On scalar-valued nonlinear absolutely summing mappings

by Daniel Pellegrino (Campina Grande)

Abstract

We investigate cases ("coincidence situations") in which every scalarvalued continuous n-homogeneous polynomial (or every continuous n-linear mapping) is absolutely ($p ; q$)-summing. We extend some well known coincidence situations and obtain several non-coincidence results, inspired by a linear technique due to Lindenstrauss and Pełczyński.

1. Introduction. Throughout this note $X, X_{1}, \ldots, X_{n}, Y$ will stand for Banach spaces and the scalar field \mathbb{K} can be either the real or the complex numbers.

An m-homogeneous polynomial P from X into Y is said to be absolutely $(p ; q)$-summing $(p \geq q / m)$ if there is a constant L so that

$$
\begin{equation*}
\left(\sum_{j=1}^{k}\left\|P\left(x_{j}\right)\right\|^{p}\right)^{1 / p} \leq L\left\|\left(x_{j}\right)_{j=1}^{k}\right\|_{w, q}^{m} \tag{1.1}
\end{equation*}
$$

for every natural k, where $\left\|\left(x_{j}\right)_{j=1}^{k}\right\|_{w, q}=\sup _{\varphi \in B_{X^{\prime}}}\left(\sum_{j=1}^{k}\left|\varphi\left(x_{j}\right)\right|^{q}\right)^{1 / q}$. This is a natural generalization of the concept of $(p ; q)$-summing operators and in the last years it has been studied by several authors. The infimum of the $L>0$ for which the inequality holds defines a norm $\|\cdot\|_{\mathrm{as}(p ; q)}$ for $p \geq 1$, or a p-norm for $p<1$, on the space of $(p ; q)$-summing homogeneous polynomials. The space of all m-homogeneous $(p ; q)$-summing polynomials from X into Y is denoted by $\mathcal{P}_{\mathrm{as}(p ; q)}\left({ }^{m} X ; Y\right)\left(\mathcal{P}_{\mathrm{as}(p ; q)}\left({ }^{m} X\right)\right.$ if $\left.Y=\mathbb{K}\right)$.

When $p=q / m$ we have an important particular case, since in this situation there is an analogue of the Grothendieck-Pietsch Domination Theorem. The $(q / m ; q)$-summing m-homogeneous polynomials from X into Y are said to be q-dominated and this space is denoted by $\mathcal{P}_{\mathrm{d}, q}\left({ }^{m} X ; Y\right)\left(\mathcal{P}_{\mathrm{d}, q}\left({ }^{m} X\right)\right.$ if $Y=\mathbb{K})$.

The Banach space of all continuous m-homogeneous polynomials P from X into Y with the sup norm is denoted by $\mathcal{P}\left({ }^{m} X, Y\right)\left(\mathcal{P}\left({ }^{m} X\right)\right.$ if Y is
the scalar field). Analogously, the space of all continuous m-linear mappings from $X_{1} \times \cdots \times X_{m}$ into Y (with the sup norm) is denoted by $\mathcal{L}\left(X_{1}, \ldots, X_{m} ; Y\right)\left(\mathcal{L}\left(X_{1}, \ldots, X_{m}\right)\right.$ if $\left.Y=\mathbb{K}\right)$. The concept of absolutely summing multilinear mapping follows the same pattern (for details we refer to [5]). Henceforth every polynomial and multilinear mapping are supposed to be continuous and every \mathcal{L}_{p}-space is assumed to be infinite-dimensional.

A natural problem is to find situations in which the space of absolutely summing polynomials coincides with the space of continuous polynomials (coincidence situations). When Y is the scalar field, these situations are not rare as we can see in the next two well known results:

Theorem 1. Every scalar-valued n-linear mapping is absolutely $(1 ; 1)$ summing. In particular, every scalar-valued n-homogeneous polynomial is absolutely $(1 ; 1)$-summing (and, a fortiori, $(q ; 1)$-summing for every $q \geq 1)$.

Theorem 2 (D. Pérez-García [6]). If $n \geq 2$ and X is an \mathcal{L}_{∞}-space, then every scalar-valued n-linear mapping on X is $(1 ; 2)$-summing. In particular, every scalar-valued n-homogeneous polynomial on X is $(1 ; 2)$-summing (and, a fortiori, ($q ; 2$)-summing for every $q \geq 1$).

