# Applications of global bifurcation to existence theorems for Sturm-Liouville problems 

by Jacek Gulgowski (Gdańsk)

Abstract. We prove an existence theorem for Sturm-Liouville problems

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)+\varphi\left(t, u(t), u^{\prime}(t)\right)=0 \quad \text { for a.e. } t \in(a, b),  \tag{*}\\
l(u)=0,
\end{array}\right.
$$

where $\varphi:[a, b] \times \mathbb{R}^{k} \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ is a Carathéodory map.
We assume that $\varphi(t, x, y)=m_{1} \varphi_{0}(t, x, y)+o(|x|+|y|)$ as $|x|+|y| \rightarrow 0$ and $\varphi(t, x, y)=$ $m_{2} \varphi_{0}(t, x, y)+o(|x|+|y|)$ as $|x|+|y| \rightarrow \infty$, where $m_{1}, m_{2}$ are positive constants and $\varphi_{0}$ belongs to a class of nonlinear maps. The proof bases on global bifurcation results. We define a map $f:(0, \infty) \times C^{1}\left([a, b], \mathbb{R}^{k}\right) \rightarrow C^{1}\left([a, b], \mathbb{R}^{k}\right)$ such that if $f(1, u)=0$, then $u$ is a solution of $(*)$. Then we show that there exists a connected set $\mathcal{C}$ of nontrivial zeroes of $f$ such that there exist $\left(\lambda_{1}, u_{1}\right),\left(\lambda_{2}, u_{2}\right) \in \mathcal{C}$ with $\lambda_{1}<1<\lambda_{2}$. In the last section we give examples of maps $\varphi_{0}$ leading to specific existence theorems.

1. Preliminaries. We consider the Banach space $C^{1}\left([a, b], \mathbb{R}^{k}\right)$ with the norm $\|u\|_{k}=\sum_{i=1}^{k}\left(\left\|u_{i}\right\|_{0}+\left\|u_{i}^{\prime}\right\|_{0}\right), u=\left(u_{1}, \ldots, u_{k}\right)$, where $\|\cdot\|_{0}$ is the supremum norm in $C[a, b]$. Moreover, we set $|x|=\sum_{i=1}^{k}\left|x_{i}\right|$ for $x=$ $\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{k}$.

Recall that $\psi:[a, b] \times \mathbb{R}^{k} \times \mathbb{R}^{k} \times(0, \infty) \rightarrow \mathbb{R}^{k}$ is a Carathéodory map if for almost every $t \in[a, b]$ the map $\psi(t, \cdot, \cdot, \cdot): \mathbb{R}^{k} \times \mathbb{R}^{k} \times(0, \infty) \rightarrow \mathbb{R}^{k}$ is continuous; for every $(x, y, \lambda) \in \mathbb{R}^{k} \times \mathbb{R}^{k} \times(0, \infty)$ the map $\psi(\cdot, x, y, \lambda)$ : $[a, b] \rightarrow \mathbb{R}^{k}$ is measurable; and for every $R>0$ there exists $m_{R} \in L^{1}(a, b)$ such that $|\psi(t, x, y, \lambda)| \leq m_{R}(t)$ for $|x|+|y|+|\lambda| \leq R$.

We call a set $A \subset L^{1}\left((a, b), \mathbb{R}^{k}\right)$ integrably bounded if there exists $m_{A} \in$ $L^{1}(a, b)$ such that $|u(t)| \leq m_{A}(t)$ for $u \in A$ and a.e. $t$.

In the next section we deal with the problem of existence of solutions of the boundary value problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)+\psi\left(t, u(t), u^{\prime}(t), \lambda\right)=0 \quad \text { for a.e. } t \in(a, b)  \tag{1.1}\\
l(u)=0
\end{array}\right.
$$

where $\psi:[a, b] \times \mathbb{R}^{k} \times \mathbb{R}^{k} \times(0, \infty) \rightarrow \mathbb{R}^{k}$ is a Carathéodory map and $l: C^{1}\left([a, b], \mathbb{R}^{k}\right) \rightarrow \mathbb{R}^{k} \times \mathbb{R}^{k}$ corresponds to Sturm-Liouville boundary conditions, given by

$$
\begin{equation*}
l\left(u_{1}, \ldots, u_{k}\right)=\left(l_{1}\left(u_{1}\right), \ldots, l_{k}\left(u_{k}\right)\right) \tag{1.2}
\end{equation*}
$$

where

$$
l_{j}\left(u_{j}\right)=\left(u_{j}(a) \sin \alpha_{j}-u_{j}^{\prime}(a) \cos \alpha_{j}, u_{j}(b) \sin \beta_{j}+u_{j}^{\prime}(b) \cos \beta_{j}\right)
$$

and $\alpha_{j}, \beta_{j} \in[0, \pi / 2], \alpha_{j}^{2}+\beta_{j}^{2}>0(j=1, \ldots, k)$.
Let us recall some properties of the problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)+h(t)=0 \quad \text { for a.e. } t \in[a, b]  \tag{1.3}\\
l(u)=0
\end{array}\right.
$$

