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Applications of global bifurcation to
existence theorems for Sturm–Liouville problems

by Jacek Gulgowski (Gdańsk)

Abstract. We prove an existence theorem for Sturm–Liouville problems

(∗)
{
u′′(t) + ϕ(t, u(t), u′(t)) = 0 for a.e. t ∈ (a, b),
l(u) = 0,

where ϕ : [a, b]× Rk × Rk → Rk is a Carathéodory map.
We assume that ϕ(t, x, y) = m1ϕ0(t, x, y)+o(|x|+ |y|) as |x|+ |y| → 0 and ϕ(t, x, y) =

m2ϕ0(t, x, y) + o(|x|+ |y|) as |x|+ |y| → ∞, where m1,m2 are positive constants and ϕ0
belongs to a class of nonlinear maps. The proof bases on global bifurcation results. We
define a map f : (0,∞)×C1([a, b],Rk)→ C1([a, b],Rk) such that if f(1, u) = 0, then u is
a solution of (∗). Then we show that there exists a connected set C of nontrivial zeroes of
f such that there exist (λ1, u1), (λ2, u2) ∈ C with λ1 < 1 < λ2. In the last section we give
examples of maps ϕ0 leading to specific existence theorems.

1. Preliminaries. We consider the Banach space C1([a, b],Rk) with
the norm ‖u‖k =

∑k
i=1(‖ui‖0 + ‖u′i‖0), u = (u1, . . . , uk), where ‖ · ‖0 is

the supremum norm in C[a, b]. Moreover, we set |x| =
∑k

i=1 |xi| for x =
(x1, . . . , xk) ∈ Rk.

Recall that ψ : [a, b] × Rk × Rk × (0,∞) → Rk is a Carathéodory map
if for almost every t ∈ [a, b] the map ψ(t, ·, ·, ·) : Rk × Rk × (0,∞) → Rk
is continuous; for every (x, y, λ) ∈ Rk × Rk × (0,∞) the map ψ(·, x, y, λ) :
[a, b] → Rk is measurable; and for every R > 0 there exists mR ∈ L1(a, b)
such that |ψ(t, x, y, λ)| ≤ mR(t) for |x|+ |y|+ |λ| ≤ R.

We call a set A ⊂ L1((a, b),Rk) integrably bounded if there exists mA ∈
L1(a, b) such that |u(t)| ≤ mA(t) for u ∈ A and a.e. t.

In the next section we deal with the problem of existence of solutions of
the boundary value problem

(1.1)
{
u′′(t) + ψ(t, u(t), u′(t), λ) = 0 for a.e. t ∈ (a, b),
l(u) = 0,
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where ψ : [a, b] × Rk × Rk × (0,∞) → Rk is a Carathéodory map and
l : C1([a, b],Rk) → Rk × Rk corresponds to Sturm–Liouville boundary con-
ditions, given by

(1.2) l(u1, . . . , uk) = (l1(u1), . . . , lk(uk)),

where

lj(uj) = (uj(a) sinαj − u′j(a) cosαj , uj(b) sinβj + u′j(b) cosβj),

and αj , βj ∈ [0, π/2], α2
j + β2

j > 0 (j = 1, . . . , k).
Let us recall some properties of the problem

(1.3)
{
u′′(t) + h(t) = 0 for a.e. t ∈ [a, b],
l(u) = 0,

where h ∈ L1((a, b),Rk).
We call u ∈ C1([a, b],Rk) a solution of (1.3) if u′ : [a, b] → Rk is abso-

lutely continuous and satisfies (1.3). It is known (cf. [H]) that there exists a
continuous linear map T : L1((a, b),Rk) → C1([a, b],Rk) such that Th = u
iff u is a solution of (1.3). Let us now recall some properties of the map T .

(1.4) (cf. [H]) If u ∈ C1([a, b],Rk) and h ∈ L1((a, b),Rk), then 〈u, Th〉k =
〈Tu, h〉k, where 〈w, v〉k =

� b
a

∑k
i=1wi(t)vi(t) dt.

(1.5) (cf. [P]) If A ⊂ L1((a, b),Rk) is integrably bounded, then T (A) ⊂
C1([a, b],Rk) is relatively compact.