The proof of Theorem 1 can be found in [1] and is credited to A. Defant and J. Voigt. The case $n=2$ of Theorem 2 was previously proved by Botelho [2] and is the unique known coincidence result for dominated polynomials.

In Section 2 we obtain new coincidence situations, generalizing Theorem 1 and extending the results of Theorem 2. Section 3 has a different purpose: to obtain a technical estimate (inspired by a linear result due to Lindenstrauss and Pełczyński [3]) and to explore its consequences. In particular, it is shown that Theorems 1 and 2 cannot be generalized in some other directions, and converses for the aforementioned theorems are obtained.
2. Coincidence situations. The next theorem, inspired by a result of C. A. Soares, leads us to extensions of the two theorems stated in the first section:

Theorem 3. Let $A \in \mathcal{L}\left(X_{1}, \ldots, X_{n} ; Y\right)$ and suppose that there exists $C>0$ so that for any $x_{1} \in X_{1}, \ldots, x_{r} \in X_{r}$, the s-linear $(s=n-r)$ mapping $A_{x_{1} \ldots x_{r}}\left(x_{r+1}, \ldots, x_{n}\right)=A\left(x_{1}, \ldots, x_{n}\right)$ is absolutely $\left(1 ; q_{1}, \ldots, q_{s}\right)$-summing and

$$
\left\|A_{x_{1} \ldots x_{r}}\right\|_{\mathrm{as}\left(1 ; q_{1}, \ldots, q_{s}\right)} \leq C\|A\|\left\|x_{1}\right\| \ldots\left\|x_{r}\right\|
$$

Then A is absolutely $\left(1 ; 1, \ldots, 1, q_{1}, \ldots, q_{s}\right)$-summing.

Proof. For $x_{1}^{(1)}, \ldots, x_{1}^{(m)} \in X_{1}, \ldots, x_{n}^{(1)}, \ldots, x_{n}^{(m)} \in X_{n}$, consider $\varphi_{j} \in B_{Y^{\prime}}$ such that

$$
\left\|A\left(x_{1}^{(j)}, \ldots, x_{n}^{(j)}\right)\right\|=\varphi_{j}\left(A\left(x_{1}^{(j)}, \ldots, x_{n}^{(j)}\right)\right)
$$

for every $j=1, \ldots, m$. Then, denoting by $r_{j}(t)$ the Rademacher functions on $[0,1]$ and by λ the Lebesgue measure on $I=[0,1]^{r}$, we have

$$
\begin{aligned}
\int_{I} \sum_{j=1}^{m}(& \left.\prod_{l=1}^{r} r_{j}\left(t_{l}\right)\right) \\
& \times \varphi_{j} A\left(\sum_{j_{1}=1}^{m} r_{j_{1}}\left(t_{1}\right) x_{1}^{\left(j_{1}\right)}, \ldots, \sum_{j_{r}=1}^{m} r_{j_{r}}\left(t_{r}\right) x_{r}^{\left(j_{r}\right)}, x_{r+1}^{(j)}, \ldots, x_{n}^{(j)}\right) d \lambda \\
= & \sum_{j, j_{1}, \ldots, j_{r}=1}^{m} \varphi_{j} A\left(x_{1}^{\left(j_{1}\right)}, \ldots, x_{r}^{\left(j_{r}\right)}, x_{r+1}^{(j)}, \ldots, x_{n}^{(j)}\right) \\
& \times \int_{0}^{1} r_{j}\left(t_{1}\right) r_{j_{1}}\left(t_{1}\right) d t_{1} \ldots \int_{0}^{1} r_{j}\left(t_{r}\right) r_{j_{r}}\left(t_{r}\right) d t_{r} \\
= & \sum_{j=1}^{m} \sum_{j_{1}=1}^{m} \ldots \sum_{j_{r}=1}^{m} \varphi_{j} A\left(x_{1}^{\left(j_{1}\right)}, \ldots, x_{r}^{\left(j_{r}\right)}, x_{r+1}^{(j)}, \ldots, x_{n}^{(j)}\right) \delta_{j j_{1}} \ldots \delta_{j j_{r}} \\
= & \sum_{j=1}^{m} \varphi_{j} A\left(x_{1}^{(j)}, \ldots, x_{n}^{(j)}\right)=\sum_{j=1}^{m}\left\|A\left(x_{1}^{(j)}, \ldots, x_{n}^{(j)}\right)\right\|=(*) .
\end{aligned}
$$