where $h \in L^{1}\left((a, b), \mathbb{R}^{k}\right)$.
We call $u \in C^{1}\left([a, b], \mathbb{R}^{k}\right)$ a solution of (1.3) if $u^{\prime}:[a, b] \rightarrow \mathbb{R}^{k}$ is absolutely continuous and satisfies (1.3). It is known (cf. $[\mathrm{H}]$ ) that there exists a continuous linear map $T: L^{1}\left((a, b), \mathbb{R}^{k}\right) \rightarrow C^{1}\left([a, b], \mathbb{R}^{k}\right)$ such that $T h=u$ iff $u$ is a solution of (1.3). Let us now recall some properties of the map $T$.
(cf. $[\mathrm{H}])$ If $u \in C^{1}\left([a, b], \mathbb{R}^{k}\right)$ and $h \in L^{1}\left((a, b), \mathbb{R}^{k}\right)$, then $\langle u, T h\rangle_{k}=$ $\langle T u, h\rangle_{k}$, where $\langle w, v\rangle_{k}=\int_{a}^{b} \sum_{i=1}^{k} w_{i}(t) v_{i}(t) d t$.
(cf. [P]) If $A \subset L^{1}\left((a, b), \mathbb{R}^{k}\right)$ is integrably bounded, then $T(A) \subset$ $C^{1}\left([a, b], \mathbb{R}^{k}\right)$ is relatively compact.
Moreover, if $\Psi:(0, \infty) \times C^{1}\left([a, b], \mathbb{R}^{k}\right) \rightarrow L^{1}\left((a, b), \mathbb{R}^{k}\right)$ is the Nemytskiŭ map associated with the Carathéodory map $\psi:[a, b] \times \mathbb{R}^{k} \times \mathbb{R}^{k} \times(0, \infty) \rightarrow \mathbb{R}^{k}$, given by $\Psi(\lambda, u)(t)=\psi\left(t, u(t), u^{\prime}(t), \lambda\right)$, then the map $T \circ \Psi:(0, \infty) \times$ $C^{1}\left([a, b], \mathbb{R}^{k}\right) \rightarrow C^{1}\left([a, b], \mathbb{R}^{k}\right)$ is completely continuous.

Let $f:(0, \infty) \times C^{1}\left([a, b], \mathbb{R}^{k}\right) \rightarrow C^{1}\left([a, b], \mathbb{R}^{k}\right)$ be given by $f(\lambda, u)=u-$ $T \Psi(\lambda, u)$. Assume that $\psi(\cdot, 0,0, \cdot)=0$. Then $f(\lambda, 0)=0$ for any $\lambda \in(0, \infty)$. Let $\mathcal{R}_{f}$ denote the closure of the set of nontrivial zeroes of $f$, i.e.

$$
\mathcal{R}_{f}=\overline{\left\{(\lambda, u) \in(0, \infty) \times C^{1}\left([a, b], \mathbb{R}^{k}\right) \mid f(\lambda, u)=0, u \neq 0\right\}}
$$

We will use the global bifurcation theorem 1 given below. We recall that $\left(\lambda_{0}, 0\right) \in(0, \infty) \times C^{1}\left([a, b], \mathbb{R}^{k}\right)$ is a bifurcation point of $f:(0, \infty) \times$ $C^{1}\left([a, b], \mathbb{R}^{k}\right) \rightarrow C^{1}\left([a, b], \mathbb{R}^{k}\right)$ if for any open set $U \subset(0, \infty) \times C^{1}\left([a, b], \mathbb{R}^{k}\right)$ such that $\left(\lambda_{0}, 0\right) \in U$, there exists $(\lambda, u) \in U$ with $u \neq 0$ and $f(\lambda, u)=0$. The set of all bifurcation points of $f$ will be denoted by $\mathcal{B}_{f}$.

If $[a, b] \subset(0, \infty)$ and $\mathcal{B}_{f} \subset[a, b] \times\{0\}$, then we may define the bifurcation index of $f$ in the interval $[a, b]$ as

$$
s[f, a, b]=\lim _{\lambda \rightarrow b^{+}} d_{f}(\lambda)-\lim _{\lambda \rightarrow a^{-}} d_{f}(\lambda)
$$

where $d_{f}(\lambda)=\operatorname{deg}(f(\lambda, \cdot), B(0, r), 0)$ for $(\lambda, 0) \notin \mathcal{B}_{f}$ and $r>0$ small enough.

The theorem given below is a direct consequence of the theorem given in [LS] (see also [CH]).

Theorem 1. Let $F:(0, \infty) \times C^{1}\left([a, b], \mathbb{R}^{k}\right) \rightarrow C^{1}\left([a, b], \mathbb{R}^{k}\right)$ be a completely continuous map such that $F(\cdot, 0)=0$, and let $f:(0, \infty) \times C^{1}\left([a, b], \mathbb{R}^{k}\right)$ $\rightarrow C^{1}\left([a, b], \mathbb{R}^{k}\right)$ be given by $f(\lambda, u)=u-F(\lambda, u)$. If $[a, b] \subset(0, \infty)$, $\mathcal{B}_{f} \subset[a, b] \times\{0\}$ and $s[f, a, b] \neq 0$, then there exists a noncompact component $\mathcal{C} \subset \mathcal{R}_{f} \cup([a, b] \times\{0\})$ such that $\mathcal{C} \cap \mathcal{B}_{f} \neq \emptyset$.
2. Existence theorem. In this section we will be assuming that $\varphi_{0}$ : $[a, b] \times \mathbb{R}^{k} \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}, \varphi_{0}=\left(\varphi_{0,1}, \ldots, \varphi_{0, k}\right)$, is a Carathéodory map, satisfying the following conditions (A1)-(A3):
(A1) $\quad \varphi_{0}(t, m x, m y)=m \varphi_{0}(t, x, y)$ for all $(x, y) \in \mathbb{R}^{2 k}, m \geq 0$ and almost every $t \in[a, b]$.
(A2) The set $\Lambda$ of $\lambda \in(0, \infty)$ for which there exists $u \in C^{1}\left([a, b], \mathbb{R}^{k}\right)$, $u \neq 0$, such that $(\lambda, u)$ is a solution of

