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Existence of solutions to generalized
von Foerster equations with functional dependence

by Henryk Leszczyński (Gdańsk) and Piotr Zwierkowski (Toruń)

Abstract. We prove the existence of solutions to a differential-functional system
which describes a wide class of multi-component populations dependent on their past
time and state densities and on their total size. Using two different types of the Hale
operator, we incorporate in this model classical von Foerster-type equations as well as
delays (past time dependence) and integrals (e.g. influence of a group of species).

Introduction. The problem considered in this paper originates from
biology, medicine and chemistry. The independent variables xj and unknown
functions ui stand for certain features and densities, respectively. It follows
from this natural interpretation that xj ≥ 0 and ui ≥ 0.

Some existence, uniqueness and qualitative theory for von Foerster type
problems has been established in [4, 5, 7–9]. Other related problems of math-
ematical biology can be found in [1, 15, 17–19, 21, 22]. Some first-order par-
tial differential functional existence and uniqueness results are published in
[13, 14, 16].

We generalize the previous results in the following ways: (i) including
many species and many space variables, (ii) taking into consideration past
densities ui(·) and past total sizes of species

�
ui(·, x) dx, (iii) modifying and

weakening some assumptions.
As in [4, 5], we study only the case of tangent bicharacteristics at the

lateral boundaries, where xj = 0 for some j. Therefore it is convenient to
extend the initial data vi to the zone E0 = [−τ0, 0] × Rn (τ0 ≥ 0) so as to
satisfy the symmetry condition

(SV) vi(t, x) = vi(t, |x|) for (t, x) ∈ E0, |x| := (|x1|, . . . , |xn|) ∈ Rn.
We will look for symmetric, nonnegative solutions ui in the whole zone
E := [0, a] × Rn (a > 0). This simple idea occurs to be very fruitful, since
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a bounded domain (and unbounded domain with no symmetry, e.g. Rn+)
causes superfluous constraints on any functional model. We expect that
these functions shall be continuous in (t, x) and summable in x. The process
is considered as an evolution

t 7→ u(t, ·) ∈ L1(Rn,Rm+ ) ∩ CB(Rn,Rm+ )

(nonnegative, summable and bounded continuous functions).
Let τ = (τ1, . . . , τn) ∈ Rn+, where R+ := [0,∞). Define

B = [−τ0, 0]× [−τ, τ ], where [−τ, τ ] = [−τ1, τ1]× · · · × [−τn, τn].

For each function w defined on [−τ0, a], we have the Hale functional wt
(see [10]), which is the function defined on [−τ0, 0] by

wt(s) = w(t+ s) (s ∈ [−τ0, 0]).

For each function u defined on E0 ∪ E, we similarly introduce a Hale-type
functional u(t,x), defined on B by

u(t,x)(s, y) = u(t+ s, x+ y) for (s, y) ∈ B
(see [13]). Let

Ω0 = E × C([−τ0, a],Rm+ ), Ω = E × C(B,Rm+ )× C([−τ0, a],Rm+ ).

Take v = (v1, . . . , vm) : E0 → Rm+ and

cij : Ω0 → R, λi : Ω → R (i = 1, . . . ,m, j = 1, . . . , n).

We consider the system of differential-functional equations

(1)
∂ui
∂t

+
n∑

j=1

cij(t, x, z[u]t)
∂ui
∂xj

= λi(t, x, u(t,x), z[u]t) (i = 1, . . . ,m),

where

z[u](t) := �
Rn
u(t, y) dy, t ∈ [−τ0, a], u = (u1, . . . , um),(2)

with the initial conditions

u(t, x) = v(t, x), (t, x) ∈ E0, x = (x1, . . . , xn) ∈ Rn.(3)

