Applications of global bifurcation to existence theorems for Sturm–Liouville problems

by JACEK GULGOWSKI (Gdańsk)

Abstract. We prove an existence theorem for Sturm–Liouville problems

(*)
$$\begin{cases} u''(t) + \varphi(t, u(t), u'(t)) = 0 & \text{for a.e. } t \in (a, b), \\ l(u) = 0, \end{cases}$$

where $\varphi : [a, b] \times \mathbb{R}^k \times \mathbb{R}^k \to \mathbb{R}^k$ is a Carathéodory map.

We assume that $\varphi(t, x, y) = m_1 \varphi_0(t, x, y) + o(|x| + |y|)$ as $|x| + |y| \to 0$ and $\varphi(t, x, y) = m_2 \varphi_0(t, x, y) + o(|x| + |y|)$ as $|x| + |y| \to \infty$, where m_1, m_2 are positive constants and φ_0 belongs to a class of nonlinear maps. The proof bases on global bifurcation results. We define a map $f : (0, \infty) \times C^1([a, b], \mathbb{R}^k) \to C^1([a, b], \mathbb{R}^k)$ such that if f(1, u) = 0, then u is a solution of (*). Then we show that there exists a connected set \mathcal{C} of nontrivial zeroes of f such that there exist $(\lambda_1, u_1), (\lambda_2, u_2) \in \mathcal{C}$ with $\lambda_1 < 1 < \lambda_2$. In the last section we give examples of maps φ_0 leading to specific existence theorems.

1. Preliminaries. We consider the Banach space $C^1([a, b], \mathbb{R}^k)$ with the norm $||u||_k = \sum_{i=1}^k (||u_i||_0 + ||u'_i||_0)$, $u = (u_1, \ldots, u_k)$, where $|| \cdot ||_0$ is the supremum norm in C[a, b]. Moreover, we set $|x| = \sum_{i=1}^k |x_i|$ for $x = (x_1, \ldots, x_k) \in \mathbb{R}^k$.

Recall that $\psi : [a, b] \times \mathbb{R}^k \times \mathbb{R}^k \times (0, \infty) \to \mathbb{R}^k$ is a Carathéodory map if for almost every $t \in [a, b]$ the map $\psi(t, \cdot, \cdot, \cdot) : \mathbb{R}^k \times \mathbb{R}^k \times (0, \infty) \to \mathbb{R}^k$ is continuous; for every $(x, y, \lambda) \in \mathbb{R}^k \times \mathbb{R}^k \times (0, \infty)$ the map $\psi(\cdot, x, y, \lambda) :$ $[a, b] \to \mathbb{R}^k$ is measurable; and for every R > 0 there exists $m_R \in L^1(a, b)$ such that $|\psi(t, x, y, \lambda)| \leq m_R(t)$ for $|x| + |y| + |\lambda| \leq R$.

We call a set $A \subset L^1((a, b), \mathbb{R}^k)$ integrably bounded if there exists $m_A \in L^1(a, b)$ such that $|u(t)| \leq m_A(t)$ for $u \in A$ and a.e. t.

In the next section we deal with the problem of existence of solutions of the boundary value problem

(1.1)
$$\begin{cases} u''(t) + \psi(t, u(t), u'(t), \lambda) = 0 & \text{for a.e. } t \in (a, b), \\ l(u) = 0, \end{cases}$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 34B24; Secondary 34C23. Key words and phrases: global bifurcation, Sturm–Liouville problem.

where $\psi : [a,b] \times \mathbb{R}^k \times \mathbb{R}^k \times (0,\infty) \to \mathbb{R}^k$ is a Carathéodory map and $l : C^1([a,b],\mathbb{R}^k) \to \mathbb{R}^k \times \mathbb{R}^k$ corresponds to Sturm–Liouville boundary conditions, given by

(1.2)
$$l(u_1, \dots, u_k) = (l_1(u_1), \dots, l_k(u_k)),$$

where

$$l_j(u_j) = (u_j(a)\sin\alpha_j - u'_j(a)\cos\alpha_j, u_j(b)\sin\beta_j + u'_j(b)\cos\beta_j),$$

and $\alpha_j, \beta_j \in [0, \pi/2], \ \alpha_j^2 + \beta_j^2 > 0 \ (j = 1, \dots, k).$

Let us recall some properties of the problem

(1.3)
$$\begin{cases} u''(t) + h(t) = 0 & \text{ for a.e. } t \in [a, b], \\ l(u) = 0, \end{cases}$$

where $h \in L^1((a, b), \mathbb{R}^k)$.