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)+\lambda \varphi_{0}\left(t, u(t), u^{\prime}(t)\right)=0  \tag{2.1}\\
l(u)=0
\end{array}\right.
$$

is nonempty and bounded.
(A3) There exist a positive constant $\alpha>0$ and a nonzero solution $\left(\mu_{0}, u_{0}\right)$ $\in(0, \infty) \times C^{1}\left([a, b], \mathbb{R}^{k}\right), u_{0}=\left(u_{0,1}, \ldots, u_{0, k}\right)$, of (2.1) such that

$$
\sum_{i=1}^{k} \varphi_{0, i}(t, x, y) u_{0, i}(t) \geq \alpha \sum_{i=1}^{k}\left|x_{i}\right|\left|u_{0, i}(t)\right|
$$

for all $(x, y) \in \mathbb{R}^{2 k}$ and almost every $t \in[a, b]$.
Observe that $0 \notin \bar{\Lambda}$ because of the boundary conditions. Moreover, there exists $r>0$ such that $\Lambda \subset(r, \infty)$. To prove this assume, contrary to our claim, that there exists a sequence $\left\{\left(\lambda_{n}, u_{n}\right)\right\} \subset(0, \infty) \times C^{1}\left([a, b], \mathbb{R}^{k}\right)$ of solutions of $(2.1)$ such that $\lambda_{n} \rightarrow 0$ and $\left\|u_{n}\right\|_{k}=1$. Then the sequence $T \Phi_{0}\left(u_{n}\right)$ contains a convergent subsequence and the corresponding subsequence of $\left\{u_{n}\right\}=\left\{\lambda_{n} T \Phi_{0}\left(u_{n}\right)\right\}$ converges to 0 , which contradicts our assumption. A similar reasoning shows that $\Lambda$ is a closed subset of $\mathbb{R}$.

Theorem 2. Assume $0<m_{1}<\min \Lambda \leq \max \Lambda<m_{2}$ and Carathéodory map $\varphi_{0}:[a, b] \times \mathbb{R}^{k} \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ satisfies (A1)-(A3). Assume moreover that $\varphi:[a, b] \times \mathbb{R}^{k} \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ is a Carathéodory map satisfying

$$
\begin{align*}
& \forall_{\varepsilon>0} \exists_{\delta>0} \forall_{(x, y) \in \mathbb{R}^{2 k}} \forall_{t \in[a, b]}  \tag{2.2}\\
& \quad|x|+|y| \leq \delta \Rightarrow\left|\varphi(t, x, y)-m_{i} \varphi_{0}(t, x, y)\right| \leq \varepsilon(|x|+|y|), \\
& \forall_{\varepsilon>0} \quad \exists_{R>0} \forall_{(x, y) \in \mathbb{R}^{2 k}} \forall_{t \in[a, b]}  \tag{2.3}\\
& \quad|x|+|y| \geq R \Rightarrow\left|\varphi(t, x, y)-m_{j} \varphi_{0}(t, x, y)\right| \leq \varepsilon(|x|+|y|)
\end{align*}
$$

where $(i, j)=(1,2)$ or $(2,1)$. Then there exists a nonzero solution of the boundary value problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)+\varphi\left(t, u(t), u^{\prime}(t)\right)=0 \quad \text { for a.e. } t \in(a, b)  \tag{2.4}\\
l(u)=0
\end{array}\right.
$$

where $l: C^{1}\left([a, b], \mathbb{R}^{k}\right) \rightarrow \mathbb{R}^{2 k}$ is given by (1.2).
Proof. Without loss of generality we may assume that the constant $\alpha$ in (A3) satisfies $\alpha \in(0,1)$. Fix $\nu>\max \Lambda / m_{1} \alpha$. Let $q_{1}, q_{2}:(0, \infty) \rightarrow[0, \infty)$ be a partition of unity associated with the covering $U_{1}=(0,2 \nu), U_{2}=(\nu, \infty)$ of $(0, \infty)$. Let $\psi:[a, b] \times \mathbb{R}^{k} \times \mathbb{R}^{k} \times(0, \infty) \rightarrow \mathbb{R}^{k}$ be the Carathéodory map given by

$$
\psi(t, x, y, \lambda)=\lambda q_{1}(\lambda) \varphi(t, x, y)+\lambda q_{2}(\lambda) m_{j} \varphi_{0}(t, x, y)
$$

Let $\Psi:(0, \infty) \times C^{1}\left([a, b], \mathbb{R}^{k}\right) \rightarrow L^{1}\left((a, b), \mathbb{R}^{k}\right)$ be the Nemytskiĭ map associated with $\psi$. Define $f:(0, \infty) \times C^{1}\left([a, b], \mathbb{R}^{k}\right) \rightarrow C^{1}\left([a, b], \mathbb{R}^{k}\right)$ by $f(\lambda, u)=u-T \Psi(\lambda, u)$. We can see that if $f(1, u)=0$, then $u$ is a solution of (2.4).

