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On time reparametrizations and isomorphisms
of impulsive dynamical systems

by Krzysztof Ciesielski (Kraków)

Abstract. We prove that for a given impulsive dynamical system there exists an
isomorphism of the basic dynamical system such that in the new system equipped with
the same impulse function each impulsive trajectory is global, i.e. the resulting dynamics
is defined for all positive times. We also prove that for a given impulsive system it is
possible to change the topology in the phase space so that we may consider the system as
a semidynamical system (without impulses).

0. Introduction. The problem of isomorphisms of dynamical systems
is of fundamental importance. In isomorphisms we may reparametrize time,
transform homeomorphically the phase space or do both. Several results on
isomorphisms of dynamical systems are known, in particular (under suitable
assumptions) one can treat a local system as a global one ([Ca]).

In an impulsive dynamical system, impulsive trajectories with an infinite
number of impulses (discontinuities) give much of the flavour of impulsive
systems. For such a trajectory, the motion of a point x is defined in an
interval [0, αx), where αx need not be +∞. From the point of view of im-
pulsive systems, the trajectories with an infinite number of impulses and
with domain [0,+∞) are of special interest (cf. for instance [K1], [K3], [K4],
[LBS]).

In this paper, we show that under some natural assumptions we can
find a time reparametrization of the dynamical system which is a basic
system for the impulsive system under investigation (and, consequently, an
isomorphism of that system) so that the resulting impulsive system satisfies
the above condition, i.e. the impulsive motion is defined for all positive
times, for any x. We do not change the impulse function and the space, the
isomorphism only changes the “speed” on the trajectories of the original
system.
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Simultaneously, we show that (under the same assumptions) it is pos-
sible to modify the topology in the phase space in such a way that the
discontinuities in the impulse function disappear. So, instead of an impul-
sive dynamical system we obtain a semidynamical system where the phase
space is the same, but equipped with another topology. We improve the
structure of the system but we can get a “worse” topology. The new topol-
ogy is the same as the original one in a small neighbourhood of each point
which is neither an impulse point nor the image of one. This new topology
is obtained as a quotient topology induced by an upper semicontinuous de-
composition of the suitably modified phase space. We give a necessary and
sufficient condition for metrizability of the new topology.

Analogous theorems also hold for impulsive systems given by semidy-
namical systems with global backward extensions.

To prove our theorems, we use some advanced results of general topol-
ogy and some theorems from the theory of dynamical systems. Impulsive
systems are defined on metric spaces. On the basis of a given system, the
impulse set and the properties of sections we “cut” the phase space and
“glue” it in a suitable way to construct a new phase space, using, in partic-
ular, metrization theorems and upper semicontinuous decompositions. The
resulting topological space need not be metrizable. However, it satisfies the
assumptions of Carlson’s theorems on isomorphisms, so we may apply them
to obtain a time reparametrization and then come back to the original metric
space.

Along the way we prove that if two dynamical systems are isomorphic as
semidynamical systems then they are also isomorphic as dynamical systems.
We also show that if a semidynamical (or dynamical) system is isomorphic
as a pseudo-system to another pseudo-system and this isomorphism satisfies
some natural conditions (in particular, the continuity conditions required in
the definition of non-pseudo-systems), then the other pseudo-system is a sys-
tem (semidynamical or dynamical) and the isomorphism is an isomorphism
of (non-pseudo) systems. These results are not connected with impulsive
systems but they seem to be interesting for the general theory of dynamical
systems.

1. Preliminaries. In a topological space X we define a local semidy-
namical system (a local semiflow) (X,π) if π is a function with domain
domπ ⊂ R+ ×X and with values in X satisfying the following conditions:

• for any x ∈ X there is an ωx ∈ (0,+∞] such that π(t, x) is defined for
t ∈ [0, ωx) (the local existence axiom),
• π(0, x) = x for any x ∈ X (the initial value axiom),
• π(t, π(s, x)) = π(t+s, x) for all t, s ∈ R, x ∈ X (the semigroup axiom),
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• domπ is open in R+ ×X (Kamke’s axiom),
• π is continuous (the continuity axiom).

Replacing R+ by R and the intervals [0, ωx) by (αx, ωx) where −∞ ≤
αx < 0 we get the definition of a local dynamical system (a local flow). If
domπ = R+ × X (resp. R × X) we speak about a semidynamical (resp.
dynamical) system. Without the continuity axiom and Kamke’s axiom we
speak about a pseudo-dynamical (resp. pseudo-semidynamical) system (pos-
sibly local).

We define a positive trajectory of x as π+(x) = π([0,+∞)×{x}). A seg-
ment of the trajectory is the set π(∆,x), where ∆ is a bounded interval.

In a semidynamical system, we set F (t, y) = {z ∈ X : π(t, z) = y} for
t ≥ 0 and y ∈ X. In an analogous way we define F (∆,D) for ∆ ⊂ [0,+∞)
and D ⊂ X. A point x ∈ X is said to be a start point if F (t, x) = ∅
for all t > 0. A function σ : (α, 0] → X is called a left maximal solu-
tion through x if σ(0) = x, π(t, σ(s)) = σ(t + s) whenever s, t + s ∈ (α, 0]
and t ≥ 0, and σ is maximal (with respect to inclusion) with these prop-
erties. For a semidynamical system without start points, by the negative
escape time of x we mean N(x) = inf{α > 0 : (−α, 0] is the domain of
a left maximal solution through x}. For this definition and some remarks
on it, see [MC], [CO], [C1]. A semidynamical system is said to be a system
with global backward extension if it has no start point and N(x) = +∞ for
any x ∈ X. Any dynamical system is a semidynamical system with global
backward extension. For some comments on this kind of systems, see [E1],
[E2], [EK].

A semidynamical system is said to be a system with negative uniqueness
(or with negative unicity , see e.g. [BH]) if F (t, x) has at most one element
for any t > 0 and x ∈ X. It is easy to verify that for a semidynamical system
with negative uniqueness we have N(x) = sup{t ≥ 0 : F (t, x) 6= ∅}. In a
semidynamical system (X,πi) we write Fi(·, ·) instead of F (·, ·) (i ∈ N).

For the elementary properties of dynamical systems and semidynamical
systems, see [BH], [BS], [NS], [P1], [P2], [V].

Two local dynamical (or semidynamical) systems (X,π1) and (X,π2) are
isomorphic if there exists a continuous function χ from domπ1 to R (or R+)
which satisfies the following conditions:

• χ(0, x) = 0 for any x ∈ X,
• π1(t, x) = π2(χ(t, x), x) for every t, s ∈ R (or R+) and x ∈ X,
• for any x ∈ X the function χx = χ(·, x) is an increasing homeo-

morphism from (α1
x, ω

1
x) to (α2

x, ω
2
x) (or from [0, ω1

x) to [0, ω2
x)), where

αix, ω
i
x are as in the local existence axiom,

• χ is continuous.

The function χ is called a time reparametrization.
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Remark. We may also consider more general isomorphisms, i.e. be-
tween systems on two phase spaces X and Y and involving also a homeo-
morphism between X and Y . The definition presented above is a particular
case of the general one, formulated in the case where we consider the sys-
tems on the same space and the homeomorphism equal to identity. Thus
the results on the existence of such isomorphism give more, as we prove
the existence of a system where we do not change the space, we have only
a time reparametrization. All such results are certainly applicable also for
more general isomorphisms. Some important existence results were obtained
just for isomorphisms where we only reparametrize time (cf. [Ca], [MC]).