We call $u \in C^1([a, b], \mathbb{R}^k)$ a solution of (1.3) if $u' : [a, b] \to \mathbb{R}^k$ is absolutely continuous and satisfies (1.3). It is known (cf. [H]) that there exists a continuous linear map $T : L^1((a, b), \mathbb{R}^k) \to C^1([a, b], \mathbb{R}^k)$ such that Th = u iff u is a solution of (1.3). Let us now recall some properties of the map T.

- (1.4) (cf. [H]) If $u \in C^1([a,b], \mathbb{R}^k)$ and $h \in L^1((a,b), \mathbb{R}^k)$, then $\langle u, Th \rangle_k = \langle Tu, h \rangle_k$, where $\langle w, v \rangle_k = \int_a^b \sum_{i=1}^k w_i(t) v_i(t) dt$.
- (1.5) (cf. [P]) If $A \subset L^1((a, b), \mathbb{R}^k)$ is integrably bounded, then $T(A) \subset C^1([a, b], \mathbb{R}^k)$ is relatively compact.

Moreover, if $\Psi : (0, \infty) \times C^1([a, b], \mathbb{R}^k) \to L^1((a, b), \mathbb{R}^k)$ is the Nemytskiĭ map associated with the Carathéodory map $\psi : [a, b] \times \mathbb{R}^k \times \mathbb{R}^k \times (0, \infty) \to \mathbb{R}^k$, given by $\Psi(\lambda, u)(t) = \psi(t, u(t), u'(t), \lambda)$, then the map $T \circ \Psi : (0, \infty) \times C^1([a, b], \mathbb{R}^k) \to C^1([a, b], \mathbb{R}^k)$ is completely continuous.

Let $f: (0,\infty) \times C^1([a,b],\mathbb{R}^k) \to C^1([a,b],\mathbb{R}^k)$ be given by $f(\lambda, u) = u - T\Psi(\lambda, u)$. Assume that $\psi(\cdot, 0, 0, \cdot) = 0$. Then $f(\lambda, 0) = 0$ for any $\lambda \in (0,\infty)$. Let \mathcal{R}_f denote the closure of the set of nontrivial zeroes of f, i.e.

$$\mathcal{R}_f = \overline{\{(\lambda, u) \in (0, \infty) \times C^1([a, b], \mathbb{R}^k) \mid f(\lambda, u) = 0, u \neq 0\}}.$$

We will use the global bifurcation theorem 1 given below. We recall that $(\lambda_0, 0) \in (0, \infty) \times C^1([a, b], \mathbb{R}^k)$ is a bifurcation point of $f : (0, \infty) \times C^1([a, b], \mathbb{R}^k) \to C^1([a, b], \mathbb{R}^k)$ if for any open set $U \subset (0, \infty) \times C^1([a, b], \mathbb{R}^k)$ such that $(\lambda_0, 0) \in U$, there exists $(\lambda, u) \in U$ with $u \neq 0$ and $f(\lambda, u) = 0$. The set of all bifurcation points of f will be denoted by \mathcal{B}_f .

If $[a, b] \subset (0, \infty)$ and $\mathcal{B}_f \subset [a, b] \times \{0\}$, then we may define the *bifurcation* index of f in the interval [a, b] as

$$s[f, a, b] = \lim_{\lambda \to b^+} d_f(\lambda) - \lim_{\lambda \to a^-} d_f(\lambda),$$

where $d_f(\lambda) = \deg(f(\lambda, \cdot), B(0, r), 0)$ for $(\lambda, 0) \notin \mathcal{B}_f$ and r > 0 small enough.

The theorem given below is a direct consequence of the theorem given in [LS] (see also [CH]).

THEOREM 1. Let $F : (0, \infty) \times C^1([a, b], \mathbb{R}^k) \to C^1([a, b], \mathbb{R}^k)$ be a completely continuous map such that $F(\cdot, 0) = 0$, and let $f : (0, \infty) \times C^1([a, b], \mathbb{R}^k)$ $\to C^1([a, b], \mathbb{R}^k)$ be given by $f(\lambda, u) = u - F(\lambda, u)$. If $[a, b] \subset (0, \infty)$, $\mathcal{B}_f \subset [a, b] \times \{0\}$ and $s[f, a, b] \neq 0$, then there exists a noncompact component $\mathcal{C} \subset \mathcal{R}_f \cup ([a, b] \times \{0\})$ such that $\mathcal{C} \cap \mathcal{B}_f \neq \emptyset$.