First we prove that $\mathcal{B}_{f} \subset\left\{\lambda / m_{i} \mid \lambda \in \Lambda\right\}$. To show this take a sequence $\left\{\left(\lambda_{n}, u_{n}\right)\right\} \subset(0, \infty) \times C^{1}\left([a, b], \mathbb{R}^{k}\right)$ such that $\lambda_{n} \rightarrow \lambda_{0} \in[0, \infty), u_{n} \neq 0$ and $u_{n} \rightarrow 0$. Set $v_{n}=u_{n} /\left\|u_{n}\right\|_{k}$. Then

$$
v_{n}=\lambda_{n} q_{1}\left(\lambda_{n}\right) T \frac{\Phi\left(u_{n}\right)-m_{i} \Phi_{0}\left(u_{n}\right)}{\left\|u_{n}\right\|_{k}}+\lambda_{n}\left(m_{i} q_{1}\left(\lambda_{n}\right)+m_{j} q_{2}\left(\lambda_{n}\right)\right) T \Phi_{0}\left(v_{n}\right)
$$

By (2.2) the first term on the right hand side converges to 0 . Since $\left\{\Phi_{0}\left(v_{n}\right)\right\}$ is integrably bounded, $\left\{T \Phi_{0}\left(v_{n}\right)\right\}$ contains a convergent subsequence. So the corresponding subsequence of $\left\{v_{n}\right\}$ converges to some $v_{0} \in C^{1}\left([a, b], \mathbb{R}^{k}\right)$. Then $v_{0}=\lambda_{0}\left(m_{i} q_{1}\left(\lambda_{0}\right)+m_{j} q_{2}\left(\lambda_{0}\right)\right) T \Phi_{0}\left(v_{0}\right)$.

Therefore $\lambda_{0}\left(m_{i} q_{1}\left(\lambda_{0}\right)+m_{j} q_{2}\left(\lambda_{0}\right)\right) \in \Lambda$. Because $m_{i} q_{1}\left(\lambda_{0}\right)+m_{j} q_{2}\left(\lambda_{0}\right)$ $\in\left[m_{1}, m_{2}\right]$, we must have $\lambda_{0} \leq \max \Lambda / m_{1}<\nu$, and $q_{2}\left(\lambda_{0}\right)=0$. Hence $m_{i} \lambda_{0} \in \Lambda$, and $\mathcal{B}_{f} \subset\left\{\lambda / m_{i} \mid \lambda \in \Lambda\right\}$.

Now we show that $s\left[f, \min \Lambda / m_{i}, \max \Lambda / m_{i}\right]=-1$. First observe that by (2.2) and the homotopy property of the topological degree, $s\left[f, \min \Lambda / m_{i}\right.$, $\left.\max \Lambda / m_{i}\right]=s\left[f_{0}, \min \Lambda / m_{i}, \max \Lambda / m_{i}\right]$, where $f_{0}:(0, \infty) \times C^{1}\left([a, b], \mathbb{R}^{k}\right)$ $\rightarrow C^{1}\left([a, b], \mathbb{R}^{k}\right)$ is given by

$$
f_{0}(\lambda, u)=u-\lambda\left(m_{i} q_{1}(\lambda)+m_{j} q_{2}(\lambda)\right) T \Phi_{0}(u)
$$

Let $\lambda \in\left(0, \min \Lambda / m_{i}\right) \cup\left(\max \Lambda / m_{i}, \infty\right)$ and $r \geq 0$. The map $f_{0}(\lambda, \cdot):$ $\overline{B(0, r)} \rightarrow C^{1}\left([a, b], \mathbb{R}^{k}\right)$ is homotopic to $f_{1}(\lambda, \cdot): \overline{B(0, r)} \rightarrow C^{1}\left([a, b], \mathbb{R}^{k}\right)$ given by $f_{1}(\lambda, u)=u-\lambda m_{i} T \Phi_{0}(u)$. Indeed, for $\lambda \leq \nu$ the maps are just equal. Let now $\lambda \geq \nu$. Then the required homotopy $h:[0,1] \times \overline{B(0, r)} \rightarrow$ $C^{1}\left([a, b], \mathbb{R}^{k}\right)$ is given by

$$
h(t, u)=u-\lambda\left(t\left(m_{i} q_{1}(\lambda)+m_{j} q_{2}(\lambda)\right)+(1-t) m_{i}\right) T \Phi_{0}(u)
$$

Observe that for $h(t, u)=0$ and $u \neq 0$,

$$
\lambda\left(t\left(m_{i} q_{1}(\lambda)+m_{j} q_{2}(\lambda)\right)+(1-t) m_{i}\right) \in \Lambda
$$