We are looking for Carathéodory’s solutions to (1)–(3) (see [4, 5]). The func-
tional dependence includes a possible delayed and integral dependence of the
Volterra type. The Hale functional z[u]t takes into consideration the whole
population within the time interval [t − τ0, t], whereas the Hale-type func-
tional u(t,x) shows the dependence on the density u = (u1, . . . , um) locally
in a neighbourhood of (t, x). In particular, our results generalize [4, 5]. Ob-
serve that the functional dependence demands some initial data on a “thick”
initial set E0, which means that a complicated ecological niche must be ob-
served for some time and (perhaps) in some space in order to determine and
predict its further evolution.
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Example 0.1. The functional dependence in (1), represented by the
Hale operators, generalizes von Foerster equations with delays, deviations
and integrals, such as the equation with delays

∂ui
∂t

+
n∑

j=1

cij(t, x, z[u](β(t)))
∂ui
∂xj

= uiλi(t, x, u(α(t, x)), z[u](β(t))) (i = 1, . . . ,m),

where α(t, x) = (α0(t, x), . . . , αn(t, x)), α0(t, x) ≤ t and β(t), β(t) ≤ t; and
the equation with integrals

∂ui
∂t

+
n∑

j=1

cij

(
t, x,

t

�
t−τ0

z[u](s) ds
)∂ui
∂xj

= uiλi

(
t, x, �

[x,x+τ ]

u(t, y) dy,
t

�
t/3

z[u](s) ds
)

(i = 1, . . . ,m),

where cij : E × Rm+ → R and λi : E × Rm+ × Rm+ → R.

The paper is organized as follows:

(i) first, we analyse existence and key properties of bicharacteristics;
(ii) we write a solution of problem (1), (3) along bicharacteristics, for

a given function z, which belongs to a given class under natural
assumptions on the data;

(iii) next, considering solutions along those bicharacteristics, we get an
integral fixed point equation;

(iv) we state the existence of solutions in a closed subset of functions,
generated by a priori estimates.

1. Bicharacteristics. Set ci = (ci1, . . . , cin). First, for a given function
z ∈ C([−τ0, a],Rm+ ), we consider the bicharacteristic equations for prob-
lem (1), (3):

η′i(s) = ci(s, ηi(s), zs), ηi(t) = x (i = 1, . . . ,m).(4)

Denote by

ηi = ηi[z](·; t, x) = (ηi1[z](·; t, x), . . . , ηin[z](·; t, x))

the ith bicharacteristic curve passing through (t, x) ∈ E, i.e., the solution
to problem (4). Next, we consider the equation

d

ds
ui(s, ηi[z](s; t, x)) = λi(s, ηi[z](s; t, x), u(s,ηi[z](s;t,x)), zs)(5)

with the initial condition

ui(0, ηi[z](0; t, x)) = vi(0, ηi[z](0; t, x)).(6)
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A solution of the above equation is a solution of problem (1), (3) for a given
function z ∈ C([−τ0, a],Rm+ ).

Assume that:

(V0) vi ∈ CB(E0,R+) for i = 1, . . . ,m (nonnegative, bounded and conti-
nuous functions).

(V1) z[v] ∈ C([−τ0, 0],Rm+ ), where

zi[v](t) = �
Rn
vi(t, x) dx <∞ (i = 1, . . . ,m).

(C0) cij : Ω0 → R are continuous in (t, x, q) and locally Lipschitz contin-
uous in x.

(C1) tr ∂xci(t, x, q) ≤ b(t) with some b ∈ L1([0, a],R+).
(Λ0) λi : Ω → R are continuous in (t, x, w, q) and locally Lipschitz con-

tinuous in w.
(Λ1) λi(t, x, w, q) = w(0, 0)Λi(t, x, w, q) for (t, x) ∈ E, w ∈ C(B,Rm+ ),

q ∈ C([−τ0, a],Rm+ ).

Remark 1.1. Continuity in t in the above assumptions can be weakend
to local Lebesgue integrability in t, i.e., typical Carathéodory conditions.

(Λ2) There exists LΛ ∈ L1([0, a],R+) such that

Λi(t, x, w, q) ≤ LΛ(t)

for i = 1, . . . ,m and (t, x) ∈ E,w ∈ C(B,Rm+ ), q ∈ C([−τ0, a],Rm+ ).

