as}(1;q_1, \ldots, q_n)}(X_1, \ldots, X_k, \ldots, X_n; Y),$ regardless of the choice of the Banach spaces X_{k+1}, \ldots, X_n , then dim $Y < \infty$. *Proof.* By a standard localization argument, it suffices to prove that if $\dim Y = \infty$, then

$$\mathcal{L}(^{n}c_{0};Y) \neq \mathcal{L}_{\mathrm{as}(1;q_{1},\ldots,q_{n})}(^{n}c_{0};Y),$$

where $q_1 = \ldots = q_k = 2$ and $q_{k+1} = \cdots = q_n = 1$. But from [5, Theorem 8] we even have

$$\mathcal{L}(^{n}c_{0};Y) \neq \mathcal{L}_{\mathrm{as}(q;q_{1},\ldots,q_{n})}(^{n}c_{0};Y)$$

for any q < 2 and $q_1, \ldots, q_n \ge 1$.

3. Non-coincidence situations. Assume that X is an infinite-dimensional Banach space and suppose that X has a normalized unconditional Schauder basis (x_n) with coefficient functionals (x_n^*) . If $\mathcal{P}_{\mathrm{as}(q;1)}(^mX;Y) = \mathcal{P}(^mX;Y)$, it is natural to ask:

What is the infimum of the t such that in this situation $(x_n^*(x)) \in l_t$ for each $x \in X$? This infimum will be denoted by $\mu = \mu(X, Y, q, m)$.

In [5], inspired by an important linear result due to Lindenstrauss and Pełczyński, we have proved:

THEOREM 4 (Pellegrino [5, Theorem 5]). Let X and Y be infinite-dimensional Banach spaces. Suppose that X has an unconditional Schauder basis (x_n) . If Y finitely factors the formal inclusion $l_p \to l_\infty$ and $\mathcal{P}_{\mathrm{as}(q;1)}(^mX;Y) = \mathcal{P}(^mX;Y)$ with $1/m \leq q$, then

(a)
$$\mu \leq mpq/(p-q)$$
 if $q < p$,
(b) $\mu \leq mq$ if $q \leq p/2$.

However, by inspecting the proof of this theorem in [5], one can see that it is by no means necessary to assume that dim $Y = \infty$. Only in Corollary of [5] (when the Dvoretzky–Rogers Theorem is invoked) is it indeed necessary to assume dim $Y = \infty$. A slight change in the proof of [5, Theorem 5] yields the following result:

THEOREM 5. Let X be an infinite-dimensional Banach space with a normalized unconditional Schauder basis (x_n) . If $\mathcal{P}_{\mathrm{as}(q;1)}(^mX) = \mathcal{P}(^mX)$, then

(a) $\mu \le mq/(1-q)$ if q < 1,

(b)
$$\mu \le mq$$
 if $q \le 1/2$.

Proof. If $x = \sum_{j=1}^{\infty} a_j x_j$ and $\{\mu_i\}_{i=1}^n$ is such that $\sum_{j=1}^n |\mu_j|^{1/q} = 1$, define $P: X \to \mathbb{K}$ by $Px = \sum_{j=1}^n |\mu_j|^{1/q} a_j^m$.

Since (x_n) is an unconditional basis, there exists a $\rho > 0$ satisfying

$$\left\|\sum_{j=1}^{n} \varepsilon_{j} a_{j} x_{j}\right\| \leq \varrho \|x\| \quad \text{for every } n \text{ and any } \varepsilon_{j} = \pm 1.$$

Hence

$$|Px| \le \sum_{j=1}^{n} \left| |\mu_j|^{1/q} a_j^m \right| \le \varrho^m ||x||^m \sum_{j=1}^{n} |\mu_j|^{1/q},$$

and thus $||P|| \le \varrho^m$ and $||P||_{\operatorname{as}(q;1)} \le C \varrho^m$. Therefore