Because $m_{i} q_{1}(\lambda)+m_{j} q_{2}(\lambda) \geq m_{1}$, we must have

$$
\max \Lambda \geq \lambda\left(t m_{1}+(1-t) m_{1}\right)=\lambda m_{1}
$$

which contradicts $\lambda \geq \nu$. So we conclude that

$$
s\left[f_{0}, \min \Lambda / m_{i}, \max \Lambda / m_{i}\right]=s\left[f_{1}, \min \Lambda / m_{i}, \max \Lambda / m_{i}\right]
$$

Now fix $\lambda \in\left(0, \min \Lambda / m_{i}\right)$. Because for $t \in[0,1]$ the maps $f_{1}(t \lambda, \cdot)$ : $\overline{B(0, r)} \rightarrow C^{1}\left([a, b], \mathbb{R}^{k}\right)$ do not have nontrivial zeroes, $f_{1}(\lambda, \cdot)$ is homotopic to the identity map, so $\operatorname{deg}(f(\lambda, \cdot), B(0, r), 0)=1$.

Assume now that $\lambda>\max \Lambda / m_{i}$. As above, $f\left(\lambda_{1}, \cdot\right) \sim f\left(\lambda_{2}, \cdot\right)$ for all $\lambda_{1}, \lambda_{2} \in\left(\max \Lambda / m_{i}, \infty\right)$, so we may assume that $\lambda>\max \Lambda / \alpha m_{i}$. Now the map $f_{1}(\lambda, \cdot)$ may be joined by a homotopy to $f_{2}: \overline{B(0, r)} \rightarrow$ $C^{1}\left([a, b], \mathbb{R}^{k}\right)$ given by $f_{2}(u)=u-\lambda m_{i} T \Phi_{0}(u)-u_{0}$, where $u_{0}$ is given in (A3); the homotopy $h_{2}:[0,1] \times \overline{B(0, r)} \rightarrow C^{1}\left([a, b], \mathbb{R}^{k}\right)$ is given by $h_{2}(t, u)=u-\lambda m_{i} T \Phi_{0}(u)-t u_{0}$.

We now show that $h_{2}(t, u) \neq 0$ for $t \in(0,1]$ and $u \in \overline{B(0, r)}$. Assume, contrary to our claim, that $h_{2}(t, u)=0$. Then

$$
\begin{gathered}
u-\lambda m_{i} T \Phi_{0}(u)=t u_{0} \\
\left\langle u, u_{0}\right\rangle_{k}-\lambda m_{i}\left\langle T \Phi_{0}(u), u_{0}\right\rangle_{k}=t\left\langle u_{0}, u_{0}\right\rangle_{k}
\end{gathered}
$$

So

$$
\begin{aligned}
0 & <\left\langle u, u_{0}\right\rangle_{k}-\lambda m_{i}\left\langle T \Phi_{0}(u), u_{0}\right\rangle_{k}=\left\langle u, u_{0}\right\rangle_{k}-\frac{\lambda m_{i}}{\mu_{0}}\left\langle\Phi_{0}(u), u_{0}\right\rangle_{k} \\
& \leq \int_{a}^{b} \sum_{i=1}^{k}\left|u_{i}(t)\right|\left|u_{0, i}(t)\right| d t-\frac{\lambda m_{i}}{\mu_{0}} \int_{a}^{b} \sum_{i=1}^{k} \varphi_{0, i}\left(t, u(t), u^{\prime}(t)\right) u_{0, i}(t) d t \\
& \leq \int_{a}^{b} \sum_{i=1}^{k}\left|u_{i}(t)\right|\left|u_{0, i}(t)\right| d t-\frac{\alpha \lambda m_{i}}{\mu_{0}} \int_{a}^{b} \sum_{i=1}^{k}\left|u_{i}(t)\right|\left|u_{0, i}(t)\right| d t \\
& =\left(1-\frac{\alpha \lambda m_{i}}{\mu_{0}}\right) \int_{a}^{b} \sum_{i=1}^{k}\left|u_{i}(t)\right|\left|u_{0, i}(t)\right| d t
\end{aligned}
$$

Hence $\lambda<\max \Lambda / \alpha m_{i}$, a contradiction. So $f_{1}(\lambda, \cdot) \sim f_{2}$ and $f_{2}(u) \neq 0$ for $u \in \overline{B(0, r)}$. Hence $\operatorname{deg}\left(f_{2}, B(0, r), 0\right)=0$ and $s\left[f, \min \Lambda / m_{i}, \max \Lambda / m_{i}\right]$ $=-1$.

By Theorem 1 there exists a noncompact component

$$
\mathcal{C} \subset \mathcal{R}_{f} \cup\left(\left[\frac{\min \Lambda}{m_{i}}, \frac{\max \Lambda}{m_{i}}\right] \times\{0\}\right)
$$

containing $\left[\min \Lambda / m_{i}, \max \Lambda / m_{i}\right] \times\{0\}$. Now we show that there exists a sequence $\left\{\left(\lambda_{n}, u_{n}\right)\right\} \subset \mathcal{C}$ such that $\left\|u_{n}\right\|_{k} \rightarrow \infty$. Assume, contrary to our claim, that $\left\{u_{n}\right\}$ is bounded. Then, because $\mathcal{C}$ is not compact, either $\lambda_{n} \rightarrow 0$ or $\lambda_{n} \rightarrow \infty$.