Let us recall one of the fundamental results of Carlson ([Ca]). We present
it in the form which will be of use in this paper.

Theorem 0. Let X be a topological space such that [0,1]×X is normal
and let (X,π0) be a local dynamical (resp. semidynamical) system. Then
there exists a global dynamical (resp. semidynamical) system (X,π1) isomor-
phic to (X,π0) such that the time reparametrization χ :R×X→R (resp. χ :
R+×X→R+) satisfies |χ(t,x)|≥|t| (resp. χ(t,x)≥ t) for all (t,x)∈domπ0 .

For more information on isomorphisms of dynamical systems, the reader
is referred to [AV], [Ca], [MC], [U1]–[U3], [UE].

An impulsive system (X,π,M, I) consists of a semidynamical (possibly
dynamical) system (X,π) on a metric space together with a nonempty closed
subset M of X and a continuous function I : M → X. We assume that for
each x ∈ M there is an εx > 0 such that π((−εx, 0), x) ∩ M = ∅ and
π((0, εx), x) ∩M = ∅ in the case of dynamical systems, and F ((0, εx), x) ∩
M = ∅ and π((0, εx), x) ∩ M = ∅ in the case of semidynamical systems.
These conditions mean that the points of M are isolated on every trajectory
of the system (X,π). We call M the impulse set and I the impulse function.
We set M⊕(x) = (π+(x) ∩M) \ {x}.

We define a function φ : X → (0,+∞] in the following way. If M⊕(x) = ∅
then φ(x) = +∞. If M⊕(x) 6= ∅ then φ(x) is defined as the number s such
that π(t, x) /∈ M for t ∈ (0, s) and π(s, x) ∈ M (i.e. φ(x) is the smallest
positive time for which the positive trajectory of x meets M). For x ∈ M
we call the point π(φ(x), x) the impulse point of x.

The trajectory π̃+(x) of a point x is defined as follows. We start from x.
If M⊕(x) = ∅ then we put π̃(s, x) = π(s, x) for any s ≥ 0. If M⊕(x) 6= ∅
then we put π̃(s, x) = π(s, x) for s < φ(x) and π̃(φ(x), x) = I(π(φ(x), x)).
Then we continue the procedure starting from π̃(φ(x), x) and so on.

For x ∈ X, we set

x1 = π(φ(x), x), x1+ = π̃(φ(x), x) = I(π(φ(x), x)) = I(x1),

x2 = π(φ(x1+), x1+), x2+ = π̃(φ(x1+), x1+) = I(π(φ(x1+), x1+)) = I(x2)
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and so on. Thus, for any x ∈ X exactly one of the following three conditions
holds:

(i) M⊕(x) = ∅,
(ii) for some n ≥ 1: xk+ is defined for k = 1, . . . , n and M⊕(xn+) = ∅,
(iii) for any k ≥ 1: xk+ is defined and M⊕(xk+) 6= ∅.

For any x∈X we define the escape time ω̃(x) as sup{s : π̃(s, x) is defined}.
Clearly, if x satisfies (i) or (ii) then ω̃(x) = +∞. If x satisfies (iii) then

either ω̃(x) = +∞ or ω̃(x) ∈ (0,+∞).
In the impulsive system (X,πi,M, I) we denote the escape time of x by

ω̃i(x) (i ∈ N).
For more information on impulsive systems, see [C2], [C3], [K1]–[K4],

[LBS].
For a dynamical system (X,π) and λ > 0 a set S containing x is called a

section, or a λ-section, through x if US = π((−λ, λ), S) is a neighbourhood
(not necessarily open) of x and for every y ∈ U there are unique z ∈ S and
unique t ∈ (−λ, λ) with π(t, z) = y (see for instance [BS], [NS], [C4]). The
set US is then called a tube (given by the section S) through x.

For a semidynamical system (X,π) and λ > 0 a closed set S containing
x is called a section, or a λ-section, through x if there exists a closed set
L such that F (λ,L) = S, F ([0, 2λ], L) is a neighbourhood (not necessarily
open) of x and F (µ,L) ∩ F (ν, L) = ∅ for 0 ≤ µ < ν ≤ 2λ. We then call
F ([0, 2λ], L) a tube, or λ-tube, and L a bar. This agrees with the previous
definition in the case of dynamical systems (cf. [C4]). In [C4] an existence
theorem for sections is proved.

For the following conditions (TC) and (STC), assume we are given an
impulsive system with impulse set M .

A tube US given by a section S through x such that S ⊂ M ∩ US will
be called a TC-tube through x. We will say that x ∈M satisfies (TC) (Tube
Condition) if there exists a TC-tube through x.

A tube US given by a section S through x such that S = M ∩ US will
be called an STC-tube through x. We will say that a point x ∈ M satisfies
(STC) (Strong Tube Condition) if there exists an STC-tube through x.

For some comments concerning these definitions, see [C2] (cf. also [K1]).
In a metric space X, we denote by B(x, ε) the open ball of radius ε

centred at x. In this paper a neighbourhood of x need not be an open set.
We say that two topologies τ1, τ2 on X are locally identical at x ∈ X if they
have a common neighbourhood basis at x.

2. Three lemmas

Lemma 1. Let (X,π0) be a dynamical system and (X,π1) be a semi-
dynamical system with negative uniqueness such that N(x) = +∞ for any
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x ∈ X. Assume that χ : R+ × X → R+ is a time reparametrization giv-
ing an isomorphism of (X,π0) and (X,π1) as semidynamical systems. Then
(X,π1) is a dynamical system and (X,π0) and (X,π1) are isomorphic as
dynamical systems. There exists a time reparametrization ψ : R × X → R
such that ψ|R+×X = χ.

From Lemma 1 we have an immediate

Corollary 1. Let (X,π0) and (X,π1) be dynamical systems. Assume
that χ : R+ ×X → R+ is a time reparametrization giving an isomorphism
of (X,π0) and (X,π1) as semidynamical systems. Then (X,π0) and (X,π1)
are isomorphic as dynamical systems. There exists a time reparametrization
ψ : R×X → R such that ψ|R+×X = χ.

Remark. Lemma 1 gives, in particular, a condition under which a semi-
dynamical system with negative uniqueness gives a dynamical system. There
are other such conditions: if X is first countable and locally compact, the
suitable theorem was proved in [C1]; if X is a manifold, the result is due to
O. Hajek (see [Ha]).

Proof of Lemma 1. We have π0(t, x) = π1(χ(t, x), x), χ(0, x) = 0 for
t ≥ 0, x ∈ X, and χ(·, x) : R+ → R+ is a homeomorphism for any x. Define

ψ(t, x) =

{−χ(−t, π0(t, x)) for t ≤ 0,

χ(t, x) for t ≥ 0.

The continuity of ψ and the condition ψ|R+×X = χ are obvious. Now we
show that π0(t, x) = π1(ψ(t, x), x) for any t and x. We need to verify this for
t < 0. Let p = π1(−χ(−t, π0(t, x)), x). Then π1(χ(−t, π0(t, x)), p) = x, x ∈
π+

1 (x) = π+
0 (x) and p = π0(−s, x) for some s ≥ 0. Set α = χ(−t, π0(t, x)).

Then we have π1(α, π0(−s, x)) = x. Moreover, π1(χ(−t, π0(t, x)), π0(t, x)) =
π0(−t, π0(t, x)) = x, so π1(α, π0(t, x)) = x. Thus p = π0(−s, x) = π1(−α, x)
= π0(t, x), which is our claim.