So, for each $l=1, \ldots, r$, assuming $z_{l}=\sum_{j=1}^{m} r_{j}\left(t_{l}\right) x_{l}^{(j)}$ we obtain

$$
\begin{aligned}
(*)= & \int_{I} \sum_{j=1}^{m}\left(\prod_{l=1}^{r} r_{j}\left(t_{l}\right)\right) \\
& \times \varphi_{j} A\left(\sum_{j_{1}=1}^{m} r_{j_{1}}\left(t_{1}\right) x_{1}^{\left(j_{1}\right)}, \ldots, \sum_{j_{r}=1}^{m} r_{j_{r}}\left(t_{r}\right) x_{r}^{\left(j_{r}\right)}, x_{r+1}^{(j)}, \ldots, x_{n}^{(j)}\right) d \lambda \\
\leq & \int_{I} \mid \sum_{j=1}^{m}\left(\prod_{l=1}^{r} r_{j}\left(t_{l}\right)\right) \\
& \times \varphi_{j} A\left(\sum_{j_{1}=1}^{m} r_{j_{1}}\left(t_{1}\right) x_{1}^{\left(j_{1}\right)}, \ldots, \sum_{j_{r}=1}^{m} r_{j_{r}}\left(t_{r}\right) x_{r}^{\left(j_{r}\right)}, x_{r+1}^{(j)}, \ldots, x_{n}^{(j)}\right) \mid d \lambda \\
\leq & \int_{I} \sum_{j=1}^{m}\left\|A\left(\sum_{j_{1}=1}^{m} r_{j_{1}}\left(t_{1}\right) x_{1}^{\left(j_{1}\right)}, \ldots, \sum_{j_{r}=1}^{m} r_{j_{r}}\left(t_{r}\right) x_{r}^{\left(j_{r}\right)}, x_{r+1}^{(j)}, \ldots, x_{n}^{(j)}\right)\right\| d \lambda
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sup _{t_{l} \in[0,1], l=1, \ldots, r} \sum_{j=1}^{m} \| A\left(\sum_{j_{1}=1}^{m} r_{j_{1}}\left(t_{1}\right) x_{1}^{\left(j_{1}\right)}, \ldots,\right. \\
& \left.\sum_{j_{r}=1}^{m} r_{j_{r}}\left(t_{r}\right) x_{r}^{\left(j_{r}\right)}, x_{r+1}^{(j)}, \ldots, x_{n}^{(j)}\right) \| \\
& \leq \sup _{t_{l} \in[0,1], l=1, \ldots, r}\left\|A_{z_{1} \ldots z_{r}}\right\|_{\mathrm{as}\left(1 ; q_{1}, \ldots, q_{s}\right)}\left\|\left(x_{r+1}^{(j)}\right)_{j=1}^{m}\right\|_{w, q_{1}} \cdots\left\|\left(x_{n}^{(j)}\right)_{j=1}^{m}\right\|_{w, q_{s}} \\
& \leq \sup _{t_{l} \in[0,1], l=1, \ldots, r} C\|A\|\left\|z_{1}\right\| \cdots\left\|z_{r}\right\|\left\|\left(x_{r+1}^{(j)}\right)_{j=1}^{m}\right\|_{w, q_{1}} \cdots\left\|\left(x_{n}^{(j)}\right)_{j=1}^{m}\right\|_{w, q_{s}} \\
& \leq C\|A\|\left(\prod_{l=1}^{r}\left\|\left(x_{l}^{(j)}\right)_{j=1}^{m}\right\|_{w, 1}\right)\left(\prod_{l=r+1}^{n}\left\|\left(x_{l}^{(j)}\right)_{j=1}^{m}\right\|_{w, q_{l}}\right) .
\end{aligned}
$$