(3.1)
$$\left(\sum_{j=1}^{n} |a_{j}^{m}|\mu_{j}|^{1/q}|^{q}\right)^{1/q} \leq \left(\sum_{j=1}^{n} |Pa_{j}x_{j}|^{q}\right)^{1/q} \\ \leq \|P\|_{\mathrm{as}(q;1)} \max_{\varepsilon_{j} \in \{1,-1\}} \left\|\sum_{j=1}^{n} \varepsilon_{j}a_{j}x_{j}\right\|^{m} \\ \leq \|P\|_{\mathrm{as}(q;1)}(\varrho\|x\|)^{m} \leq C\varrho^{2m}\|x\|^{m}.$$

Defining s = 1/q, we have $\frac{1}{s} + \frac{1}{\frac{s}{s-1}} = 1$ and

(3.2)
$$\left(\sum_{j=1}^{n} |a_j|^{\frac{s}{s-1}mq}\right)^{1/\frac{s}{s-1}} \le \sup\left\{\sum_{j=1}^{n} |\mu_j| |a_j|^{mq} : \sum_{j=1}^{n} |\mu_j|^s = 1\right\}.$$

Since (3.1) is true whenever $\sum_{j=1}^{n} |\mu_j|^s = 1$, by (3.1) and (3.2) we obtain

$$\left(\sum_{j=1}^{n} |a_j|^{\frac{s}{s-1}mq}\right)^{1/\frac{s}{s-1}mq} \le [C\varrho^{2m} ||x||^m]^{1/m}$$

But $\frac{s}{s-1}mq = \frac{mq}{1-q}$ and n is arbitrary, and hence part (a) is proved. Now, if $1/m \leq q \leq 1/2$, define $S: X \to \mathbb{K}$ by $Sx = \sum_{j=1}^{n} a_{j}^{m}$. Since $m \geq \frac{s}{s-1}mq$, we obtain

$$|Sx| \le \sum_{j=1}^{n} |a_j^m| \le \left[\left(\sum_{j=1}^{n} |a_j|^{\frac{s}{s-1}mq} \right)^{1/\frac{s}{s-1}mq} \right]^m \le C\varrho^{2m} ||x||^m$$

Thus $||S|| \leq C \rho^{2m}$ and $||S||_{\operatorname{as}(q;1)} \leq C^2 \rho^{2m}$. Therefore

$$\sum_{j=1}^{n} |a_{j}^{m}|^{q} = \sum_{j=1}^{n} |Sa_{j}x_{j}|^{q} \le \|S\|_{\mathrm{as}(q;1)}^{q} \max_{\varepsilon_{j} \in \{1,-1\}} \left\| \sum_{j=1}^{n} \varepsilon_{j}a_{j}x_{j} \right\|^{mq} \le (C^{2}\varrho^{2m})^{q} (\varrho\|x\|)^{mq}.$$

Consequently, since n is arbitrary, we have $\sum_{j=1}^{\infty} |a_j|^{mq} < \infty$ whenever $x = \sum_{j=1}^{\infty} a_j x_j \in X$.

Now we list several important consequences of Theorem 5. For example, Corollaries 3 and 4 below give converses for Theorems 1 and 2, respectively. The proofs of Corollaries 3–6 are simple (using Theorem 5 and standard localization techniques in order to extend the results from c_0 to \mathcal{L}_{∞} -spaces):

COROLLARY 3. Let m be a fixed natural number. Then $\mathcal{P}_{\mathrm{as}(q;1)}(^{m}X) = \mathcal{P}(^{m}X)$ for every X if and only if $q \geq 1$.

COROLLARY 4. If $m \geq 2$ and X is an \mathcal{L}_{∞} -space, then $\mathcal{P}_{\mathrm{as}(q;2)}(^{m}X) = \mathcal{P}(^{m}X)$ if and only if $q \geq 1$.

COROLLARY 5. If $m \geq 2$ and X is an \mathcal{L}_{∞} -space, then $\mathcal{P}_{d,q}(^{m}X) \neq \mathcal{P}(^{m}X)$ for every q < m.