It remains to prove that ψ(·, x) : R→ R is a homeomorphism for any x.
We know that ψ(·, x)|[0,+∞) is a homeomorphism from R+ to R+.

We first show that ψ(·, x)|(−∞,0] is injective. Let ψ(t, x) = ψ(s, x). Then
−χ(−t, π0(t, x)) = −χ(−s, π0(s, x)) and

π0(t, x) = π1(−χ(−t, π0(t, x)), x) = π1(−χ(−s, π0(s, x)), x) = π0(s, x).

Consequently, −χ(−t, π0(t, x)) = −χ(−s, π0(s, x)) as −t,−s ≥ 0 and there-
fore t = s.

Since ψ(0, x) = x we conclude that ψ(·, x) is an increasing bijection from
(−∞, 0] to (ι, 0] for some ι. Now we need only show that ι = −∞. Fix β < 0
and x ∈ X. We have to prove that there exists a u < 0 with ψ(u, x) = β.

There is a z such that π1(β, x) = z.
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First assume that z is stationary in the system π1, i.e. π1(v, z) = z
for any v ≥ 0. Then so is x = π1(−β, z). For t < 0 we have ψ(t, x) =
−χ(−t, π0(t, x)) =−χ(−t, x), so ψ([0,+∞), x) =−χ([0,+∞), x) = (−∞, 0].

Now suppose z is non-stationary. Again, x = π1(−β, z) ∈ π+
1 (z) = π+

0 (z),
so there is an s ≥ 0 such that x = π0(s, z) = π1(χ(s, z), z).

In the case where π1(·, z) is injective on [0,+∞) in view of the above
reasoning we have −β = χ(s, z), so β = −χ(s, z) = −χ(s, π0(−s, x)) =
ψ(−s, x).

The last case to consider is when z is periodic for π1, i.e. there is a
T > 0 such that π1(T, z) = z. Here −β = χ(s, z) + kT for some in-
teger k. Then π1(χ(s, z) + kT, z) = π1(−β, z) and there exists a v ≥ 0
with χ(v, z) = χ(s, z) + kT = −β as χ(·, z) : R+ → R+ is a homeo-
morphism. Thus π1(χ(v, z), z) = π1(χ(s, z) + kT, z) = π1(χ(s, z), z) and
further x = π0(s, z) = π1(χ(s, z), z) = π1(χ(v, z), z) = π0(v, z), which im-
plies that z = π0(−v, x) as π0 is a dynamical system. Finally, we have
β = −χ(v, z) = −χ(v, π0(−v, x)) = ψ(−v, x). The proof is complete.

Remark. Note that the time reparametrization χ obtained in Lemma 1
need not be unique. It is enough to consider the trivial example with one-
point space {x}. Then for a given χ : R+ → R+ any increasing homeomor-
phism ψ : R→ R satisifes the required condition provided that ψ|R+ = χ.

Lemma 2. Let (X,π0) be a semidynamical system and (X,π1) a pseudo-
semidynamical system. Let χ : R+ ×X → R+ be as in the definition of an
isomorphism of semidynamical systems. Assume also that χ(t, x) ≥ t for
any t, x. Then π1 is continuous, i.e. (X,π1) is a semidynamical system, and
it is isomorphic to (X,π0) as a semidynamical system.

Proof. Let sn → s and xn → x. For each n there exists a unique tn
such that sn = χ(tn, xn). We have 0 ≤ tn ≤ sn, so (tn) is bounded as (sn) is
convergent. We claim that (tn) is convergent. If not, there are two convergent
subsequences (tnk) and (tnj ) of (tn) with tnk → t′ and tnj → t′′, t′ 6= t′′.
However, snk = χ(tnk , xnk) → χ(t′, x) and snj = χ(tnj , xnj ) → χ(t′′, x), so
s = χ(t′, x) = χ(t′′, x) as sn → s. This gives a contradiction, as χ(·, x) is
bijective. Let tn → t. Then χ(t, x) = s as sn = χ(tn, xn)→ χ(t, x).

To finish the proof we note that

π1(sn, xn) = π1(χ(tn, xn), xn) = π0(tn, xn)→ π0(t, x)

= π1(χ(t, x), x) = π1(s, x).

Remark. The assumption χ(t, x) ≥ t seems to be artificial. Neverthe-
less, it is used in the proof. It would be possible to prove the lemma without
this assumption using the equality χ(α + β, x) = χ(β, z) + χ(α, π0(β, x)).
However, it may not be true. It is not difficult to prove this equality for
a regular point x (a point x is regular if π(·, x) is injective). This equality
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is important in some aspects of the theory of isomorphisms of dynamical
systems (see [AV, 2.4]).

Corollary 2. Let (X,π0) be a dynamical system and (X,π1) a pseudo-
dynamical system. Let χ : R×X → R be as in the definition of an isomor-
phism of dynamical systems. Assume also that χ(t, x) ≥ t for any x and
t ≥ 0. Then π1 is continuous, i.e. (X,π1) is a dynamical system, and it is
isomorphic to (X,π0) as a dynamical system.

Proof. By Lemma 2, (X,π1) is a semidynamical system with negative
uniqueness; moreover, N(x) = +∞ for each x. Now apply Lemma 1.

Remark. We may define isomorphism between pseudo-semidynamical
systems by replacing the condition that χ(·, x) is a homeomorphism by the
condition that χ(·, x) is bijective and omitting the requirement of the con-
tinuity of χ. Thus Lemma 2 says that if an isomorphism between pseudo-
semidynamical systems (X,π0) and (X,π1) satisfies these two omitted con-
ditions and (X,π0) is a semidynamical system then so is (X,π1). Corollary 2
leads to an analogous assertion for dynamical systems.

Lemma 3. In the impulsive system (X,π,M, I) any segment of trajec-
tory π([t1, t2], x) contains only a finite number of points of M .

Proof. Suppose not. Then we can find an infinite sequence of points of
M ∩ π([t1, t2], x) convergent to some π(s, x). We have π(s, x) ∈ M as M
is closed, which contradicts the condition that points of M are isolated on
each trajectory.

3. Main theorems

Theorem 1. Let X be a metric space and (X,π0,M, I) an impulsive
system given by a dynamical system (or by a semidynamical system with
global backward extension) (X,π0). Assume also that :

(1) I(M) ∩M = ∅,
(2) the map I is closed ,
(3) any x ∈M satisfies (STC).

Then the system (X,π0) is isomorphic to a dynamical (or semidynamical)
system (X,π1) such that in the impulsive system (X,π1,M, I) for any x ∈ X
we have ω̃1(x) = +∞; in other words, there exists a time reparametrization
of (X,π0) which gives (X,π1) with ω̃1(x) = +∞ for each x ∈ X.

Theorem 2. Let X be a metric space and (X,π0,M, I) an impulsive
system given by a dynamical system (or by a semidynamical system with
global backward extension) (X,π0). Assume also that :

(1) I(M) ∩M = ∅,
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(2) the map I is closed ,
(3) any x ∈M satisfies (STC).

Then there exists a topology on X (the space X equipped with this topology

will be denoted by X̃) such that :

(A) the new topology and the original topology on X are locally identical
at any x 6∈M ∪ I(M),

(B) (X̃, π̃0) (where π̃0 is defined by the original impulsive system) is a
local semidynamical system; if (X,π0) is a dynamical system, then

the set of start points of (X̃, π̃0) is equal to M and the induced system

(X̃ \M , π̃0) is a local semidynamical system without start points,
(C) π̃0 = π0 on each segment of any trajectory of π0 provided that this

segment is disjoint from M .