We have the following straightforward consequence, generalizing Theorem 1:
Corollary 1. If

$$
\mathcal{L}\left(X_{1}, \ldots, X_{m} ; Y\right)=\mathcal{L}_{\mathrm{as}\left(1 ; q_{1}, \ldots, q_{m}\right)}\left(X_{1}, \ldots, X_{m} ; Y\right)
$$

then, for any Banach spaces X_{m+1}, \ldots, X_{n}, we have

$$
\mathcal{L}\left(X_{1}, \ldots, X_{n} ; Y\right)=\mathcal{L}_{\mathrm{as}\left(1 ; q_{1}, \ldots, q_{m}, 1, \ldots, 1\right)}\left(X_{1}, \ldots, X_{n} ; Y\right)
$$

The following corollary (whose proof is simple and we omit it) is a consequence of Theorems 2 and 3 .

Corollary 2. If X_{1}, \ldots, X_{s} are \mathcal{L}_{∞}-spaces then, for any Banach spaces X_{s+1}, \ldots, X_{n}, we have

$$
\mathcal{L}\left(X_{1}, \ldots, X_{n}\right)=\mathcal{L}_{\text {as }\left(1 ; q_{1}, \ldots, q_{n}\right)}\left(X_{1}, \ldots, X_{n}\right),
$$

where $q_{1}=\cdots=q_{s}=2$ and $q_{s+1}=\cdots=q_{n}=1$.
It is obvious that Corollary 2 is still true if we replace the scalar field by any finite-dimensional Banach space. A natural question is whether Corollary 2 can be stated for some infinite-dimensional Banach space in place of \mathbb{K}. Precisely, the question is:

- If X_{1}, \ldots, X_{k} are \mathcal{L}_{∞}-spaces, is there some infinite-dimensional Banach space Y such that

$$
\mathcal{L}\left(X_{1}, \ldots, X_{k}, \ldots, X_{n} ; Y\right)=\mathcal{L}_{\text {as }\left(1 ; q_{1}, \ldots, q_{n}\right)}\left(X_{1}, \ldots, X_{k}, \ldots, X_{n} ; Y\right),
$$

where $q_{1}=\cdots=q_{k}=2$ and $q_{k+1}=\cdots=q_{n}=1$, regardless of the chioce of the Banach spaces X_{k+1}, \ldots, X_{n} ?
The answer to this question is no, as shown by the following proposition:
Proposition 1. Suppose that X_{1}, \ldots, X_{k} are \mathcal{L}_{∞}-spaces. If $q_{1}=\cdots=$ $q_{k}=2, q_{k+1}=\cdots=q_{n}=1$ and

$$
\mathcal{L}\left(X_{1}, \ldots, X_{k}, \ldots, X_{n} ; Y\right)=\mathcal{L}_{\mathrm{as}\left(1 ; q_{1}, \ldots, q_{n}\right)}\left(X_{1}, \ldots, X_{k}, \ldots, X_{n} ; Y\right),
$$

regardless of the choice of the Banach spaces X_{k+1}, \ldots, X_{n}, then $\operatorname{dim} Y<\infty$.

Proof. By a standard localization argument, it suffices to prove that if $\operatorname{dim} Y=\infty$, then

$$
\mathcal{L}\left({ }^{n} c_{0} ; Y\right) \neq \mathcal{L}_{\mathrm{as}\left(1 ; q_{1}, \ldots, q_{n}\right)}\left({ }^{n} c_{0} ; Y\right)
$$

where $q_{1}=\ldots=q_{k}=2$ and $q_{k+1}=\cdots=q_{n}=1$. But from [5, Theorem 8] we even have

$$
\mathcal{L}\left({ }^{n} c_{0} ; Y\right) \neq \mathcal{L}_{\mathrm{as}\left(q ; q_{1}, \ldots, q_{n}\right)}\left({ }^{n} c_{0} ; Y\right)
$$

for any $q<2$ and $q_{1}, \ldots, q_{n} \geq 1$.
3. Non-coincidence situations. Assume that X is an infinite-dimensional Banach space and suppose that X has a normalized unconditional Schauder basis $\left(x_{n}\right)$ with coefficient functionals $\left(x_{n}^{*}\right)$. If $\mathcal{P}_{\text {as }(q ; 1)}\left({ }^{m} X ; Y\right)=$ $\mathcal{P}\left({ }^{m} X ; Y\right)$, it is natural to ask:

What is the infimum of the t such that in this situation $\left(x_{n}^{*}(x)\right) \in l_{t}$ for each $x \in X$? This infimum will be denoted by $\mu=\mu(X, Y, q, m)$.