2. Existence theorem. In this section we will be assuming that φ_0 : $[a,b] \times \mathbb{R}^k \times \mathbb{R}^k \to \mathbb{R}^k$, $\varphi_0 = (\varphi_{0,1}, \ldots, \varphi_{0,k})$, is a Carathéodory map, satisfying the following conditions (A1)–(A3):

- (A1) $\varphi_0(t, mx, my) = m\varphi_0(t, x, y)$ for all $(x, y) \in \mathbb{R}^{2k}$, $m \ge 0$ and almost every $t \in [a, b]$.
- (A2) The set Λ of $\lambda \in (0, \infty)$ for which there exists $u \in C^1([a, b], \mathbb{R}^k)$, $u \neq 0$, such that (λ, u) is a solution of

(2.1)
$$\begin{cases} u''(t) + \lambda \varphi_0(t, u(t), u'(t)) = 0, \\ l(u) = 0, \end{cases}$$

is nonempty and bounded.

(A3) There exist a positive constant $\alpha > 0$ and a nonzero solution $(\mu_0, u_0) \in (0, \infty) \times C^1([a, b], \mathbb{R}^k), u_0 = (u_{0,1}, \dots, u_{0,k})$, of (2.1) such that

$$\sum_{i=1}^{k} \varphi_{0,i}(t,x,y) u_{0,i}(t) \ge \alpha \sum_{i=1}^{k} |x_i| |u_{0,i}(t)|$$

for all $(x, y) \in \mathbb{R}^{2k}$ and almost every $t \in [a, b]$.

Observe that $0 \notin \overline{A}$ because of the boundary conditions. Moreover, there exists r > 0 such that $A \subset (r, \infty)$. To prove this assume, contrary to our claim, that there exists a sequence $\{(\lambda_n, u_n)\} \subset (0, \infty) \times C^1([a, b], \mathbb{R}^k)$ of solutions of (2.1) such that $\lambda_n \to 0$ and $||u_n||_k = 1$. Then the sequence $T\Phi_0(u_n)$ contains a convergent subsequence and the corresponding subsequence of $\{u_n\} = \{\lambda_n T\Phi_0(u_n)\}$ converges to 0, which contradicts our assumption. A similar reasoning shows that Λ is a closed subset of \mathbb{R} .

THEOREM 2. Assume $0 < m_1 < \min \Lambda \le \max \Lambda < m_2$ and Carathéodory map $\varphi_0 : [a,b] \times \mathbb{R}^k \times \mathbb{R}^k \to \mathbb{R}^k$ satisfies (A1)–(A3). Assume moreover that $\varphi : [a,b] \times \mathbb{R}^k \times \mathbb{R}^k \to \mathbb{R}^k$ is a Carathéodory map satisfying

$$(2.2) \quad \forall_{\varepsilon>0} \ \exists_{\delta>0} \ \forall_{(x,y)\in\mathbb{R}^{2k}} \ \forall_{t\in[a,b]} \\ |x|+|y| \le \delta \ \Rightarrow \ |\varphi(t,x,y) - m_i\varphi_0(t,x,y)| \le \varepsilon(|x|+|y|), \\ (2.3) \quad \forall_{\varepsilon>0} \ \exists_{R>0} \ \forall_{(x,y)\in\mathbb{R}^{2k}} \ \forall_{t\in[a,b]} \\ |x|+|y| \ge R \ \Rightarrow \ |\varphi(t,x,y) - m_j\varphi_0(t,x,y)| \le \varepsilon(|x|+|y|), \\ \end{cases}$$

where (i, j) = (1, 2) or (2, 1). Then there exists a nonzero solution of the boundary value problem

(2.4)
$$\begin{cases} u''(t) + \varphi(t, u(t), u'(t)) = 0 & \text{for a.e. } t \in (a, b), \\ l(u) = 0, \end{cases}$$

where $l: C^1([a, b], \mathbb{R}^k) \to \mathbb{R}^{2k}$ is given by (1.2).