First consider the case of $\lambda_{n} \rightarrow 0$. Since $\left\{u_{n}\right\}$ is bounded, $\left\{T \Psi\left(\lambda_{n}, u_{n}\right)\right\}$ has a convergent subsequence. Because $u_{n}=\lambda_{n} T \Phi\left(u_{n}\right)$ for large $n \in \mathbb{N}$, the corresponding subsequence of $\left\{u_{n}\right\}$ converges to 0 . But this contradicts our earlier observation that for $u_{n} \rightarrow 0$, the sequence $\left\{\lambda_{n}\right\}$ cannot converge to 0 .

Now let $\lambda_{n} \rightarrow \infty$. We may assume that $\Psi\left(\lambda_{n}, u_{n}\right)=\lambda_{n} m_{j} T \Phi_{0}\left(u_{n}\right)$, so $u_{n}=\lambda_{n} m_{j} T \Phi_{0}\left(u_{n}\right)$. By (A2), $\lambda_{n} \in\left\{\lambda / m_{j} \mid \lambda \in \Lambda\right\}$, which contradicts $\lambda_{n} \rightarrow \infty$.

So there exists a sequence $\left\{\left(\lambda_{n}, u_{n}\right)\right\} \subset \mathcal{C}$ such that $\left\|u_{n}\right\|_{k} \rightarrow \infty$. We now show that $\lambda_{n} \rightarrow \lambda_{0} \in\left\{\lambda / m_{j} \mid \lambda \in \Lambda\right\}$. Assume that $\lambda_{n} \rightarrow \lambda_{0} \in[0, \infty)$. Then

$$
\begin{gathered}
u_{n}=T \Psi\left(\lambda_{n}, u_{n}\right), \\
u_{n}=\lambda_{n} q_{1}\left(\lambda_{n}\right) T\left(\Phi\left(u_{n}\right)-m_{j} \Phi_{0}\left(u_{n}\right)\right)+\lambda_{n}\left(q_{1}\left(\lambda_{n}\right)+q_{2}\left(\lambda_{n}\right)\right) m_{j} T \Phi_{0}\left(u_{n}\right),
\end{gathered}
$$

and if we set $v_{n}=u_{n} /\left\|u_{n}\right\|_{k}$, then

$$
v_{n}=\lambda_{n} q_{1}\left(\lambda_{n}\right) T \frac{\Phi\left(u_{n}\right)-m_{j} \Phi_{0}\left(u_{n}\right)}{\left\|u_{n}\right\|_{k}}+\lambda_{n} m_{j} T \Phi_{0}\left(v_{n}\right) .
$$

Observe that the set $\left\{\Phi\left(u_{n}\right)-m_{j} \Phi_{0}\left(u_{n}\right)\right\}$ is integrably bounded. Hence $\frac{1}{\left\|u_{n}\right\|_{k}} T\left(\Phi\left(u_{n}\right)-m_{j} \Phi_{0}\left(u_{n}\right)\right) \rightarrow 0$ in $C^{1}\left([a, b], \mathbb{R}^{k}\right)$. Because $\left\{\Phi_{0}\left(v_{n}\right)\right\}$ is integrably bounded as well, $\left\{T \Phi_{0}\left(v_{n}\right)\right\}$ has a convergent subsequence. So we may assume that $v_{n} \rightarrow v_{0}$ and then

$$
v_{0}=\lambda_{0} m_{j} T \Phi_{0}\left(v_{0}\right)
$$

for $v_{0} \neq 0$. This implies $\lambda_{0} \in\left\{\lambda / m_{j} \mid \lambda \in \Lambda\right\}$.
Because $\left\{\lambda / m_{1} \mid \lambda \in \Lambda\right\} \subset(1, \infty)$ and $\left\{\lambda / m_{2} \mid \lambda \in \Lambda\right\} \subset(0,1)$, there must exist pairs $\left(\lambda_{1}, u_{1}\right),\left(\lambda_{2}, u_{2}\right) \in \mathcal{C}$ such that $\lambda_{1}<1<\lambda_{2}$. From the connectedness of $\mathcal{C}$ we conclude that there exists $(1, u) \in \mathcal{C}$. Because $1<\nu$, the function $u$ is a solution of (2.4).
3. Examples. In this section we give examples of Carathéodory maps $\varphi_{0}:[a, b] \times \mathbb{R}^{k} \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ satisfying (A1)-(A3), so leading to different versions of Theorem 2. First, we recall the basic spectral properties of the scalar linear Sturm-Liouville problem (cf. [H])

$$
\left\{\begin{array}{l}
v^{\prime \prime}(t)+\lambda v(t)=0 \quad \text { for } t \in[a, b],  \tag{3.1}\\
l_{s}(v)=0,
\end{array}\right.
$$

where $v \in C^{1}[a, b], \lambda \in \mathbb{R}$ and $l_{s}: C^{1}[a, b] \rightarrow \mathbb{R}^{1} \times \mathbb{R}^{1}$ is given by (cf. (1.2))

$$
l_{s}(v)=\left(v(a) \sin \alpha_{s}-v^{\prime}(a) \cos \alpha_{s}, v(b) \sin \beta_{s}+v^{\prime}(b) \cos \beta_{s}\right) .
$$

Problem (3.1) has a minimal eigenvalue $\mu_{s} \in \mathbb{R}$. Let $v_{0}$ denote an eigenvector associated with $\mu_{s}$. Then $\mu_{s} \in(0, \infty)$ and $v_{0}$ does not change sign in $(a, b)$. Additionally $\left|v_{0}\right|$ is the only nonzero and nonnegative solution of (3.1).