Define

Wi(t, x, w, q) = Λi(t, x, w, q) + tr ∂xci(t, x, q)(7)

for i = 1, . . . ,m and (t, x) ∈ E, w ∈ C(B,Rm+ ), q ∈ C([−τ0, a],Rm+ ).

(W1) There exists LW ∈ L1([0, a],R+) such that

Wi(t, x, w, q) ≤ LW (t)

for i = 1, . . . ,m and (t, x) ∈ E, w ∈ C(B,Rm+ ), q ∈ C([−τ0, a],Rm+ ).
(W2) The mapping

(t, x, w, q) 7→
t

�
0

Wi(s, x, w, q) ds

transforms bounded subsets of E × C(B,Rm+ )× C([−τ0, a],Rm+ ) to
bounded subsets of R.

(W3) The mapping

(t, x, w, q) 7→
t

�
0

Wi(s, x, w, q) ds

transforms bounded subsets of E × C(B,Rm+ )× C([−τ0, a],Rm+ ) to
sets of uniformly continuous functions with respect to (t, x).
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Remark 1.2. Assumption (W3) is valid if the functional arguments be-
come classical. This assumption is also satisfied if the functions Wi, i =
1, . . . ,m, are uniformly continuous with respect to x,w and q.

Remark 1.3. Note that if for a given function z ∈ C([−τ0, a],Rm+ ), the
right-hand side in (4) satisfies the local Lipschitz condition in x, then there
exists a unique solution to (4). This is also valid for (5) if the function λi is
locally Lipschitz in w (see [3, 11, 12]).

Lemma 1.1. If Assumptions (V0), (V1), (C0), (C1) are satisfied , then

ṽi(t) := �
Rn
vi(0, ηi(0; t, x)) dx ≤ zi[v](0) exp

(t�
0

b(s) ds
)
<∞,

where ηi(s; t, x) = ηi[z](s; t, x).

Proof. Define

Gi(s; t, x) = [∂xlηij [z](s; t, x)]j,l=1,...,n,

Qi(s; t, x) = (s, ηi[z](s; t, x), zs),

Ci(s; t, x) = [∂xlcij(Qi(s; t, x))]l,j=1,...,n.

By the Liouville theorem, it follows from (4) that

detGi(s; t, x) = exp
(
−
t

�
s

trCi(σ; t, x) dσ
)
.

Applying this to the integral ṽi(t) together with (C1), we get

ṽi(t) ≤ �
Rn

(vi(0, ηi(0; t, x))/detGi(0; t, x)) dx ≤ zi[v](0) exp
(t�

0

b(s) ds
)
.

Lemma 1.2. If u is a solution of (5) and Assumptions (V0), (Λ1), (Λ2)
are satisfied , then

0 ≤ ui(t, x) ≤ ‖v(0, ·)‖∞ exp
(t�

0

LΛ(s) ds
)
.

Proof. Due to (Λ1), the solution of problem (5) is given by the formula

ui(t, x) = vi(0, ηi(0)) exp
(t�

0

Λi(s, ηi(s), u(s,ηi(s)), zs) ds
)
,(8)

where ηi(s) = ηi(s; t, x)). Since vi(0, x) ≥ 0, it follows that ui(t, x) ≥ 0 for
i = 1, . . . ,m and (t, x) ∈ E.

2. The fixed point equation. In order to prove the existence for prob-
lem (1)–(3) we apply Schauder’s fixed point theorem. We define a convex,
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closed set and an integral operator for which we show the existence of a
fixed point. This will be preceded by three auxiliary lemmas. Define

Z = {z ∈ C([−τ0, a],Rm+ ) : 0 ≤ z(t) ≤ Z(t) for all t},
where

Z(t) =





max
−τ0≤s≤0

‖v(s, ·)‖L1 for t ∈ [−τ0, 0],

Z(0) exp
(t�

0

LW (s) ds
)

for t ∈ [0, a].