In [5], inspired by an important linear result due to Lindenstrauss and Pełczyński, we have proved:

Theorem 4 (Pellegrino [5, Theorem 5]). Let X and Y be infinite-dimensional Banach spaces. Suppose that X has an unconditional Schauder basis $\left(x_{n}\right)$. If Y finitely factors the formal inclusion $l_{p} \rightarrow l_{\infty}$ and $\mathcal{P}_{\text {as }(q ; 1)}\left({ }^{m} X ; Y\right)$ $=\mathcal{P}\left({ }^{m} X ; Y\right)$ with $1 / m \leq q$, then
(a) $\mu \leq m p q /(p-q)$ if $q<p$,
(b) $\mu \leq m q$ if $q \leq p / 2$.

However, by inspecting the proof of this theorem in [5], one can see that it is by no means necessary to assume that $\operatorname{dim} Y=\infty$. Only in Corollary of [5] (when the Dvoretzky-Rogers Theorem is invoked) is it indeed necessary to assume $\operatorname{dim} Y=\infty$. A slight change in the proof of [5, Theorem 5] yields the following result:

Theorem 5. Let X be an infinite-dimensional Banach space with a normalized unconditional Schauder basis $\left(x_{n}\right)$. If $\mathcal{P}_{\mathrm{as}(q ; 1)}\left({ }^{m} X\right)=\mathcal{P}\left({ }^{m} X\right)$, then
(a) $\mu \leq m q /(1-q)$ if $q<1$,
(b) $\mu \leq m q$ if $q \leq 1 / 2$.

Proof. If $x=\sum_{j=1}^{\infty} a_{j} x_{j}$ and $\left\{\mu_{i}\right\}_{i=1}^{n}$ is such that $\sum_{j=1}^{n}\left|\mu_{j}\right|^{1 / q}=1$, define $P: X \rightarrow \mathbb{K}$ by $P x=\sum_{j=1}^{n}\left|\mu_{j}\right|^{1 / q} a_{j}^{m}$.

Since $\left(x_{n}\right)$ is an unconditional basis, there exists a $\varrho>0$ satisfying

$$
\left\|\sum_{j=1}^{n} \varepsilon_{j} a_{j} x_{j}\right\| \leq \varrho\|x\| \quad \text { for every } n \text { and any } \varepsilon_{j}= \pm 1
$$

Hence

$$
|P x| \leq\left.\left.\sum_{j=1}^{n}| | \mu_{j}\right|^{1 / q} a_{j}^{m}\left|\leq \varrho^{m}\|x\|^{m} \sum_{j=1}^{n}\right| \mu_{j}\right|^{1 / q}
$$

and thus $\|P\| \leq \varrho^{m}$ and $\|P\|_{\text {as }(q ; 1)} \leq C \varrho^{m}$. Therefore

$$
\begin{align*}
\left(\left.\left.\sum_{j=1}^{n}\left|a_{j}^{m}\right| \mu_{j}\right|^{1 / q}\right|^{q}\right)^{1 / q} & \leq\left(\sum_{j=1}^{n}\left|P a_{j} x_{j}\right|^{q}\right)^{1 / q} \tag{3.1}\\
& \leq\|P\|_{\mathrm{as}(q ; 1)} \max _{\varepsilon_{j} \in\{1,-1\}}\left\|\sum_{j=1}^{n} \varepsilon_{j} a_{j} x_{j}\right\|^{m} \\
& \leq\|P\|_{\mathrm{as}(q ; 1)}(\varrho\|x\|)^{m} \leq C \varrho^{2 m}\|x\|^{m}
\end{align*}
$$