Moreover , (X̃, π̃0) has the following properties:

(a) X̃ is metrizable if and only if I−1(x) is compact for any x,

(b) (X̃, π̃0) is isomorphic to a global system (X̃, π̃1).

The topology on X̃ is obtained as a quotient topology induced by an upper
semicontinuous decomposition of the space X suitably modified.

We will prove both theorems together.

Step 1. Construction of U, U+ and U−. For any x ∈M take a section
Sx through x and an εx ∈ (0, 1) as in the definition of section and condition
(STC). Let Lx be a bar for this section; then Sx = F0(εx, Lx). Define Jx =
F0(εx/2, Lx) and consider Gx = F0((0, εx), Jx). The set Gx is an εx/2-tube
for the section Sx with bar Jx (cf. [C4]). Also Gx is an STC-tube through x.
We have Sx = M ∩Gx .

Note that if (X,π0) is a dynamical system, then we have Gx =
π0((−εx/2, εx/2), Sx).

There exists an open neighbourhood Ux of x with Ux ⊂ F0((0, εx), Jx).
Put

(1.1) U+
x = Ux ∩ F0((0, εx/2), Jx), U−x = Ux ∩ F0((εx/2, εx), Jx).

If (X,π0) is a dynamical system, the above condition gives

U+
x = Ux ∩ π0((0, εx/2), Sx), U−x = Ux ∩ π0((−εx/2, 0), Sx).

We show that

(1.2) U+
x ∩ U−y = ∅ for any x, y ∈M.

Suppose to the contrary that z ∈ U+
x ∩U−y . Thus there are z1 ∈ Sx, z2 ∈ Sy,

α ∈ (0, εx/2) and β ∈ (0, εy/2) such that π0(α, z1) = z and π0(β, z) = z2 (the
existence of α and z1 follows from the property of global backward extension
of (X,π0)). Therefore π0(α+ β, z1) = z2 and α+ β ∈ (0, εx/2 + εy/2).
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If εy < εx then α + β < εx and z2 = π0(α + β, z1) ∈ M ∩ Gx; however,
z2 6∈ Sx, a contradiction.

If εx < εy then α+β < εy and z1 ∈ F0((α+β), z2), so z1 ∈ (M∩Gy)\Sy,
which is also impossible.

Now we define

(1.3)
U =

⋃{Ux : x ∈M},
U+ =

⋃{U+
x : x ∈M}, U− =

⋃{U−x : x ∈M}.
Then:

(1.4) U is a neighbourhood of any x ∈M ,
(1.5) U,U+ and U− are open in X,
(1.6) U = U+ ∪ U− ∪M ,
(1.7) U+, U− and M are pairwise disjoint,
(1.8) for any p ∈ U− there are λ1, λ2 > 0 such that λ1 < λ2, π0([0, λ2), p)

∩ U− = π0([0, λ1), p) and π0(λ1, p) ∈M .

Step 2. Construction of X̂. We define two new sets M+ and M− iso-
metric with M . Roughly speaking, we “double” M . Precisely, let M+ and
M− be disjoint sets, each disjoint from X, such that there exists a function
f : M+ ∪M− →M with the property that f |M+ : M+ →M is an isometry
and f |M− : M− →M is an isometry. We will use f in what follows.

Now we define X̂ = (X \M) ∪M+ ∪M− with the topology generated

by the neighbourhood system {B(x) : x ∈ X̂}, where

B(x) =




{B(x, 1/n) \M : n ∈ N} for x ∈ X \M ,

{(B(f(x), 1/n) ∩ U+) ∪ (B(x, 1/n) ∩M+) : n ∈ N} for x ∈M+,

{(B(f(x), 1/n) ∩ U−) ∪ (B(x, 1/n) ∩M−) : n ∈ N} for x ∈M−,

the balls B(x, 1/n) and B(f(x), 1/n) being considered in the space X.
The verification that this is a neighbourhood base (see e.g. [E, 1.2.3])

is easy. For the property: “if x ∈ G ∈ B(y) then there is a V ∈ B(x) with
V ⊂ G” notice that if y ∈M+ and x ∈M+ ∪M− then x ∈M+.

In this topology, M+ ∪ U+ is a neighbourhood of any x ∈ M+, and
M− ∪ U− is a neighbourhood of any x ∈ M−. The sets M+ and M− are

closed in X̂.

Step 3. Metrizability of X̂. We prove that X̂ is metrizable by using
the Nagata Theorem on metrization ([N]; see also [E, 5.4.F]). It is enough
to prove that

(3.1) X̂ is a T0 space

and that for every x ∈ X̂ there exist sequences K1(x),K2(x), . . . ,K ′1(x),

K ′2(x), . . . of subsets of X̂ satisfying the following conditions:
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(3.2) x ∈ IntKn(x) ∩ IntK ′n(x),
(3.3) for any neighbourhood G of x there exists an n such that Kn(x) ⊂ G,
(3.4) K ′n(x) ∩K ′n(y) = ∅ whenever y 6∈ Kn(x),
(3.5) K ′n(y) ⊂ Kn(x) whenever y ∈ Kn(x).

The condition (3.1) is trivial, as X̂ is obviously a Hausdorff space. Now
we define the families {Kn(x) : n ∈ N} and {K ′n(x) : n ∈ N}. First, let
x 6∈M+ ∪M−. For x 6∈ U put

rx = min{n : B(x, 1/n) ∩M = ∅}, %x = min{1/2n, rx},
for x ∈ U put

rx = min{n : B(x, 1/n) ⊂ U+ \M}, %x = min{1/2n, rx} if x ∈ U+,

rx = min{n : B(x, 1/n) ⊂ U− \M}, %x = min{1/2n, rx} if x ∈ U−,
and for all x 6∈M+ ∪M− set

Kn(x) = (B(x, 1/n) \M) ∪ f−1(B(x, 1/n) ∩M),

K ′n(x) = B(x, %x).

Now let x ∈M+∪M−. Then define rx = min{n : B(f(x), 1/n) ⊂ U}. For
x ∈ M+ denote by x− the unique element of M− such that f(x−) = f(x).
If n ≤ rx put

Kn(x) = (B(f(x), 1/n) \M) ∪ (B(x, 1/n) ∩M+) ∪ (B(x−, 1/n) ∩M−),

K ′n(x) = (B(f(x), 1/2n) \ (M ∪ U−)) ∪ (B(x, 1/2n) ∩M+),

and if n > rx put

Kn(x) = (B(f(x), 1/n) ∩ U+) ∪ (B(x, 1/n) ∩M+),

K ′n(x) = (B(f(x), 1/2n) ∩ U+) ∪ (B(x, 1/2n) ∩M+).

For x ∈M− we define Kn(x) and K ′n(x) analogously.
Now, the conditions (3.2) and (3.3) are obvious. The verification of (3.4)

and (3.5) is not difficult but technical and requires the analysis of many
cases, and is therefore omitted.

Step 4. Construction of X̃. We now define an equivalence relation R
on X̂ by describing its equivalence classes [x] for x ∈ X̂.