Let $\varphi_{0}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ be given by $\varphi_{0}\left(x_{1}, \ldots, x_{k}\right)=\left(\xi_{1}\left|x_{1}\right|, \ldots, \xi_{k}\left|x_{k}\right|\right)$, where $\xi_{1}, \ldots, \xi_{k} \in[0, \infty)$ for $\xi_{1}^{2}+\cdots+\xi_{k}^{2}>0$, and let $\Lambda=\left\{\mu_{s} / \xi_{s} \mid \xi_{s}>0, s=\right.$ $1, \ldots, k\}$.

Theorem 3. Let $\varphi_{0}$ be as above. Assume moreover $0<m_{1}<\min \Lambda \leq$ $\max \Lambda<m_{2}$ and the Carathéodory map $\varphi:[a, b] \times \mathbb{R}^{k} \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ satisfies

$$
\begin{aligned}
& \forall_{\varepsilon>0} \exists_{\delta>0} \forall_{(x, y) \in \mathbb{R}^{2 k}} \forall_{t \in[a, b]} \\
& \quad|x|+|y| \leq \delta \Rightarrow\left|\varphi(t, x, y)-m_{i} \varphi_{0}(t, x, y)\right| \leq \varepsilon(|x|+|y|), \\
& \forall_{\varepsilon>0} \exists_{R>0} \forall_{(x, y) \in \mathbb{R}^{2 k}} \forall_{t \in[a, b]} \\
& \quad|x|+|y| \geq R \Rightarrow\left|\varphi(t, x, y)-m_{j} \varphi_{0}(t, x, y)\right| \leq \varepsilon(|x|+|y|),
\end{aligned}
$$

where $(i, j)=(1,2)$ or $(2,1)$. Then there exists a nonzero solution of

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)+\varphi\left(t, u(t), u^{\prime}(t)\right)=0 \quad \text { for a.e. } t \in(a, b), \\
l(u)=0,
\end{array}\right.
$$

where $l: C^{1}\left([a, b], \mathbb{R}^{k}\right) \rightarrow \mathbb{R}^{k} \times \mathbb{R}^{k}$ is given by (1.2).
Proof. By Theorem 2 it is enough to check that $\varphi_{0}$ satisfies (A1)-(A3). Condition (A1) is obvious.

We show that if $(\lambda, u)$ is a solution of (1.2) such that $u \neq 0$, then $\lambda \in \Lambda$. If $u \neq 0$ then there exists $s \in\{1, \ldots, k\}$ such that $u_{s} \neq 0$ and

$$
\left\{\begin{array}{l}
u_{s}^{\prime \prime}(t)+\lambda \xi_{s}\left|u_{s}(t)\right|=0 \quad \text { for a.e. } t \in(a, b), \\
l_{s}\left(u_{s}\right)=0
\end{array}\right.
$$

From the maximum principle (cf. [PW]) we conclude that $u_{s} \geq 0$, so $\lambda \xi_{s}=\mu_{s}$. This implies $\xi_{s} \neq 0$ and $\lambda \in \Lambda$.

Because the set $\Lambda$ is finite and nonempty, condition (A2) is satisfied as well.

Let $s \in\{1, \ldots, k\}$ be such that $\xi_{s}>0$ and $\left(\mu_{s}, v_{0}\right)$ is a solution of (3.1) such that $v_{0}(t)>0$ for $t \in(a, b)$. Let $u_{0}=\left(0, \ldots, v_{0}, \ldots, 0\right)$, where the $s$ th coordinate is the only nonzero one. Observe that

$$
\sum_{l=1}^{k} \varphi_{0, l}(t, x) u_{0, l}(t)=\xi_{s}\left|x_{s}\right| v_{0}(t)=\xi_{s} \sum_{l=1}^{k}\left|x_{l}\right|\left|u_{0, l}(t)\right| .
$$

Hence condition (A3) is satisfied as well.
Now consider the scalar $(k=1)$ Picard problem. Fix $m \in \mathbb{N}$ and let $\varphi_{m}:[0, \pi] \times \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$ be given by

$$
\varphi_{m}(t, x)= \begin{cases}|x| & \text { if } \sin (m t) \geq 0  \tag{3.2}\\ -|x| & \text { if } \sin (m t)<0\end{cases}
$$

Lemma 1. There exists a constant $r>0$ such that if $(\lambda, u) \in(0, \infty) \times$ $C^{1}[a, b]$ is a solution of

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)+\lambda \varphi_{m}(t, u(t))=0 \quad \text { for a.e. } t \in[0, \pi]  \tag{3.3}\\
u(0)=u(\pi)=0
\end{array}\right.
$$

such that $u \neq 0$, then $\lambda \in\left[r, m^{2}\right]$.
Proof. First observe that for $\lambda=0$ problem (3.3) has no solution $u \neq 0$. Also, there is no sequence $\left\{\left(\lambda_{u}, u_{n}\right)\right\} \subset(0, \infty) \times C^{1}\left([a, b], \mathbb{R}^{k}\right)$ such that $\lambda_{n} \rightarrow 0$ and $u_{n} \neq 0$ (see the remark after (A3)).