Moreover, if Ψ : (0,∞)×C1([a, b],Rk)→ L1((a, b),Rk) is the Nemytskĭı
map associated with the Carathéodory map ψ : [a, b]×Rk×Rk×(0,∞)→ Rk,
given by Ψ(λ, u)(t) = ψ(t, u(t), u′(t), λ), then the map T ◦ Ψ : (0,∞) ×
C1([a, b],Rk)→ C1([a, b],Rk) is completely continuous.

Let f : (0,∞)×C1([a, b],Rk)→ C1([a, b],Rk) be given by f(λ, u) = u−
TΨ(λ, u). Assume that ψ(·, 0, 0, ·) = 0. Then f(λ, 0) = 0 for any λ ∈ (0,∞).
Let Rf denote the closure of the set of nontrivial zeroes of f , i.e.

Rf = {(λ, u) ∈ (0,∞)× C1([a, b],Rk) | f(λ, u) = 0, u 6= 0}.
We will use the global bifurcation theorem 1 given below. We recall

that (λ0, 0) ∈ (0,∞) × C1([a, b],Rk) is a bifurcation point of f : (0,∞) ×
C1([a, b],Rk)→ C1([a, b],Rk) if for any open set U ⊂ (0,∞)×C1([a, b],Rk)
such that (λ0, 0) ∈ U , there exists (λ, u) ∈ U with u 6= 0 and f(λ, u) = 0.
The set of all bifurcation points of f will be denoted by Bf .

If [a, b] ⊂ (0,∞) and Bf ⊂ [a, b]×{0}, then we may define the bifurcation
index of f in the interval [a, b] as

s[f, a, b] = lim
λ→b+

df (λ)− lim
λ→a−

df (λ),

where df (λ) = deg(f(λ, ·), B(0, r), 0) for (λ, 0) 6∈ Bf and r > 0 small enough.
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The theorem given below is a direct consequence of the theorem given
in [LS] (see also [CH]).

Theorem 1. Let F : (0,∞) × C1([a, b],Rk) → C1([a, b],Rk) be a com-
pletely continuous map such that F (·, 0) = 0, and let f : (0,∞)×C1([a, b],Rk)
→ C1([a, b],Rk) be given by f(λ, u) = u − F (λ, u). If [a, b] ⊂ (0,∞),
Bf ⊂ [a, b] × {0} and s[f, a, b] 6= 0, then there exists a noncompact com-
ponent C ⊂ Rf ∪ ([a, b]× {0}) such that C ∩ Bf 6= ∅.

2. Existence theorem. In this section we will be assuming that ϕ0 :
[a, b]× Rk × Rk → Rk, ϕ0 = (ϕ0,1, . . . , ϕ0,k), is a Carathéodory map, satis-
fying the following conditions (A1)–(A3):

(A1) ϕ0(t,mx,my) = mϕ0(t, x, y) for all (x, y) ∈ R2k, m ≥ 0 and almost
every t ∈ [a, b].

(A2) The set Λ of λ ∈ (0,∞) for which there exists u ∈ C1([a, b],Rk),
u 6= 0, such that (λ, u) is a solution of

(2.1)
{
u′′(t) + λϕ0(t, u(t), u′(t)) = 0,
l(u) = 0,

is nonempty and bounded.
(A3) There exist a positive constant α > 0 and a nonzero solution (µ0, u0)

∈ (0,∞)× C1([a, b],Rk), u0 = (u0,1, . . . , u0,k), of (2.1) such that

k∑

i=1

ϕ0,i(t, x, y)u0,i(t) ≥ α
k∑

i=1

|xi| |u0,i(t)|

for all (x, y) ∈ R2k and almost every t ∈ [a, b].

Observe that 0 6∈ Λ because of the boundary conditions. Moreover, there
exists r > 0 such that Λ ⊂ (r,∞). To prove this assume, contrary to our
claim, that there exists a sequence {(λn, un)} ⊂ (0,∞)×C1([a, b],Rk) of so-
lutions of (2.1) such that λn → 0 and ‖un‖k = 1. Then the sequence TΦ0(un)
contains a convergent subsequence and the corresponding subsequence of
{un} = {λnTΦ0(un)} converges to 0, which contradicts our assumption.
A similar reasoning shows that Λ is a closed subset of R.