Defining $s=1 / q$, we have $\frac{1}{s}+\frac{\frac{1}{s}}{s-1}=1$ and

$$
\begin{equation*}
\left(\sum_{j=1}^{n}\left|a_{j}\right|^{\frac{s}{s-1} m q}\right)^{1 / \frac{s}{s-1}} \leq \sup \left\{\sum_{j=1}^{n}\left|\mu_{j}\right|\left|a_{j}\right|^{m q}: \sum_{j=1}^{n}\left|\mu_{j}\right|^{s}=1\right\} \tag{3.2}
\end{equation*}
$$

Since (3.1) is true whenever $\sum_{j=1}^{n}\left|\mu_{j}\right|^{s}=1$, by (3.1) and (3.2) we obtain

$$
\left(\sum_{j=1}^{n}\left|a_{j}\right|^{\frac{s}{s-1} m q}\right)^{1 / \frac{s}{s-1} m q} \leq\left[C \varrho^{2 m}\|x\|^{m}\right]^{1 / m}
$$

But $\frac{s}{s-1} m q=\frac{m q}{1-q}$ and n is arbitrary, and hence part (a) is proved. Now, if $1 / m \leq q \leq 1 / 2$, define $S: X \rightarrow \mathbb{K}$ by $S x=\sum_{j=1}^{n} a_{j}^{m}$. Since $m \geq \frac{s}{s-1} m q$, we obtain

$$
|S x| \leq \sum_{j=1}^{n}\left|a_{j}^{m}\right| \leq\left[\left(\sum_{j=1}^{n}\left|a_{j}\right|^{\frac{s}{s-1} m q}\right)^{1 / \frac{s}{s-1} m q}\right]^{m} \leq C \varrho^{2 m}\|x\|^{m}
$$

Thus $\|S\| \leq C \varrho^{2 m}$ and $\|S\|_{\text {as }(q ; 1)} \leq C^{2} \varrho^{2 m}$. Therefore

$$
\begin{aligned}
\sum_{j=1}^{n}\left|a_{j}^{m}\right|^{q} & =\sum_{j=1}^{n}\left|S a_{j} x_{j}\right|^{q} \leq\|S\|_{\mathrm{as}(q ; 1)}^{q} \max _{\varepsilon_{j} \in\{1,-1\}}\left\|\sum_{j=1}^{n} \varepsilon_{j} a_{j} x_{j}\right\|^{m q} \\
& \leq\left(C^{2} \varrho^{2 m}\right)^{q}(\varrho\|x\|)^{m q}
\end{aligned}
$$

Consequently, since n is arbitrary, we have $\sum_{j=1}^{\infty}\left|a_{j}\right|^{m q}<\infty$ whenever $x=\sum_{j=1}^{\infty} a_{j} x_{j} \in X$.

Now we list several important consequences of Theorem 5. For example, Corollaries 3 and 4 below give converses for Theorems 1 and 2, respectively. The proofs of Corollaries $3-6$ are simple (using Theorem 5 and standard localization techniques in order to extend the results from c_{0} to \mathcal{L}_{∞}-spaces):

Corollary 3. Let m be a fixed natural number. Then $\mathcal{P}_{\text {as }(q ; 1)}\left({ }^{m} X\right)$ $=\mathcal{P}\left({ }^{m} X\right)$ for every X if and only if $q \geq 1$.

Corollary 4. If $m \geq 2$ and X is an \mathcal{L}_{∞}-space, then $\mathcal{P}_{\text {as }(q ; 2)}\left({ }^{m} X\right)$ $=\mathcal{P}\left({ }^{m} X\right)$ if and only if $q \geq 1$.

Corollary 5. If $m \geq 2$ and X is an \mathcal{L}_{∞}-space, then $\mathcal{P}_{\mathrm{d}, q}\left({ }^{m} X\right) \neq$ $\mathcal{P}\left({ }^{m} X\right)$ for every $q<m$.

In particular, if X is an \mathcal{L}_{∞}-space and $m=2$, then $\mathcal{P}_{\mathrm{d}, 2}\left({ }^{2} X\right)=\mathcal{P}\left({ }^{2} X\right)$ and thus we have:

Corollary 6. If X is an \mathcal{L}_{∞}-space, then $\mathcal{P}_{\mathrm{d}, q}\left({ }^{2} X\right)=\mathcal{P}\left({ }^{2} X\right)$ if and only if $q \geq 2$.