From steps (A)-(D) of Lemma 3.1 of [G] we conclude that all zeroes of $u$ are isolated (in the set of zeroes of $u$ ), and at each of them $u$ changes sign. Assume now, contrary to our claim, that $\lambda>m^{2}$. By (A) of the above mentioned Lemma 3.1 of [G] we can see that if $u(t) \sin m t<0$, then

$$
\begin{equation*}
u(t)=A e^{\sqrt{\lambda} t}+B e^{-\sqrt{\lambda} t} \tag{E}
\end{equation*}
$$

and if $u(t) \sin m t>0$, then

$$
\begin{equation*}
u(t)=A \sin (\sqrt{\lambda} t)+B \cos (\sqrt{\lambda} t) \tag{T}
\end{equation*}
$$

for some constants $A, B \in \mathbb{R}$. We see that if $\lambda>m^{2}$, then half the period of $(\mathcal{T})$ is less than $\pi / m$. So if there exists $t_{0} \in(l \pi / m,(l+1) \pi / m)$ such that $u\left(t_{0}\right) \sin m t_{0}>0$, then the interval $(l \pi / m,(l+1) \pi / m)$ contains a zero of $u$. Thus for any $l \in\{1, \ldots, m\}$ there exists a left hand neighbourhood of $l \pi / m$ such that $u$ restricted to this neighbourhood is given by $(\mathcal{E})$. So there must exist $t_{0} \in((m-1) \pi / m, \pi)$ such that $u$ is given by $(\mathcal{E})$ in $\left(t_{0}, \pi\right)$ and $u\left(t_{0}\right)=u(\pi)=0$. This implies that $u=0$ for $t \in\left(t_{0}, \pi\right)$, which contradicts the fact that all zeroes of $u$ are isolated (in the set of zeroes of $u$ ).

THEOREM 4. Let $\varphi_{m}:[0, \pi] \times \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$ be given by (3.2),
$r_{0}=\inf \left\{\lambda \in(0, \infty) \mid \exists_{u \in C^{1}\left([a, b], \mathbb{R}^{k}\right)} u \neq 0\right.$ and $(\lambda, u)$ is a solution of $\left.(3.3)\right\}$
and $0<m_{1}<r_{0} \leq m^{2}<m_{2}$. Assume moreover the Carathéodory map $\varphi:[a, b] \times \mathbb{R}^{1} \times \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$ satisfies

$$
\begin{aligned}
& \forall_{\varepsilon>0} \exists_{\delta>0} \forall_{(x, y) \in \mathbb{R}^{2}} \forall_{t \in[0, \pi]} \\
& |x|+|y| \leq \delta \Rightarrow\left|\varphi(t, x, y)-m_{i} \varphi_{m}(t, x)\right| \leq \varepsilon(|x|+|y|), \\
& \forall_{\varepsilon>0} \exists_{R>0} \forall_{(x, y) \in \mathbb{R}^{2}} \forall_{t \in[0, \pi]} \\
& |x|+|y| \geq R \Rightarrow\left|\varphi(t, x, y)-m_{j} \varphi_{m}(t, x)\right| \leq \varepsilon(|x|+|y|),
\end{aligned}
$$

for $(i, j)=(1,2)$ or $(2,1)$. Then there exists a nonzero solution of the problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)+\varphi\left(t, u(t), u^{\prime}(t)\right)=0 \quad \text { for a.e. } t \in(a, b), \\
u(0)=u(\pi)=0
\end{array}\right.
$$

Proof. First observe that $r_{0}>0$ by Lemma 1, and condition (A2) is satisfied.

Condition (A1) is obvious. Because $\left(m^{2}, \sin m t\right)$ is a solution of (3.3), if $u_{0}(t)=\sin m t$, then

$$
\varphi_{0}(t, x) u_{0}(t)=|x||\sin m t|,
$$

which proves (A3).
Remark (cf. [G]). For $m=2$ we have $r_{0}=\lambda^{*}$, where $\lambda^{*} \in(1,4)$ is the only solution of $\tan \left(\sqrt{\lambda^{*}} \pi / 2\right)=-\tanh \left(\sqrt{\lambda^{*}} \pi / 2\right)$.

## References

[CH] N.-S. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer, 1982.
[G] J. Gulgowski, A global bifurcation theorem with applications to nonlinear Picard problems, Nonlinear Anal. 41 (2000), 787-801.
[H] P. Hartman, Ordinary Differential Equations, Birkhäuser, Boston, 1982
[LS] V. K. Le and K. Schmitt, Global Bifurcation in Variational Inequalities, Springer, New York, 1997
[PW] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer, New York, 1984.
[P] T. Pruszko, Some applications of the topological degree theory to multi-valued boundary value problems, Dissertationes Math. 229 (1984).

Institute of Mathematics
University of Gdańsk
Wita Stwosza 57
80-952 Gdańsk, Poland
E-mail: dzak@math.univ.gda.pl