Proof. Without loss of generality we may assume that the constant α in (A3) satisfies $\alpha \in (0, 1)$. Fix $\nu > \max \Lambda/m_1 \alpha$. Let $q_1, q_2 : (0, \infty) \to [0, \infty)$ be a partition of unity associated with the covering $U_1 = (0, 2\nu), U_2 = (\nu, \infty)$ of $(0, \infty)$. Let $\psi : [a, b] \times \mathbb{R}^k \times \mathbb{R}^k \times (0, \infty) \to \mathbb{R}^k$ be the Carathéodory map given by

$$\psi(t, x, y, \lambda) = \lambda q_1(\lambda)\varphi(t, x, y) + \lambda q_2(\lambda)m_j\varphi_0(t, x, y).$$

Let $\Psi : (0,\infty) \times C^1([a,b],\mathbb{R}^k) \to L^1((a,b),\mathbb{R}^k)$ be the Nemytskiĭ map associated with ψ . Define $f : (0,\infty) \times C^1([a,b],\mathbb{R}^k) \to C^1([a,b],\mathbb{R}^k)$ by $f(\lambda, u) = u - T\Psi(\lambda, u)$. We can see that if f(1, u) = 0, then u is a solution of (2.4).

First we prove that $\mathcal{B}_f \subset \{\lambda/m_i \mid \lambda \in \Lambda\}$. To show this take a sequence $\{(\lambda_n, u_n)\} \subset (0, \infty) \times C^1([a, b], \mathbb{R}^k)$ such that $\lambda_n \to \lambda_0 \in [0, \infty), u_n \neq 0$ and $u_n \to 0$. Set $v_n = u_n/||u_n||_k$. Then

$$v_n = \lambda_n q_1(\lambda_n) T \frac{\Phi(u_n) - m_i \Phi_0(u_n)}{\|u_n\|_k} + \lambda_n (m_i q_1(\lambda_n) + m_j q_2(\lambda_n)) T \Phi_0(v_n).$$

By (2.2) the first term on the right hand side converges to 0. Since $\{\Phi_0(v_n)\}$ is integrably bounded, $\{T\Phi_0(v_n)\}$ contains a convergent subsequence. So the corresponding subsequence of $\{v_n\}$ converges to some $v_0 \in C^1([a,b], \mathbb{R}^k)$. Then $v_0 = \lambda_0(m_i q_1(\lambda_0) + m_j q_2(\lambda_0))T\Phi_0(v_0)$.

Therefore $\lambda_0(m_iq_1(\lambda_0) + m_jq_2(\lambda_0)) \in \Lambda$. Because $m_iq_1(\lambda_0) + m_jq_2(\lambda_0) \in [m_1, m_2]$, we must have $\lambda_0 \leq \max \Lambda/m_1 < \nu$, and $q_2(\lambda_0) = 0$. Hence $m_i\lambda_0 \in \Lambda$, and $\mathcal{B}_f \subset \{\lambda/m_i \mid \lambda \in \Lambda\}$.

Now we show that $s[f, \min \Lambda/m_i, \max \Lambda/m_i] = -1$. First observe that by (2.2) and the homotopy property of the topological degree, $s[f, \min \Lambda/m_i, \max \Lambda/m_i] = s[f_0, \min \Lambda/m_i, \max \Lambda/m_i]$, where $f_0 : (0, \infty) \times C^1([a, b], \mathbb{R}^k) \to C^1([a, b], \mathbb{R}^k)$ is given by

$$f_0(\lambda, u) = u - \lambda (m_i q_1(\lambda) + m_j q_2(\lambda)) T \Phi_0(u).$$

Let $\lambda \in (0, \min \Lambda/m_i) \cup (\max \Lambda/m_i, \infty)$ and $r \geq 0$. The map $f_0(\lambda, \cdot) : \overline{B(0,r)} \to C^1([a,b], \mathbb{R}^k)$ is homotopic to $f_1(\lambda, \cdot) : \overline{B(0,r)} \to C^1([a,b], \mathbb{R}^k)$ given by $f_1(\lambda, u) = u - \lambda m_i T \Phi_0(u)$. Indeed, for $\lambda \leq \nu$ the maps are just equal. Let now $\lambda \geq \nu$. Then the required homotopy $h : [0,1] \times \overline{B(0,r)} \to C^1([a,b], \mathbb{R}^k)$ is given by

$$h(t,u) = u - \lambda(t(m_i q_1(\lambda) + m_j q_2(\lambda)) + (1-t)m_i)T\Phi_0(u).$$

Observe that for h(t, u) = 0 and $u \neq 0$,

$$\lambda(t(m_iq_1(\lambda) + m_jq_2(\lambda)) + (1-t)m_i) \in \Lambda.$$

Because $m_i q_1(\lambda) + m_j q_2(\lambda) \ge m_1$, we must have

$$\max \Lambda \ge \lambda(tm_1 + (1-t)m_1) = \lambda m_1,$$

which contradicts $\lambda \geq \nu$. So we conclude that

$$s[f_0, \min \Lambda/m_i, \max \Lambda/m_i] = s[f_1, \min \Lambda/m_i, \max \Lambda/m_i].$$

Now fix $\lambda \in (0, \min \Lambda/m_i)$. Because for $t \in [0, 1]$ the maps $f_1(t\lambda, \cdot) : \overline{B(0, r)} \to C^1([a, b], \mathbb{R}^k)$ do not have nontrivial zeroes, $f_1(\lambda, \cdot)$ is homotopic to the identity map, so $\deg(f(\lambda, \cdot), B(0, r), 0) = 1$.