Consider the operator T :Z → Z given by

Ti[z](t) = �
Rn
vi(t, x) dx for t ≤ 0,(9)

Ti[z](t) = �
Rn
ui[z](t, x) dx for t ≥ 0,(10)

where u ∈ C1(B,Rm+ ) is the solution of (5).
By Lemma 1.2 we write (10) as

Ti[z](t) = �
Rn
vi(0, ηi(0)) exp

(t�
0

Λi(s, ηi(s), u(s,ηi(s)), zs) ds
)
dx(11)

for t ≥ 0, where ηi(s) = ηi[z](s; t, x). Notice that the bicharacteristics have
the following group property:

y = ηi[z](0; t, x)⇔ ηi[z](s; t, x) = ηi[z](s; 0, y), i = 1, . . . ,m,

that is, any ith bicharacteristic curve passing through (0, y) and (t, x) has
the same value at all s ∈ [0, a].

The change of variables y = ηi[z](0; t, x) and the Liouville theorem show
that the Jacobian J = det[∂ci/∂x] is given by the formula

J(0; t, x) = exp
(
−
t

�
0

tr ∂xci(s, ηi[z](s; 0, y), zs) ds
)
.

Hence we can write (11) in the form

Ti[z](t) = �
Rn
vi(0, y) exp

(t�
0

Wi(s, ηi(s), u(s,ηi(s)), zs)
)
ds dy,(12)

where ηi(s) = ηi[z](s; 0, y).

Lemma 2.1. If Assumptions (V1), (C1), (Λ1) and (W1) are satisfied ,
then

0 ≤ Ti[z](t) ≤ Z(t) <∞ for i = 1, . . . ,m, t ∈ [0, a].

Proof. This follows directly from (12) and the assumptions.
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Lemma 2.2. If Assumptions (V0), (V1), (C0), (C1), (Λ1), (W1) and
(W2) are satisfied , then the range T (Z) is equicontinuous.

Proof. Let z ∈ Z and 0 ≤ t ≤ t ≤ a. Set ηi(s) = ηi[z](s; 0, y). If we
apply (12), we can write

zi(t)− zi(t) = �
Rn
vi(0, y)

{
exp
(t�

0

Wi(s, ηi(s), u(s,ηi(s)), zs) ds
)

− exp
(t�

0

Wi(s, ηi(s), u(s,ηi(s)), zs) ds
)}

dy

for t, t ∈ [0, a]. From Assumptions (V1) and (W1) we obtain

− �
Rn
vi(0, y) exp

(t�
0

LW (s) ds
)
dy ≤ zi(t)− zi(t)

≤ �
Rn
vi(0, y) exp

(t�
0

LW (s) ds
)
dy.

Using the mean value theorem, we get the equality

exp
(t�

0

Wi(s, ηi(s), u(s,ηi(s)), zs) ds
)
− exp

(t�
0

Wi(s, ηi(s), u(s,ηi(s)), zs) ds
)

=
1

�
0

(
exp
(
ζ

t

�
0

Wi(s, ηi(s), u(s,ηi(s)), zs) ds

+ (1− ζ)
t

�
0

Wi(s, ηi(s), u(s,ηi(s)), zs) ds
))

dζ

×
t

�
t

Wi(s, ηi(s), u(s,ηi(s)), zs) ds.

Taking into consideration the last two relations, we obtain the estimate

|zi(t)− zi(t)| ≤ �
Rn
vi(0, y) dymin

{
exp

t

�
0

LW (s) ds,

exp
(t�

0

LW (s) ds
) t�
t

|Wi(s, ηi(s), u(s,ηi(s)), zs)| ds
}
.

The functions |Wi(t, x, w, q)| are uniformly bounded on the set E×C(B,Rm+ )
×C([−τ0, a],Rm+ ) and depend only on functions in Z. Hence, by Lemma 1.1
and by Lebesgue’s dominated convergence theorem [6], T [Z] is equiconti-
nuous.

Now we prove the continuity of T on Z.
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Lemma 2.3. If Assumptions (V0), (V1), (C0), (C1), (Λ0), (Λ1), (W1)
and (W3) are satisfied , then the operator T is continuous on the set Z.