We also have:
Corollary 7. If $q \leq 1 / 2$ and X is an \mathcal{L}_{p}-space $(p \geq 2)$, then $\mathcal{P}_{\mathrm{as}(q ; 1)}\left({ }^{m} X\right)=\mathcal{P}\left({ }^{m} X\right)$ if and only if $p \leq m q$.

Proof. A localization argument allows us to assume that $X=l_{p}$. If $\mathcal{P}_{\mathrm{as}(q ; 1)}\left({ }^{m} X\right)=\mathcal{P}\left({ }^{m} X\right)$, Theorem 5 ensures that $p \leq m q$. On the other hand, if $p \leq m q$ and $P \in \mathcal{P}\left({ }^{m} X\right)$, then

$$
\begin{aligned}
\left(\sum_{j=1}^{k}\left\|P\left(x_{j}\right)\right\|^{q}\right)^{1 / q} & \leq\|P\|\left(\sum_{j=1}^{k}\left\|x_{j}\right\|^{m q}\right)^{1 / q} \\
& \leq\|P\|\left(\sum_{j=1}^{k}\left\|x_{j}\right\|^{p}\right)^{m / p} \leq C_{p}(X)\|P\|\left\|\left(x_{j}\right)_{j=1}^{k}\right\|_{w, 1}^{m}
\end{aligned}
$$

where $C_{p}(X)$ is the cotype constant of l_{p} and the last inequality holds since l_{p} has cotype p (for $p \geq 2$) and thus id : $l_{p} \rightarrow l_{p}$ is absolutely $(p ; 1)$-summing.

All these results can be adapted (including Theorem 5), mutatis mutandis, to the multilinear case. Furthermore, one can extend Corollary 2:

Corollary 8. Let X_{1}, \ldots, X_{s} be \mathcal{L}_{∞}-spaces, $q_{1}=\cdots=q_{s}=2$ and $q_{s+1}=\cdots=q_{n}=1$. Then

$$
\mathcal{L}\left(X_{1}, \ldots, X_{n}\right)=\mathcal{L}_{\mathrm{as}\left(q ; q_{1}, \ldots, q_{n}\right)}\left(X_{1}, \ldots, X_{n}\right)
$$

for any choice of Banach spaces X_{s+1}, \ldots, X_{n}, if and only if $q \geq 1$.
Remark 1. For the bilinear case it is not hard to prove that when X is an \mathcal{L}_{∞}-space, $\mathcal{L}_{\mathrm{d}, q}\left({ }^{2} X\right) \neq \mathcal{L}\left({ }^{2} X\right)$ if $q<2$. However, this result cannot be straightforwardly adapted for polynomials and thus Corollary 6 is in fact non-trivial. Non-coincidence results for absolutely summing multilinear mappings, in general, do not imply non-coincidence results for absolutely summing polynomials.

References

[1] R. Alencar and M. C. Matos, Some classes of multilinear mappings between Banach spaces, Publ. Depto Anál. Mat., Univ. Complut. Madrid, Section 1, 12 (1989).
[2] G. Botelho, Cotype and absolutely summing multilinear mappings and homogeneous polynomials, Proc. Roy. Irish Acad. Sect. A 97 (1997), 145-153.
[3] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in \mathcal{L}_{p} spaces and their applications, Studia Math. 29 (1968), 275-326.
[4] M. C. Matos, Absolutely summing holomorphic mappings, An. Acad. Brasil. Cienc. 68 (1996), 1-13.
[5] D. Pellegrino, Cotype and absolutely summing homogeneous polynomials in \mathcal{L}_{p} spaces, Studia Math. 157 (2003), 121-131.
[6] D. Pérez-García, Operadores multilineales absolutamente sumantes, dissertation, Univ. Complut. Madrid, 2002.

Departamento de Matemática e Estatística
Universidade Federal de Campina Grande
Caixa Postal 10044
Campina Grande, PB, 58109-970, Brazil
E-mail: dmp@dme.ufcg.edu.br