Assume now that $\lambda > \max \Lambda/m_i$. As above, $f(\lambda_1, \cdot) \sim f(\lambda_2, \cdot)$ for all $\lambda_1, \lambda_2 \in (\max \Lambda/m_i, \infty)$, so we may assume that $\lambda > \max \Lambda/\alpha m_i$. Now the map $f_1(\lambda, \cdot)$ may be joined by a homotopy to $f_2 : \overline{B(0,r)} \to C^1([a,b], \mathbb{R}^k)$ given by $f_2(u) = u - \lambda m_i T \Phi_0(u) - u_0$, where u_0 is given in (A3); the homotopy $h_2 : [0,1] \times \overline{B(0,r)} \to C^1([a,b], \mathbb{R}^k)$ is given by $h_2(t,u) = u - \lambda m_i T \Phi_0(u) - tu_0$.

We now show that $h_2(t, u) \neq 0$ for $t \in (0, 1]$ and $u \in \overline{B(0, r)}$. Assume, contrary to our claim, that $h_2(t, u) = 0$. Then

$$u - \lambda m_i T \Phi_0(u) = t u_0,$$

$$\langle u, u_0 \rangle_k - \lambda m_i \langle T \Phi_0(u), u_0 \rangle_k = t \langle u_0, u_0 \rangle_k.$$

 So

$$\begin{aligned} 0 &< \langle u, u_0 \rangle_k - \lambda m_i \langle T \Phi_0(u), u_0 \rangle_k = \langle u, u_0 \rangle_k - \frac{\lambda m_i}{\mu_0} \langle \Phi_0(u), u_0 \rangle_k \\ &\leq \int_a^b \sum_{i=1}^k |u_i(t)| \, |u_{0,i}(t)| \, dt - \frac{\lambda m_i}{\mu_0} \int_a^b \sum_{i=1}^k \varphi_{0,i}(t, u(t), u'(t)) u_{0,i}(t) \, dt \\ &\leq \int_a^b \sum_{i=1}^k |u_i(t)| \, |u_{0,i}(t)| \, dt - \frac{\alpha \lambda m_i}{\mu_0} \int_a^b \sum_{i=1}^k |u_i(t)| \, |u_{0,i}(t)| \, dt \\ &= \left(1 - \frac{\alpha \lambda m_i}{\mu_0}\right) \int_a^b \sum_{i=1}^k |u_i(t)| \, |u_{0,i}(t)| \, dt. \end{aligned}$$

Hence $\lambda < \max \Lambda / \alpha m_i$, a contradiction. So $f_1(\lambda, \cdot) \sim f_2$ and $f_2(u) \neq 0$ for $u \in \overline{B(0, r)}$. Hence $\deg(f_2, B(0, r), 0) = 0$ and $s[f, \min \Lambda / m_i, \max \Lambda / m_i] = -1$.

By Theorem 1 there exists a noncompact component

$$\mathcal{C} \subset \mathcal{R}_f \cup \left(\left[\frac{\min \Lambda}{m_i}, \frac{\max \Lambda}{m_i} \right] \times \{0\} \right)$$

containing $[\min \Lambda/m_i, \max \Lambda/m_i] \times \{0\}$. Now we show that there exists a sequence $\{(\lambda_n, u_n)\} \subset \mathcal{C}$ such that $||u_n||_k \to \infty$. Assume, contrary to our claim, that $\{u_n\}$ is bounded. Then, because \mathcal{C} is not compact, either $\lambda_n \to 0$ or $\lambda_n \to \infty$.

First consider the case of $\lambda_n \to 0$. Since $\{u_n\}$ is bounded, $\{T\Psi(\lambda_n, u_n)\}$ has a convergent subsequence. Because $u_n = \lambda_n T \Phi(u_n)$ for large $n \in \mathbb{N}$, the corresponding subsequence of $\{u_n\}$ converges to 0. But this contradicts our earlier observation that for $u_n \to 0$, the sequence $\{\lambda_n\}$ cannot converge to 0.