Recall that M ∩ I(M) = ∅. If x 6∈M− ∪ I(M) then we set [x] := {x}. If
x ∈ I(M) then [x] := {x} ∪ (M− ∩ f−1(I−1(x))). Finally, if x ∈ M− then
[x] := [I(f(x))]. The idea is to glue any point of I(M) with all the points
from M− which “jump” to that point. The set I−1(x) is closed in M as I
is continuous. Therefore M− ∩ f−1(I−1(x)) is closed in M−, so it is closed

in X̂. Thus the equivalence class of any point is closed, as X̂ is a T1 space.

Now consider the space X̂/R with the quotient topology. We have a

natural bijection between X and X̂/R. Indeed, we can identify the points
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of M with the one-point classes given by suitable points of M+, and the
points of I(M) with the classes given by these points. Thus we can consider

X̂/R with the quotient topology as X with a new topology, which will be

denoted by X̃. In fact, we show that the decomposition of X̂ corresponding
to R is upper semicontinuous (see [CV], [E]).

Step 5. Closedness of the natural map p : X̂ → X̂/R. First we prove

Lemma. Any subset F of X disjoint from M is closed in X if and only

if it is closed in X̂.

Assume that F is closed in X. We need to show that for any y 6∈ F
there exists a V ∈ B(y) with V ∩ F = ∅. Suppose y 6∈ M+ ∪M−. There
is an n such that B(y, 1/n) ∩ F = ∅, so we can set V := B(y, 1/n) \M . If
y ∈ M+ ∪M−, then there exists an n such that B(f(y), 1/n) ∩ F = ∅ and
we set V := B(f(y), 1/n) ∩ U± for y ∈M±.

Conversely, let F be closed in X̂. We need to show that for any y 6∈ F
there exists an n such that B(y, 1/n) ∩ F = ∅. Assume that y 6∈ M . For k
large enough we have B(x, 1/k) \M = B(x, 1/k) as M is closed. Thus for
some large k we have B(y, 1/k) ∩ F = ∅. Now fix y ∈ M . Let y+ ∈ M+

and y− ∈ M− be such that f(y+) = y and f(y−) = y. We can find a k
such that (B(f(y+), 1/k)∩U+)∩F = ∅, (B(f(y−), 1/k)∩U−)∩F = ∅ and
(B(y, 1/k)∩M)∩F = ∅. Therefore (B(y, 1/k)∩U)∩F = ∅. For n sufficiently
large we have B(y, 1/n) ∩ F = ∅ as U is open in X. We have thus proved
the lemma.

From the lemma it follows that I(M) is closed in X̂ as I is closed and

M ∩ I(M) = ∅. Thus I(M) ∪M− is closed in X̂.

Now we show that the restriction of the natural quotient map p : X̂ →
X̂/R to I(M) ∪M− is closed. Take a closed set A ⊂ I(M) ∪M−. Then A
is the disjoint union A− ∪ AI , where A− = M− ∩ A and AI = I(M) ∩ A.

Since AI is closed in I(M), it is closed in X̂, and analogously A− is closed

in X̂. We have p(A−) = I(f(A−)) ∪ (f−1(I−1(I(f(A−)))) ∩M−). The first

summand is closed in X and disjoint from M , so closed in X̂; the second is

closed in M−, so also in X̂. Thus p(A−) is closed in X̂. Moreover, p(AI) =

AI ∪ (f−1(I−1(AI)) ∩M−) is again closed in X̂. Therefore p(A) is closed
and the decomposition of I(M) ∪M− is upper semicontinuous (see [E, 2.4]
or [CV, 18.A.12]).

It follows that p : X̂ → X̂/R is closed. Indeed, by [E, 2.4.13] it is enough

to find a closed subspace Ẑ of X̂ such that R gives a decomposition of X̂

into one-point sets {z} with z ∈ X̂ \ Ẑ and such that the quotient mapping

restricted to Ẑ is closed. We take Ẑ = I(M)∪M−. We have shown that the

decomposition of X̂ corresponding to R is upper semicontinuous.
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Step 6. Normality of X̃×[0, 1]. First notice that X̃ is perfectly normal,
as it is metrizable (see for instance [E, 4.1.13]). Perfect normality is invariant

under continuous closed mappings ([E, 1.5.20]), so X̂/R is also perfectly

normal. Using [E, 5.2.5] we conclude that X̂/R is countably paracompact

and according to [E, 5.2.8] the space X̃ × [0, 1] is normal.

Note that X̃ need not be metrizable. According to the Hanai–Morita–

Stone Theorem ([E, 4.4.17]) applied to p the space X̂/R is metrizable if and

only if the boundary of p−1(y) is compact for any y ∈ X̂/R.
We show that the last property holds if and only if I−1(x) is compact

for any x.

It is enough to consider the case where x ∈ X̂/R is the equivalence class
of a point y ∈ I(M). First note that the closed set M has empty interior.
Therefore for any x the boundary of I−1(x) (which is closed) is equal to
I−1(x).

The set p−1(x) is the union of a one-point-set {y} (y ∈ I(M)) and
a subset Iy of M−. The point y is separated from the closed set M , so
Fr({y} ∪ Iy) = {y} ∪ Iy.

Assume that I−1(y) is compact. Then f−1(I−1(y)) = Iy is compact in

M−, so in X̂. Thus Fr p−1(x) = Iy ∪ {y} is compact in X̂.

Now let Fr p−1(x) = Iy ∪ {y} be compact in X̂. Using the lemma from
Step 5 we get the compactness of Iy and hence of I−1(y).

Step 7. Construction of the semidynamical system (X̃, π̃0). The semi-

trajectory π̃0 of a point x ∈ X̃ is defined for any t ∈ [0, ω̃0(qx)) according to
the construction of π̃0. Note that any x ∈M is a start point of this system.

The initial value axiom and the semigroup axiom for π̃0 are obvious. We
need to show

(7.1) Kamke’s axiom, i.e. the openness of domπ̃0
in R+ × X̃,

(7.2) the continuity of π̃0.

For the proof of (7.1) and (7.2), we need some preparation.
For any y ∈ U− there exist unique py ∈M and unique µy such that py =

π0(µy, y) and π0((0, µy), y)∩M = ∅. Thus we can define g : U− ∪M− →M
and T : U− ∪M− → R by

g(y) =

{
py for y ∈ U−,

f(y) for y ∈M−,
T (y) = µy.

It is easy to verify that g and T are continuous. Therefore I ◦g : U−∪M− →
X \M is continuous. For x ∈ U− ∪M− set h([x]) = I(g(x)). The function
h : (U− ∪M−)/R → X \M is well defined and continuous as I ◦ g = h ◦ p
(see [E, 2.4.2]).
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In the proof of (7.1) and (7.2) the points from X̃ will be considered as

elements of X̂/R.

Step 8. Proof of Kamke’s axiom for (X̃, π̃0). According to [P1, Lemma
1.3.1, Remark 1.3.4] the openness of domπ̃0

is equivalent to the lower semi-

continuity of the escape time function ω∗ : X̃ 3 x 7→ ω∗(x) ∈ (0,+∞].
For any x, we have ω∗(x) = ω̃0(x), but we have different topologies in the
domains of these functions.

Let first x ∈ X\(M∪I(M)). The topologies in X and X̃ are locally iden-
tical at x, so using [C2, 4.4] we conclude that ω∗ is lower semicontinuous at x.