In particular, if X is an \mathcal{L}_{∞} -space and m = 2, then $\mathcal{P}_{d,2}(^{2}X) = \mathcal{P}(^{2}X)$ and thus we have:

COROLLARY 6. If X is an \mathcal{L}_{∞} -space, then $\mathcal{P}_{d,q}(^{2}X) = \mathcal{P}(^{2}X)$ if and only if $q \geq 2$.

We also have:

COROLLARY 7. If $q \leq 1/2$ and X is an \mathcal{L}_p -space $(p \geq 2)$, then $\mathcal{P}_{\mathrm{as}(q;1)}(^mX) = \mathcal{P}(^mX)$ if and only if $p \leq mq$.

Proof. A localization argument allows us to assume that $X = l_p$. If $\mathcal{P}_{\mathrm{as}(q;1)}(^mX) = \mathcal{P}(^mX)$, Theorem 5 ensures that $p \leq mq$. On the other hand, if $p \leq mq$ and $P \in \mathcal{P}(^mX)$, then

$$\left(\sum_{j=1}^{k} \|P(x_j)\|^q\right)^{1/q} \le \|P\| \left(\sum_{j=1}^{k} \|x_j\|^{mq}\right)^{1/q}$$
$$\le \|P\| \left(\sum_{j=1}^{k} \|x_j\|^p\right)^{m/p} \le C_p(X) \|P\| \|(x_j)_{j=1}^k\|_{w,1}^m,$$

where $C_p(X)$ is the cotype constant of l_p and the last inequality holds since l_p has cotype p (for $p \ge 2$) and thus id : $l_p \to l_p$ is absolutely (p; 1)-summing.

All these results can be adapted (including Theorem 5), mutatis mutandis, to the multilinear case. Furthermore, one can extend Corollary 2:

COROLLARY 8. Let X_1, \ldots, X_s be \mathcal{L}_{∞} -spaces, $q_1 = \cdots = q_s = 2$ and $q_{s+1} = \cdots = q_n = 1$. Then

$$\mathcal{L}(X_1,\ldots,X_n)=\mathcal{L}_{\mathrm{as}(q;q_1,\ldots,q_n)}(X_1,\ldots,X_n),$$

for any choice of Banach spaces X_{s+1}, \ldots, X_n , if and only if $q \ge 1$.

REMARK 1. For the bilinear case it is not hard to prove that when X is an \mathcal{L}_{∞} -space, $\mathcal{L}_{d,q}(^{2}X) \neq \mathcal{L}(^{2}X)$ if q < 2. However, this result cannot be straightforwardly adapted for polynomials and thus Corollary 6 is in fact non-trivial. Non-coincidence results for absolutely summing multilinear mappings, in general, do not imply non-coincidence results for absolutely summing polynomials.

D. Pellegrino

References

- R. Alencar and M. C. Matos, Some classes of multilinear mappings between Banach spaces, Publ. Depto Anál. Mat., Univ. Complut. Madrid, Section 1, 12 (1989).
- [2] G. Botelho, Cotype and absolutely summing multilinear mappings and homogeneous polynomials, Proc. Roy. Irish Acad. Sect. A 97 (1997), 145–153.
- [3] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in \mathcal{L}_p spaces and their applications, Studia Math. 29 (1968), 275–326.
- M. C. Matos, Absolutely summing holomorphic mappings, An. Acad. Brasil. Cienc. 68 (1996), 1–13.
- [5] D. Pellegrino, Cotype and absolutely summing homogeneous polynomials in \mathcal{L}_p spaces, Studia Math. 157 (2003), 121–131.
- [6] D. Pérez-García, *Operadores multilineales absolutamente sumantes*, dissertation, Univ. Complut. Madrid, 2002.

Departamento de Matemática e Estatística Universidade Federal de Campina Grande Caixa Postal 10044 Campina Grande, PB, 58109-970, Brazil E-mail: dmp@dme.ufcg.edu.br

 $Reçu \ par \ la \ Rédaction \ le \ 18.11.2003 \tag{1485}$