Now let $\lambda_n \to \infty$. We may assume that $\Psi(\lambda_n, u_n) = \lambda_n m_j T \Phi_0(u_n)$, so $u_n = \lambda_n m_j T \Phi_0(u_n)$. By (A2), $\lambda_n \in \{\lambda/m_j \mid \lambda \in \Lambda\}$, which contradicts $\lambda_n \to \infty$.

So there exists a sequence $\{(\lambda_n, u_n)\} \subset C$ such that $||u_n||_k \to \infty$. We now show that $\lambda_n \to \lambda_0 \in \{\lambda/m_j \mid \lambda \in \Lambda\}$. Assume that $\lambda_n \to \lambda_0 \in [0, \infty)$. Then

$$u_n = T\Psi(\lambda_n, u_n),$$
$$u_n = \lambda_n q_1(\lambda_n) T(\Phi(u_n) - m_j \Phi_0(u_n)) + \lambda_n (q_1(\lambda_n) + q_2(\lambda_n)) m_j T\Phi_0(u_n)$$

and if we set $v_n = u_n / ||u_n||_k$, then

$$v_n = \lambda_n q_1(\lambda_n) T \frac{\Phi(u_n) - m_j \Phi_0(u_n)}{\|u_n\|_k} + \lambda_n m_j T \Phi_0(v_n).$$

Observe that the set $\{\Phi(u_n) - m_j \Phi_0(u_n)\}$ is integrably bounded. Hence $\frac{1}{\|u_n\|_k} T(\Phi(u_n) - m_j \Phi_0(u_n)) \to 0$ in $C^1([a, b], \mathbb{R}^k)$. Because $\{\Phi_0(v_n)\}$ is integrably bounded as well, $\{T\Phi_0(v_n)\}$ has a convergent subsequence. So we may assume that $v_n \to v_0$ and then

$$v_0 = \lambda_0 m_j T \Phi_0(v_0)$$

for $v_0 \neq 0$. This implies $\lambda_0 \in \{\lambda/m_j \mid \lambda \in \Lambda\}$.

Because $\{\lambda/m_1 \mid \lambda \in A\} \subset (1, \infty)$ and $\{\lambda/m_2 \mid \lambda \in A\} \subset (0, 1)$, there must exist pairs $(\lambda_1, u_1), (\lambda_2, u_2) \in \mathcal{C}$ such that $\lambda_1 < 1 < \lambda_2$. From the connectedness of \mathcal{C} we conclude that there exists $(1, u) \in \mathcal{C}$. Because $1 < \nu$, the function u is a solution of (2.4). \Box

3. Examples. In this section we give examples of Carathéodory maps $\varphi_0 : [a,b] \times \mathbb{R}^k \times \mathbb{R}^k \to \mathbb{R}^k$ satisfying (A1)–(A3), so leading to different versions of Theorem 2. First, we recall the basic spectral properties of the scalar linear Sturm-Liouville problem (cf. [H])

(3.1)
$$\begin{cases} v''(t) + \lambda v(t) = 0 & \text{for } t \in [a, b], \\ l_s(v) = 0, \end{cases}$$

where $v \in C^1[a, b], \lambda \in \mathbb{R}$ and $l_s : C^1[a, b] \to \mathbb{R}^1 \times \mathbb{R}^1$ is given by (cf. (1.2))

$$l_s(v) = (v(a)\sin\alpha_s - v'(a)\cos\alpha_s, v(b)\sin\beta_s + v'(b)\cos\beta_s).$$

Problem (3.1) has a minimal eigenvalue $\mu_s \in \mathbb{R}$. Let v_0 denote an eigenvector associated with μ_s . Then $\mu_s \in (0, \infty)$ and v_0 does not change sign in (a, b). Additionally $|v_0|$ is the only nonzero and nonnegative solution of (3.1).

Let $\varphi_0 : \mathbb{R}^k \to \mathbb{R}^k$ be given by $\varphi_0(x_1, \ldots, x_k) = (\xi_1 |x_1|, \ldots, \xi_k |x_k|)$, where $\xi_1, \ldots, \xi_k \in [0, \infty)$ for $\xi_1^2 + \cdots + \xi_k^2 > 0$, and let $\Lambda = \{\mu_s / \xi_s \mid \xi_s > 0, s = 1, \ldots, k\}$.