Now let x ∈ I(M). Assume that ω∗([x]) > r. Take xM ∈ I−1(x) ∩M−.
There exists an open neighbourhood V of x which can be represented as the
union V = Vx ∪ V −, where Vx is a neighbourhood of x in X (disjoint from
M) and V − is an open subset of U− ∪M− containing f−1(I−1(x)) ∩M−.
Any neighbourhood contained in V can also be represented in that way.
There exists a neighbourhood Wx of x (contained in V ) such that ω∗(z) > r
for any z ∈ Wx, again by Theorem 4.4 of [C2]. We can find an open subset

Ŵ of (U−∪M−)/R containing [xM ] such that h(Ŵ ) ⊂Wx. If [z] ∈ Ŵ , then
ω∗([z]) ≥ ω∗([g(z)]) = ω̃0(I(g(z))) > r (we have I(g(z)) = h([g(z)]) ∈ Wx).

Take a neighbourhood W = Wx ∪ Ŵ of x; then ω∗(y) > r for any y ∈ W .
We have thus shown the lower semicontinuity of ω∗ at x.

We are left with the case where x ∈ M+. There is a neighbourhood
of [x] consisting only of one-point equivalence classes given by points of
U+ ∪M+. Denote the subset of X consisting of those points by V . Now the
set D = (Uf(x)\U−f(x))∩V is a neighbourhood of f(x) in U+∪M (see Step 1).

Thus D̃ = (f−1(M ∩D)∩M+)∪ (U+
f(x)∩D) is a neighbourhood of [x] in X̃.

Assume now again that ω∗([x]) = ω̃0(f(x)) > r. There is a δ such that
π0(δ, f(x)) ∈ D, π0((0, δ), f(x)) ⊂ U+ and ω̃0(π0(δ, f(x))) > r. Using again
[C.2, 4.4] we can find a neighbourhood W of π0(δ, f(x)) with W ⊂ D and
ω̃0(z) > r for any z ∈ W . Then for any [z] ∈ (F0(δ,W ) ∩ U+) ∪ (f−1(M ∩
F0(δ,W )) ∩M+) we have ω∗([z]) > r + δ > r.

Step 9. Continuity of π̃0

9.1. First take an x ∈ X \ (M ∪ I(M)). The topology in X̃ is locally
identical at [x] with the metric topology on X, so we may use sequences
to check continuity. Let t ≥ 0. By Lemma 3, π̃0([0, t), x) contains only a
finite number of impulse points. If there is none, the continuity at (t, [x])
is obvious. Assume that there is one impulse point with φ(x) = s; we have
π0(s, x) ∈ M , π0([0, s), x) ∩M = ∅. Take sequences tn → t and [xn] → [x];
for large n, [xn] are one-point sets and xn → x.

We show that there exists a sequence (δn) converging to 0 such that
0 < s+ δn < tn, π0(s+ δn, xn) ∈M and π0((0, s+ δn), xn) ∩M = ∅.
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There is a % such that z = π0(s−%, x) ∈ U− and π0([0, s−%), x)∩M = ∅.
Thus we can find an open set W containing π0([0, s − %), x) and disjoint
from M . Therefore for n large enough we have π0([0, s−%), xn)∩M = ∅ and
zn = π0(s− %, xn) ⊂ U−. There exists a sequence (%n) with π0(%n, zn) ∈M
and π0([0, %n), zn) ∩M = ∅ for n sufficiently large. It is easy to prove that
%n → % as π0(%, z) ∈ M and π0([0, %), z) ∩M = ∅ ((%n) is bounded and
cannot have a subsequence convergent to a number different from %). The
sequence δn = %n − % is as required.

Now we conclude that yn = π0(s+ δn, xn)→ π0(s, x). By the continuity
of I we have y+

n → π0(s, x)+ and π̃0(tn, xn) = π0(tn−s−δn, y+
n )→ π0(t−s,

π0(s, x)+) = π̃0(t, x), so [π̃0(tn, xn)]→ [π̃0(t, x)].
When there are more impulse points on π̃([0, t), x) we apply the above

procedure finitely many times.

9.2. For [x] ∈M+/R the proof goes in the same manner.

9.3. Now take [x] for x ∈ I(M) and t > 0 such that π0([0, t], x)∩M = ∅.
Any neighbourhood G̃ of π0(t, x) contains a subset G̃0 consisting only of one-

point equivalence classes such that G0 = {y : [y] ∈ G̃0} is a neighbourhood
of π0(t, x) in X.

There exists a neighbourhood V0 of x and a δ > 0 such that π0((t − δ,
t + δ), V0) ⊂ G0. As in Step 8, we can find a neighbourhood Ŵ0 of [x] in

(U− ∪M−)/R such that I(g(z)) ∈ G0 for any [z] ∈ Ŵ0. Define W1 = {z ∈
U− ∪M− : T (z) < δ/2} = T−1(−∞, δ/2). Then W1 is open in U− ∪M−
and M− ⊂ W1. Thus W̃1 = W1/R is a neighbourhood of M−/R in (U− ∪
M−)/R. Now take Ṽ = Ṽ0∩W̃0∩W̃1. For any [z] ∈ Ṽ and s ∈ (t−δ/2, t+δ/2)

we have π̃0(s, [z]) ∈ G̃0. Indeed, for z ∈ V0 this is obvious. Now take [z] ∈
W̃0 ∩ W̃1. We can find a u ∈ [0, δ/2) with π0(u, z) ∈M , so (π0(u, z))+ ∈ V0.

Now π̃0(s, [z]) = π̃0(s− u, [(π̃0(u, z))+]) ∈ G̃0 as s− u ∈ (t− δ, t+ δ/2).

9.4. For any x and t < ω∗(x), the continuity of π̃0 at (t, x) follows
immediately by applying 9.1–9.3.

We have proved assertions (A)–(C) of Theorem 2 as well as assertion (a).
Assertion (b) is a consequence of the next step.

Step 10. The system (X̃, π̃1) and an isomorphism between (X̃, π̃1) and

(X̃, π̃0). Since [0, 1] × X̃ is normal (see Step 6), we may apply the results

of [Ca]. It follows that there exist a global semidynamical system (X̃, π̃1) and

a time reparametrization χ̃ from (X̃, π̃0) to (X̃, π̃1). Precisely, by Theorem 0,
there is a function χ̃ : domπ̃0

→ [0,+∞) satisfying the following conditions:

(10.1) χ̃(0, x) = 0 for any x,
(10.2) χ̃(·, x) : [0, ω̃(x))→ [0,+∞) is a homeomorphism for any x,
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(10.3) π̃0(t, x) = π̃1(χ̃(t, x), x) for any (t, x) ∈ domπ̃0
,

(10.4) χ̃(t, x) ≥ t for any (t, x) ∈ domπ̃0
.

The proof of Theorem 2 is now finished.

Step 11. Final approach to the assertion of Theorem 1. We will show
the existence of a semidynamical system (X,π1) and a function χ : R+×X →
R+ satisfying the following conditions:

(11.1) χ is continuous,
(11.2) χ(0, x) = x for any x,
(11.3) χ(·, x) : [0,+∞)→ [0,+∞) is a homeomorphism for any x,
(11.4) π0(t, x) = π1(χ(t, x), x) for any t ≥ 0, x ∈ X,
(11.5) for any x ∈ X the escape time ω̃1(x) in the impulsive system

(X,π1,M, I) is equal to +∞.

This will finish the proof of Theorem 1 in the case where (X,π0) is a semi-
dynamical system with global backward extension.

If (X,π0) is a dynamical system, then to get the assertion of Theorem 1
we need to show that (X,π1) is also dynamical. To prove this we show that
two additional conditions are also satisfied:

(11.6) if (X,π0) has negative uniqueness then so does (X,π1),
(11.7) for any x ∈ X the negative escape time of x in π1 is +∞.