Theorem 2. Assume 0 < m1 < minΛ ≤ maxΛ < m2 and Carathéodo-
ry map ϕ0 : [a, b] × Rk × Rk → Rk satisfies (A1)–(A3). Assume moreover
that ϕ : [a, b]× Rk × Rk → Rk is a Carathéodory map satisfying

(2.2) ∀ε>0 ∃δ>0 ∀(x,y)∈R2k ∀t∈[a,b]

|x|+ |y| ≤ δ ⇒ |ϕ(t, x, y)−miϕ0(t, x, y)| ≤ ε(|x|+ |y|),
(2.3) ∀ε>0 ∃R>0 ∀(x,y)∈R2k ∀t∈[a,b]

|x|+ |y| ≥ R ⇒ |ϕ(t, x, y)−mjϕ0(t, x, y)| ≤ ε(|x|+ |y|),
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where (i, j) = (1, 2) or (2, 1). Then there exists a nonzero solution of the
boundary value problem

(2.4)
{
u′′(t) + ϕ(t, u(t), u′(t)) = 0 for a.e. t ∈ (a, b),
l(u) = 0,

where l : C1([a, b],Rk)→ R2k is given by (1.2).

Proof. Without loss of generality we may assume that the constant α in
(A3) satisfies α ∈ (0, 1). Fix ν > maxΛ/m1α. Let q1, q2 : (0,∞)→ [0,∞) be
a partition of unity associated with the covering U1 = (0, 2ν), U2 = (ν,∞)
of (0,∞). Let ψ : [a, b]× Rk × Rk × (0,∞)→ Rk be the Carathéodory map
given by

ψ(t, x, y, λ) = λq1(λ)ϕ(t, x, y) + λq2(λ)mjϕ0(t, x, y).

Let Ψ : (0,∞) × C1([a, b],Rk) → L1((a, b),Rk) be the Nemytskĭı map
associated with ψ. Define f : (0,∞) × C1([a, b],Rk) → C1([a, b],Rk) by
f(λ, u) = u− TΨ(λ, u). We can see that if f(1, u) = 0, then u is a solution
of (2.4).

First we prove that Bf ⊂ {λ/mi | λ ∈ Λ}. To show this take a sequence
{(λn, un)} ⊂ (0,∞)×C1([a, b],Rk) such that λn → λ0 ∈ [0,∞), un 6= 0 and
un → 0. Set vn = un/‖un‖k. Then

vn = λnq1(λn)T
Φ(un)−miΦ0(un)

‖un‖k
+ λn(miq1(λn) +mjq2(λn))TΦ0(vn).

By (2.2) the first term on the right hand side converges to 0. Since {Φ0(vn)} is
integrably bounded, {TΦ0(vn)} contains a convergent subsequence. So the
corresponding subsequence of {vn} converges to some v0 ∈ C1([a, b],Rk).
Then v0 = λ0(miq1(λ0) +mjq2(λ0))TΦ0(v0).

Therefore λ0(miq1(λ0) + mjq2(λ0)) ∈ Λ. Because miq1(λ0) + mjq2(λ0)
∈ [m1,m2], we must have λ0 ≤ maxΛ/m1 < ν, and q2(λ0) = 0. Hence
miλ0 ∈ Λ, and Bf ⊂ {λ/mi | λ ∈ Λ}.

Now we show that s[f,minΛ/mi,maxΛ/mi] = −1. First observe that by
(2.2) and the homotopy property of the topological degree, s[f,minΛ/mi,
maxΛ/mi] = s[f0,minΛ/mi,maxΛ/mi], where f0 : (0,∞) × C1([a, b],Rk)
→ C1([a, b],Rk) is given by

f0(λ, u) = u− λ(miq1(λ) +mjq2(λ))TΦ0(u).