THEOREM 3. Let φ_0 be as above. Assume moreover $0 < m_1 < \min \Lambda \le \max \Lambda < m_2$ and the Carathéodory map $\varphi : [a, b] \times \mathbb{R}^k \times \mathbb{R}^k \to \mathbb{R}^k$ satisfies

$$\begin{aligned} \forall_{\varepsilon>0} \ \exists_{\delta>0} \ \forall_{(x,y)\in\mathbb{R}^{2k}} \ \forall_{t\in[a,b]} \\ & |x|+|y| \le \delta \ \Rightarrow \ |\varphi(t,x,y)-m_i\varphi_0(t,x,y)| \le \varepsilon(|x|+|y|), \\ \forall_{\varepsilon>0} \ \exists_{R>0} \ \forall_{(x,y)\in\mathbb{R}^{2k}} \ \forall_{t\in[a,b]} \\ & |x|+|y| \ge R \ \Rightarrow \ |\varphi(t,x,y)-m_j\varphi_0(t,x,y)| \le \varepsilon(|x|+|y|), \end{aligned}$$

where (i, j) = (1, 2) or (2, 1). Then there exists a nonzero solution of

$$\begin{cases} u''(t) + \varphi(t, u(t), u'(t)) = 0 & \text{for a.e. } t \in (a, b), \\ l(u) = 0, \end{cases}$$

where $l: C^1([a, b], \mathbb{R}^k) \to \mathbb{R}^k \times \mathbb{R}^k$ is given by (1.2).

Proof. By Theorem 2 it is enough to check that φ_0 satisfies (A1)–(A3). Condition (A1) is obvious.

We show that if (λ, u) is a solution of (1.2) such that $u \neq 0$, then $\lambda \in \Lambda$. If $u \neq 0$ then there exists $s \in \{1, \ldots, k\}$ such that $u_s \neq 0$ and

$$\begin{cases} u_s''(t) + \lambda \xi_s |u_s(t)| = 0 & \text{for a.e. } t \in (a, b), \\ l_s(u_s) = 0. \end{cases}$$

From the maximum principle (cf. [PW]) we conclude that $u_s \ge 0$, so $\lambda \xi_s = \mu_s$. This implies $\xi_s \ne 0$ and $\lambda \in \Lambda$.

Because the set Λ is finite and nonempty, condition (A2) is satisfied as well.

Let $s \in \{1, \ldots, k\}$ be such that $\xi_s > 0$ and (μ_s, v_0) is a solution of (3.1) such that $v_0(t) > 0$ for $t \in (a, b)$. Let $u_0 = (0, \ldots, v_0, \ldots, 0)$, where the sth coordinate is the only nonzero one. Observe that

$$\sum_{l=1}^{k} \varphi_{0,l}(t,x) u_{0,l}(t) = \xi_s |x_s| v_0(t) = \xi_s \sum_{l=1}^{k} |x_l| |u_{0,l}(t)|.$$

Hence condition (A3) is satisfied as well. \blacksquare

Now consider the scalar (k = 1) Picard problem. Fix $m \in \mathbb{N}$ and let $\varphi_m : [0, \pi] \times \mathbb{R}^1 \to \mathbb{R}^1$ be given by

(3.2)
$$\varphi_m(t,x) = \begin{cases} |x| & \text{if } \sin(mt) \ge 0, \\ -|x| & \text{if } \sin(mt) < 0. \end{cases}$$

LEMMA 1. There exists a constant r > 0 such that if $(\lambda, u) \in (0, \infty) \times C^{1}[a, b]$ is a solution of

(3.3)
$$\begin{cases} u''(t) + \lambda \varphi_m(t, u(t)) = 0 & \text{for a.e. } t \in [0, \pi], \\ u(0) = u(\pi) = 0, \end{cases}$$

such that $u \neq 0$, then $\lambda \in [r, m^2]$.

Proof. First observe that for $\lambda = 0$ problem (3.3) has no solution $u \neq 0$. Also, there is no sequence $\{(\lambda_u, u_n)\} \subset (0, \infty) \times C^1([a, b], \mathbb{R}^k)$ such that $\lambda_n \to 0$ and $u_n \neq 0$ (see the remark after (A3)).