Proof. Take z, z ∈ Z. We shall show that ‖Tiz − Tiz‖∞ tends to 0 as
‖z − z‖∞ → 0. For each t ∈ [0, a] we have

Ti[z](t)− Ti[z](t)

= �
Rn
vi(0, ηi[z](0; t, x)) exp

(t�
0

Λi(s, ηi[z](s; t, x), u(s,ηi[z](s;t,x)), zs) ds
)
dx

− �
Rn
vi(0, ηi[z](0; t, x)) exp

(t�
0

Λi(s, ηi[z](s; t, x), u(s,ηi[z](s;t,x)), zs) ds
)
dx.

By the change of variables y = ηi[z](0; t, x) and y = ηi[z](0; t, x), respec-
tively, we obtain

Ti[z](t)− Ti[z](t)

= �
Rn
vi(0, y)

[
exp
(t�

0

Wi(s, ηi[z](s; 0, y), u(s,ηi[z](s;0,y)), zs) ds
)

− exp
(t�

0

Wi(s, ηi[z](s; 0, y), u(s,ηi[z](s;0,y)), zs) ds
)]
dy.

As in the proof of Lemma 2.2, we have

|Ti[z](t)− Ti[z](t)| ≤ �
Rn
vi(0, y) exp

(t�
0

LW (s) ds
)
dy.

The mean value theorem yields the estimate

|Ti[z](t)−Ti[z](t)| ≤ �
Rn
vi(0, y) exp

(t�
0

LW (s) ds
)

(13)

×min
{

1,
t

�
0

|Wi(s, ηi[z](s; 0, y), u(s,ηi[z](s;0,y)), zs)

−Wi(s, ηi[z](s; 0, y), u(s,ηi[z](s;0,y)), zs)| ds
}
dy.

By the continuity Assumptions (C0), (Λ0) and Lebesgue’s dominated con-
vergence theorem, the difference

|Wi(t, ηi[z](t; 0, y), u(t,ηi[z](t;0,y)), zt)−Wi(t, ηi[z](t; 0, y), u(t,ηi[z](t;0,y)), zt)|
tends to zero, provided ‖z − z‖∞ → 0 for (t, y) ∈ E. Hence

|Ti[z](t)− Ti[z](t)| → 0 for i = 1, . . . ,m, t ∈ [0, a].

Now we show that the operator (10) has a fixed point.



von Foerster equations 209

Theorem 2.1. If the assumptions of Lemmas 2.1–2.3 are satisfied then
the operator T has a fixed point.

Proof. Notice that the set Z is nonempty, closed, bounded and convex.
Lemmas 2.1 and 2.3 show that T is a continuous operator that maps Z to Z.
By Lemma 2.2 and the Ascoli–Arzelà theorem (see [2]) the range T (Z) is
relatively compact. Hence, by Schauder’s theorem (see [23]), T has a fixed
point.

Remark 2.1. By the properties of the bicharacteristics and from Theo-
rem 2.1, it follows that problem (1)–(3) has at least one solution.

We give two additional assumptions and formulate a uniqueness state-
ment (without proof).

(C2) The functions cij : Ω0 → R are Lipschitz continuous in x, q.
(W4) The functions Wi : Ω → R are Lipschitz continuous in x,w, q.

Remark 2.2. Assumption (W4) is satisfied if the functions Λi are Lip-
schitz continuous in x,w, q and the functions tr ∂xci are Lipschitz continuous
in x, q.

Proposition 2.1. If Assumptions (V0), (V1), (C2), (Λ1), (W1) and
(W4) are satisfied , then problem (1)–(3) admits at most one solution.

From Remark 2.1 and Proposition 2.1 we obtain the following

Corollary 2.1. If Assumptions (V0), (V1), (C0)–(C2), (Λ0)–(Λ2) and
(W1)–(W4) are satisfied , then there exists a unique solution of problem
(1)–(3).
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