Let λ ∈ (0,minΛ/mi) ∪ (maxΛ/mi,∞) and r > 0. The map f0(λ, ·) :
B(0, r) → C1([a, b],Rk) is homotopic to f1(λ, ·) : B(0, r) → C1([a, b],Rk)
given by f1(λ, u) = u − λmiTΦ0(u). Indeed, for λ ≤ ν the maps are just
equal. Let now λ ≥ ν. Then the required homotopy h : [0, 1] × B(0, r) →
C1([a, b],Rk) is given by

h(t, u) = u− λ(t(miq1(λ) +mjq2(λ)) + (1− t)mi)TΦ0(u).
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Observe that for h(t, u) = 0 and u 6= 0,

λ(t(miq1(λ) +mjq2(λ)) + (1− t)mi) ∈ Λ.
Because miq1(λ) +mjq2(λ) ≥ m1, we must have

maxΛ ≥ λ(tm1 + (1− t)m1) = λm1,

which contradicts λ ≥ ν. So we conclude that

s[f0,minΛ/mi,maxΛ/mi] = s[f1,minΛ/mi,maxΛ/mi].

Now fix λ ∈ (0,minΛ/mi). Because for t ∈ [0, 1] the maps f1(tλ, ·) :
B(0, r)→ C1([a, b],Rk) do not have nontrivial zeroes, f1(λ, ·) is homotopic
to the identity map, so deg(f(λ, ·), B(0, r), 0) = 1.

Assume now that λ > maxΛ/mi. As above, f(λ1, ·) ∼ f(λ2, ·) for
all λ1, λ2 ∈ (maxΛ/mi,∞), so we may assume that λ > maxΛ/αmi.
Now the map f1(λ, ·) may be joined by a homotopy to f2 : B(0, r) →
C1([a, b],Rk) given by f2(u) = u − λmiTΦ0(u) − u0, where u0 is given
in (A3); the homotopy h2 : [0, 1] × B(0, r) → C1([a, b],Rk) is given by
h2(t, u) = u− λmiTΦ0(u)− tu0.

We now show that h2(t, u) 6= 0 for t ∈ (0, 1] and u ∈ B(0, r). Assume,
contrary to our claim, that h2(t, u) = 0. Then

u− λmiTΦ0(u) = tu0,

〈u, u0〉k − λmi〈TΦ0(u), u0〉k = t〈u0, u0〉k.
So

0 < 〈u, u0〉k − λmi〈TΦ0(u), u0〉k = 〈u, u0〉k −
λmi

µ0
〈Φ0(u), u0〉k

≤
b�

a

k∑

i=1

|ui(t)| |u0,i(t)| dt−
λmi

µ0

b�

a

k∑

i=1

ϕ0,i(t, u(t), u′(t))u0,i(t) dt

≤
b�

a

k∑

i=1

|ui(t)| |u0,i(t)| dt−
αλmi

µ0

b�

a

k∑

i=1

|ui(t)| |u0,i(t)| dt

=
(

1− αλmi

µ0

) b�

a

k∑

i=1

|ui(t)| |u0,i(t)| dt.

Hence λ < maxΛ/αmi, a contradiction. So f1(λ, ·) ∼ f2 and f2(u) 6= 0
for u ∈ B(0, r). Hence deg(f2, B(0, r), 0) = 0 and s[f,minΛ/mi,maxΛ/mi]
= −1.

By Theorem 1 there exists a noncompact component

C ⊂ Rf ∪
([

minΛ
mi

,
maxΛ
mi

]
× {0}

)
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containing [minΛ/mi,maxΛ/mi] × {0}. Now we show that there exists a
sequence {(λn, un)} ⊂ C such that ‖un‖k → ∞. Assume, contrary to our
claim, that {un} is bounded. Then, because C is not compact, either λn → 0
or λn →∞.

First consider the case of λn → 0. Since {un} is bounded, {TΨ(λn, un)}
has a convergent subsequence. Because un = λnTΦ(un) for large n ∈ N, the
corresponding subsequence of {un} converges to 0. But this contradicts our
earlier observation that for un → 0, the sequence {λn} cannot converge to 0.

Now let λn → ∞. We may assume that Ψ(λn, un) = λnmjTΦ0(un), so
un = λnmjTΦ0(un). By (A2), λn ∈ {λ/mj | λ ∈ Λ}, which contradicts
λn →∞.

So there exists a sequence {(λn, un)} ⊂ C such that ‖un‖k → ∞. We
now show that λn → λ0 ∈ {λ/mj | λ ∈ Λ}. Assume that λn → λ0 ∈ [0,∞).
Then

un = TΨ(λn, un),

un = λnq1(λn)T (Φ(un)−mjΦ0(un)) + λn(q1(λn) + q2(λn))mjTΦ0(un),

and if we set vn = un/‖un‖k, then

vn = λnq1(λn)T
Φ(un)−mjΦ0(un)

‖un‖k
+ λnmjTΦ0(vn).