From steps (A)–(D) of Lemma 3.1 of [G] we conclude that all zeroes of u are isolated (in the set of zeroes of u), and at each of them u changes sign. Assume now, contrary to our claim, that $\lambda > m^2$. By (A) of the above mentioned Lemma 3.1 of [G] we can see that if $u(t) \sin mt < 0$, then

(
$$\mathcal{E}$$
) $u(t) = Ae^{\sqrt{\lambda}t} + Be^{-\sqrt{\lambda}t},$

and if $u(t) \sin mt > 0$, then

(*T*)
$$u(t) = A\sin(\sqrt{\lambda}t) + B\cos(\sqrt{\lambda}t)$$

for some constants $A, B \in \mathbb{R}$. We see that if $\lambda > m^2$, then half the period of (\mathcal{T}) is less than π/m . So if there exists $t_0 \in (l\pi/m, (l+1)\pi/m)$ such that $u(t_0) \sin mt_0 > 0$, then the interval $(l\pi/m, (l+1)\pi/m)$ contains a zero of u. Thus for any $l \in \{1, \ldots, m\}$ there exists a left hand neighbourhood of $l\pi/m$ such that u restricted to this neighbourhood is given by (\mathcal{E}) . So there must exist $t_0 \in ((m-1)\pi/m, \pi)$ such that u is given by (\mathcal{E}) in (t_0, π) and $u(t_0) = u(\pi) = 0$. This implies that u = 0 for $t \in (t_0, \pi)$, which contradicts the fact that all zeroes of u are isolated (in the set of zeroes of u).

THEOREM 4. Let $\varphi_m : [0, \pi] \times \mathbb{R}^1 \to \mathbb{R}^1$ be given by (3.2), $r_0 = \inf\{\lambda \in (0, \infty) \mid \exists_{u \in C^1([a,b],\mathbb{R}^k)} \ u \neq 0 \text{ and } (\lambda, u) \text{ is a solution of (3.3)}\}$ and $0 < m_1 < r_0 \le m^2 < m_2$. Assume moreover the Carathéodory map $\varphi : [a,b] \times \mathbb{R}^1 \times \mathbb{R}^1 \to \mathbb{R}^1$ satisfies $\forall z \ge 0, \exists z \ge 0, \forall z \ge 0, \exists z \ge \forall z \le 0, \exists z \ge \forall z \le 0, \exists z \ge 0, \exists z$

$$\begin{aligned} \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall (x,y) \in \mathbb{R}^2 \ \forall t \in [0,\pi] \\ & |x| + |y| \le \delta \ \Rightarrow \ |\varphi(t,x,y) - m_i \varphi_m(t,x)| \le \varepsilon(|x| + |y|), \\ \forall_{\varepsilon > 0} \ \exists_{R > 0} \ \forall_{(x,y) \in \mathbb{R}^2} \ \forall_{t \in [0,\pi]} \\ & |x| + |y| \ge R \ \Rightarrow \ |\varphi(t,x,y) - m_j \varphi_m(t,x)| \le \varepsilon(|x| + |y|), \end{aligned}$$

for (i, j) = (1, 2) or (2, 1). Then there exists a nonzero solution of the problem

$$\begin{cases} u''(t) + \varphi(t, u(t), u'(t)) = 0 & \text{for a.e. } t \in (a, b), \\ u(0) = u(\pi) = 0. \end{cases}$$

Proof. First observe that $r_0 > 0$ by Lemma 1, and condition (A2) is satisfied.

Condition (A1) is obvious. Because $(m^2, \sin mt)$ is a solution of (3.3), if $u_0(t) = \sin mt$, then

$$\varphi_0(t, x)u_0(t) = |x| |\sin mt|,$$

which proves (A3).

REMARK (cf. [G]). For m = 2 we have $r_0 = \lambda^*$, where $\lambda^* \in (1, 4)$ is the only solution of $\tan(\sqrt{\lambda^*} \pi/2) = -\tanh(\sqrt{\lambda^*} \pi/2)$.

References

- [CH] N.-S. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer, 1982.
- [G] J. Gulgowski, A global bifurcation theorem with applications to nonlinear Picard problems, Nonlinear Anal. 41 (2000), 787–801.
- [H] P. Hartman, Ordinary Differential Equations, Birkhäuser, Boston, 1982
- [LS] V. K. Le and K. Schmitt, Global Bifurcation in Variational Inequalities, Springer, New York, 1997
- [PW] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer, New York, 1984.
- [P] T. Pruszko, Some applications of the topological degree theory to multi-valued boundary value problems, Dissertationes Math. 229 (1984).

Institute of Mathematics University of Gdańsk Wita Stwosza 57 80-952 Gdańsk, Poland E-mail: dzak@math.univ.gda.pl

 $Reçu \ par \ la \ Rédaction \ le \ 14.4.2003 \tag{1439}$