Then applying Lemma 1 we will get the required dynamical system and the
required isomorphism, which will finish the proof of Theorem 1.

Step 12. Construction of χ and π1. Fix x ∈ X. Using Lemma 3 we
deduce that

(12.1) for any α ≥ 0 there is a δ such that

π0((α− δ, α), x) ∪ π0(α, α+ δ), x) ∩M = ∅.
Thus we may proceed with the following construction. Suppose M⊕(x)

6= ∅. Then we set x?0 = x, we have π0((0, φ(x?0)), x?0) ∩M = ∅ and x?1 =
x1 = π0(φ(x?0), x?0) ∈ M (we use the notation of the Preliminaries). Now
put x?2 = π0(φ(x?1), x?1) ∈ M and so on. Define un = φ(x?0) + · · · +

φ(x?(n−1)); we have π0(un, x) = x?n. The sequence (φ(x?n)) is either finite
or infinite; in the latter case un → +∞ (if not, (π0(un, x)) converges to some
element of M , which contradicts (12.1)) and

∑∞
n=1 φ(x?n) = +∞.

We set sk = χ̃(φ(x?k), x?k) (if x?k is the equivalence class of an element
of I(M) we consider it as an element of I(M); this convention will also be
used below).

Now we define χ(t, x):

(12.2) If t < φ(x?0) (in particular, if φ(x) = +∞) then χ(t, x) = χ̃(t, x).
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(12.3) If φ(x?0) + · · ·+φ(x?(k−1)) ≤ t and either t < φ(x?0) + · · ·+φ(x?k)

or the sequence (φ(x?n)) is finite with last term φ(x?(k−1)), then

χ(t, x) = s0 + · · ·+ sk−1 + χ̃(t− (φ(x?0) + · · ·+ φ(x?(k−1))), x?k).

From the definition of χ, (10.2) and (10.4) it follows immediately that
χ(·, x) = χx : R+ → R+ is an increasing bijection and

(12.4) χ(t, x) ≥ t.
Now we define π1 by

(12.5) π1(t, x) = π0(χ−1
x (t), x).

Conditions (11.2), (11.4) and (11.6) follow immediately from the definitions
of χ and π1. Since χ̃(·, x) is increasing for any x, so is χ(·, x).

To prove (11.7) fix x and t > 0; we show that there is a z such that
π1(t, z) = x. There is a y ∈ X with π0(t, y) = x, so π1(χ(t, y), y) = x.
However, χ(t, y) ≥ t so we can find a z ∈ π+

1 (y) with π1(t, z) = x.
The “impulsive motion” π̃1 given by π1,M and I coincides with the mo-

tion in the semidynamical system (X, π̃1). Hence using the above definitions
and the properties of π̃1 we immediately conclude that the local existence
axiom, the initial value axiom and the semigroup axiom are satisfied for π1.
Moreover, π1(t, x) is defined for any t ≥ 0 and x, and so also is π̃1(t, x),
which gives (11.5). Thus to prove that (X,π1) is a semidynamical system
we need, according to Lemma 2, only the continuity of χ.

Once we prove it, then, on account of the properties of χ, also (11.3)
follows.

Step 13. Continuity of χ. We have to show that if xn → x in X and
tn → t then χ(tn, xn)→ χ(t, x). It is enough to consider four cases:

(i) x 6∈M and xn 6∈M for any n,
(ii) x ∈M and xn ∈M for any n,
(iii) x ∈M and xn ∈ U+ for any n,
(iv) x ∈M and xn ∈ U− for any n.

First we prove the assertion when t < φ(x) = φ(x?0) or φ(x) = +∞.
This will be done in 13.1–13.4.

13.1. Let (i) hold. Then, according to [C2, Ths. 2.11(1) and 3.8(1)], φ is
continuous at x, so φ(xn) → φ(x) (we use the property that a semidynam-
ical system with global backward extension has no start points). Thus for
large n we have t < φ(xn) and tn < φ(xn). Therefore χ(t, x) = χ̃(t, x) and
χ(tn, xn) = χ̃(tn, xn), so the result follows from the continuity of χ̃.

13.2. Let (ii) hold. Using [C2, Ths. 2.11(3) and 3.8(3)] and [K1, Th. 4]
(cf. also [C2, Sec. 2]) we conclude that φ(xn) → φ(x). Now the proof goes
as in 13.1.
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13.3. Consider case (iii) and take (xn) with xn ∈ U+, xn → x ∈ M .
We can find a δ < εx/2 (where εx was defined in Step 1) such that π0((0, δ], x)
⊂ U+. Thus π0(δ, xn) ∈ U+ for large n. From the continuity of π0, the prop-
erties of sections and the construction of U we conclude that π0([0, δ], xn) ⊂
U+ for sufficiently large n. Thus π0(δ, xn)→π0(δ, x), φ(xn) = δ+φ(π0(δ, xn))
and φ(x) = δ+φ(π0(δ, x)). Just as in 13.1, we have φ(π0(δ, xn))→ φ(π0(δ, x))
and from the above reasoning φ(xn) → φ(x). Now the proof continues as
in 13.1.

13.4. Assume (iv). Take φ(xn) and put xn = π0(φ(xn), xn) ∈ M . Then
xn → x and φ(xn) → 0 (note that xn = x1

n = x?1n ). The problem reduces
to two cases: tn < φ(xn) for any n, and tn ≥ φ(xn) for any n. In the first
case we have tn → 0, t = 0 and χ(tn, xn) = χ̃(tn, xn)→ 0 = χ(0, x). Now let
tn ≥ φ(xn) for any n. Then χ(tn, xn) = χ̃(φ(xn), xn) + χ̃(tn − φ(xn), xn)→
0 + χ̃(t, x) = χ(t, x).

Now assume that φ(x) ≤ t < φ(x) + φ(x?1).

13.5. Let (i) hold. We need to consider two cases: tn ≤ φ(xn) for any n,
and tn > φ(xn) for any n. In the first case the proof goes as in 13.1. In
the second case take zn = π0(ψ(xn), xn) (we have zn = x1

n = x?1n ). Then
zn → z = π0(ψ(x), x). By the same reasoning as in 13.1 we can assume
that 0 < tn − φ(xn) < φ(zn) for large n. We have φ(xn) → φ(x). Thus
χ(tn, xn) = χ̃(φ(xn), xn) + χ̃(tn − φ(xn), zn) → χ̃(φ(x), x) + χ̃(t − φ(x), z).
On the other hand, χ(t, x) = χ̃(φ(x), x) + χ̃(t− φ(x), z).

13.6. In case (ii) the proof combines the reasoning from 13.2 and 13.5,
in case (iii) it combines the reasoning from 13.3 and 13.5, and in case (iv)
the reasoning from 13.4 and 13.5. We have thus shown that χ is continuous
at (t, x), where t < φ(x) + φ(x?1).

Now let t be arbitrary. We are left with the task of proving the assertion
if φ(x?0) + · · · + φ(x?(k−1)) ≤ t and either t < φ(x?0) + · · · + φ(x?k) or the
sequence (φ(x?n)) is finite with last term φ(x?(k−1)). It is enough to apply
the procedure from 13.5 and 13.6 finitely many times. Thus we have finished
the proof.