Observe that the set {Φ(un)−mjΦ0(un)} is integrably bounded. Hence
1

‖un‖kT (Φ(un) − mjΦ0(un)) → 0 in C1([a, b],Rk). Because {Φ0(vn)} is in-
tegrably bounded as well, {TΦ0(vn)} has a convergent subsequence. So we
may assume that vn → v0 and then

v0 = λ0mjTΦ0(v0)

for v0 6= 0. This implies λ0 ∈ {λ/mj | λ ∈ Λ}.
Because {λ/m1 | λ ∈ Λ} ⊂ (1,∞) and {λ/m2 | λ ∈ Λ} ⊂ (0, 1), there

must exist pairs (λ1, u1), (λ2, u2) ∈ C such that λ1 < 1 < λ2. From the
connectedness of C we conclude that there exists (1, u) ∈ C. Because 1 < ν,
the function u is a solution of (2.4).

3. Examples. In this section we give examples of Carathéodory maps
ϕ0 : [a, b] × Rk × Rk → Rk satisfying (A1)–(A3), so leading to different
versions of Theorem 2. First, we recall the basic spectral properties of the
scalar linear Sturm–Liouville problem (cf. [H])

(3.1)
{
v′′(t) + λv(t) = 0 for t ∈ [a, b],
ls(v) = 0,

where v ∈ C1[a, b], λ ∈ R and ls : C1[a, b]→ R1 × R1 is given by (cf. (1.2))

ls(v) = (v(a) sinαs − v′(a) cosαs, v(b) sinβs + v′(b) cosβs).
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Problem (3.1) has a minimal eigenvalue µs ∈ R. Let v0 denote an eigen-
vector associated with µs. Then µs ∈ (0,∞) and v0 does not change sign in
(a, b). Additionally |v0| is the only nonzero and nonnegative solution of (3.1).

Let ϕ0 : Rk → Rk be given by ϕ0(x1, . . . , xk) = (ξ1|x1|, . . . , ξk|xk|), where
ξ1, . . . , ξk ∈ [0,∞) for ξ2

1 + · · · + ξ2
k > 0, and let Λ = {µs/ξs | ξs > 0, s =

1, . . . , k}.
Theorem 3. Let ϕ0 be as above. Assume moreover 0 < m1 < minΛ ≤

maxΛ < m2 and the Carathéodory map ϕ : [a, b]× Rk × Rk → Rk satisfies

∀ε>0 ∃δ>0 ∀(x,y)∈R2k ∀t∈[a,b]

|x|+ |y| ≤ δ ⇒ |ϕ(t, x, y)−miϕ0(t, x, y)| ≤ ε(|x|+ |y|),
∀ε>0 ∃R>0 ∀(x,y)∈R2k ∀t∈[a,b]

|x|+ |y| ≥ R ⇒ |ϕ(t, x, y)−mjϕ0(t, x, y)| ≤ ε(|x|+ |y|),
where (i, j) = (1, 2) or (2, 1). Then there exists a nonzero solution of

{
u′′(t) + ϕ(t, u(t), u′(t)) = 0 for a.e. t ∈ (a, b),
l(u) = 0,

where l : C1([a, b],Rk)→ Rk × Rk is given by (1.2).

Proof. By Theorem 2 it is enough to check that ϕ0 satisfies (A1)–(A3).
Condition (A1) is obvious.

We show that if (λ, u) is a solution of (1.2) such that u 6= 0, then λ ∈ Λ.
If u 6= 0 then there exists s ∈ {1, . . . , k} such that us 6= 0 and

{
u′′s(t) + λξs|us(t)| = 0 for a.e. t ∈ (a, b),
ls(us) = 0.

From the maximum principle (cf. [PW]) we conclude that us ≥ 0, so
λξs = µs. This implies ξs 6= 0 and λ ∈ Λ.

Because the set Λ is finite and nonempty, condition (A2) is satisfied as
well.

Let s ∈ {1, . . . , k} be such that ξs > 0 and (µs, v0) is a solution of (3.1)
such that v0(t) > 0 for t ∈ (a, b). Let u0 = (0, . . . , v0, . . . , 0), where the sth
coordinate is the only nonzero one. Observe that

k∑

l=1

ϕ0,l(t, x)u0,l(t) = ξs|xs|v0(t) = ξs

k∑

l=1

|xl| |u0,l(t)|.

Hence condition (A3) is satisfied as well.

Now consider the scalar (k = 1) Picard problem. Fix m ∈ N and let
ϕm : [0, π]× R1 → R1 be given by

(3.2) ϕm(t, x) =
{
|x| if sin(mt) ≥ 0,
−|x| if sin(mt) < 0.
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Lemma 1. There exists a constant r > 0 such that if (λ, u) ∈ (0,∞) ×
C1[a, b] is a solution of

(3.3)
{
u′′(t) + λϕm(t, u(t)) = 0 for a.e. t ∈ [0, π],
u(0) = u(π) = 0,

such that u 6= 0, then λ ∈ [r,m2].

Proof. First observe that for λ = 0 problem (3.3) has no solution u 6= 0.
Also, there is no sequence {(λu, un)} ⊂ (0,∞) × C1([a, b],Rk) such that
λn → 0 and un 6= 0 (see the remark after (A3)).

From steps (A)–(D) of Lemma 3.1 of [G] we conclude that all zeroes of
u are isolated (in the set of zeroes of u), and at each of them u changes
sign. Assume now, contrary to our claim, that λ > m2. By (A) of the above
mentioned Lemma 3.1 of [G] we can see that if u(t) sinmt < 0, then

(E) u(t) = Ae
√
λt +Be−

√
λt,

and if u(t) sinmt > 0, then

(T ) u(t) = A sin(
√
λt) +B cos(

√
λt)

for some constants A,B ∈ R. We see that if λ > m2, then half the period of
(T ) is less than π/m. So if there exists t0 ∈ (lπ/m, (l + 1)π/m) such that
u(t0) sinmt0 > 0, then the interval (lπ/m, (l + 1)π/m) contains a zero of
u. Thus for any l ∈ {1, . . . ,m} there exists a left hand neighbourhood of
lπ/m such that u restricted to this neighbourhood is given by (E). So there
must exist t0 ∈ ((m − 1)π/m, π) such that u is given by (E) in (t0, π) and
u(t0) = u(π) = 0. This implies that u = 0 for t ∈ (t0, π), which contradicts
the fact that all zeroes of u are isolated (in the set of zeroes of u).

Theorem 4. Let ϕm : [0, π]× R1 → R1 be given by (3.2),

r0 = inf{λ ∈ (0,∞) | ∃u∈C1([a,b],Rk) u 6= 0 and (λ, u) is a solution of (3.3)}
and 0 < m1 < r0 ≤ m2 < m2. Assume moreover the Carathéodory map
ϕ : [a, b]× R1 × R1 → R1 satisfies

∀ε>0 ∃δ>0 ∀(x,y)∈R2 ∀t∈[0,π]

|x|+ |y| ≤ δ ⇒ |ϕ(t, x, y)−miϕm(t, x)| ≤ ε(|x|+ |y|),
∀ε>0 ∃R>0 ∀(x,y)∈R2 ∀t∈[0,π]

|x|+ |y| ≥ R ⇒ |ϕ(t, x, y)−mjϕm(t, x)| ≤ ε(|x|+ |y|),
for (i, j) = (1, 2) or (2, 1). Then there exists a nonzero solution of the prob-
lem {

u′′(t) + ϕ(t, u(t), u′(t)) = 0 for a.e. t ∈ (a, b),
u(0) = u(π) = 0.
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Proof. First observe that r0 > 0 by Lemma 1, and condition (A2) is
satisfied.

Condition (A1) is obvious. Because (m2, sinmt) is a solution of (3.3), if
u0(t) = sinmt, then

ϕ0(t, x)u0(t) = |x| |sinmt|,
which proves (A3).

Remark (cf. [G]). For m = 2 we have r0 = λ∗, where λ∗ ∈ (1, 4) is the
only solution of tan(

√
λ∗ π/2) = − tanh(

√
λ∗ π/2).
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