Remark. Assumption (1) where we require from a point to “jump” to
a point not belonging to the impulse set is natural; jumping to the impulse
set would be artificial. Assumption (3) on “good position” of M is impor-
tant in the theory and several results are based on it (see [K1], [C2]). Only
assumption (2) may at first seem to be of another kind. However, in many
natural situations the function I is even supposed to be a homeomorphism
onto its image.
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Remark. In some cases, the space X̂ may be constructed in a simpler
way, as a subset of X × R. Consider a simple example of X = R2 and
the dynamical system π0(t, (x, y)) = (t + x, y) with M = {0} × R and
I(0, y) = (2, y). Then we can identify M+ with M × {1} and M− with
M × {−1}. We can take U+ = (0, 1)× {0}, U− = (−1, 0)× {0} and “sink”

and “lift” them respectively, to get X̂ homeomorphic to a disjoint union
of two half-planes. However, this procedure is not applicable in a general
situation.

Remark. If there are no stationary points in (X,π0), the reasoning
from Step 13 may be simplified, with the use of the equality χ̃(α + β, x) =
χ̃(β, z) + χ̃(α, π0(β, x)) (cf. Remark following Lemma 2).

Remark. Decomposition dynamics, i.e. decompositions of the phase
space with respect to equivalence classes carrying some dynamical struc-
ture, is an important chapter of the theory of dynamical systems. Some
decompositions are taken with respect to the equivalence classes of a recur-
rence relation (see, for example, [G1], [Hu], [R]). Also, remetrizations of the
phase space to get a system with the desired properties have been considered
(see [BG], [G2]). However, in this paper decompositions as well as changes
of topology are used in a different way.

From Theorem 1 and [MC, Th. 4.1] we have an immediate

Corollary 3. Let X be a locally compact separable metric space and
(X,π0,M, I) be an impulsive system given by a semidynamical system
(X,π0). Assume that assumptions (1)–(3) of Theorem 1 hold. Then (X,π0)
is isomorphic to a semidynamical system (X,π1) such that in the impulsive
system (X,π1,M, I) we have ω̃1(x) = +∞ for any x ∈ X.

In [K3] and [K4] Kaul investigates several properties of impulsive semi-
dynamical systems. He considers systems on a metric space X where

(i) Ω is an open subset of X, the impulse set M is the boundary of Ω
and I : M → Ω,

(ii) φ is continuous in Ω,
(iii) for any x ∈ X we have ω̃(x) = +∞.

If M = FrΩ it is natural to require (STC). When (STC) holds, assump-
tion (ii) is satisfied, according to [K1] and [C2]. We have M ∩ I(M) = ∅, as
I(M) ⊂ Ω. So, for I closed we may apply Theorem 1. Thus we have

Corollary 4. Suppose an impulsive dynamical systems satisfies the
above condition (i). Then the system is isomorphic (the isomorphism being
only a time reparametrization) to a system for which the results proved in
[K3] and [K4] hold , provided that (STC) holds and I is closed.
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Remark. Note that some results of [K3] and [K4] do not involve time,
they only describe the properties of sets defined in such systems (for instance
[K3, Th. 3.5]). Therefore, by the above theorems, those results are true under
the assumptions of Corollary 3.4 without assuming (iii) because the relevant
isomorphism only changes the speed of motion and not the trajectories as
sets.

Remark. Notice that the stability investigated in [K3] and [K4] is com-
pletely different from that considered in [C3].

Example 1. Consider an impulsive system (R, π0,M, I) given by the
dynamical system π0(t, x) = t + x. We put M = N and I(n) = n + 1 −
1/(n+ 2)2 (see Figure 1). Here ω̃0(x) < +∞ for any x. In particular, for
x < 0 we have ω̃0(x) = −x+

∑∞
n=2 1/n2.

0 1 23_ _
4 9

8

Fig. 1

The local semidynamical system obtained, according to Theorem 2, from
this impulsive system may be described as follows (for convenience, we con-

sider the phase space Y homeomorphic to R̃; see Figure 2):

Y = ((−∞, α)× {0}) ∪
⋃
{{pk} × [0, βk] : k = 2, 3, 4, . . .} ⊂ R2

(with euclidean topology), where

α =
∞∑

n=2

1

n2
, pk =

1

22
+ · · ·+ 1

k2
, βk = 1− 1

k2
;

π̃0(t, (x, 0)) = (t+ x, 0) for t+ x ≤ α,

π̃0(t, (pk, β)) =

{
(pk, β − t) for t ≤ β,

(pk + t− β, 0) for β ≤ t < β + α− pk.
Removing all the points (pk, βk) we get a semidynamical system without
start points.

After a suitable isomorphism we can get a system (R, π1), where ω̃1(x) =
+∞ for each x. For instance, we can obtain a system π1 which is defined as
follows.

First define a sequence (an) by a2k = k, a2k+1 = (k + 1) − 1/(k + 2)2.
Then put

π1(t, x) = t+ x if x ≤ 0, t+ x ≤ 0,

π1(t, an) = an + (an+1 − an)t if t ∈ [0, 1], n ∈ N.
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Fig. 2

This determines π1(t, x) in a unique way for any t, x ∈ R. The system (R, π1)
is isomorphic to (R, π0), and (R, π1,N, I) satisfies the assertion of Theorem 1.

The system (R, π1) gives a global semidynamical system (Z, π̃1) (also
after a suitable homeomorphism of the space; see Figure 3):

Z = (R× {0}) ∪ ({k} × [0, 1] : k = 1, 2, 3, . . .} ⊂ R2,

π̃1(t, (x, 0)) = (t+ x, 0),

π̃1(t, (k, β)) =

{
(k, β − t) for t ≤ β,

(k + t− β, 0) for t ≥ β.

0 1 2 3 4

(1,1)

Fig. 3

Example 2. Consider an impulsive system (R2, π0,M, I) given by the
dynamical system described by the differential equations θ′ = 0, r′ = −r (in
polar coordinates). Let M = [0, 2π] × {1}, I(θ, 1) = (θ + α, 2), where α is
given; here I(M) = [0, 2π]× {2} (Figure 4).

Then the (global) semidynamical system π̃0 obtained from π0 may be
described as a system on Y = T∪A∪B ⊂ R3, where T is the torus obtained
by rotating the circle = {(x, y, z) : (x− 3/4)2 + z2 = 1/16, y = 0} about the
line {(x, y, z) : x = 0, y = 0} (we have T∩(R2×{0}) = {(x, y, z) : x2+y2 = 1
or x2 + y2 = 1/4, z = 0}), and

A = {(x, y, z) : x2 + y2 ≥ 1, z = 0}, B = {(x, y, z) : x2 + y2 ≤ 1, z = 2}.
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M

I M( )

Fig. 4

The set Y is disconnected, it has two components: T∪A and B. The motion
on B does not give anything new, each trajectory converges to the stationary
point 0. The trajectory of any p ∈ A goes along a straight line and after
some time joins T where it starts behaving according to the law of motion
on T. A feature of this example is the new motion on T. Here we have a
dynamical system on the torus. Its trajectories depend on α. If α/2π ∈ Q,
then all the trajectories are periodic (in particular, for α = 0 each trajectory
is a circle). If α/2π 6∈ Q, then the trajectory of any p ∈ T is dense in T.

Example 3. Consider an impulsive system (X,π,M, I) given by the
dynamical system on R × (−1, 1) described by the differential equations

y′ = 0, x′ = e1+1/(|y|−1). Let M = {0}× (−1, 1) and I(x, y) = (1, 0) for each
(x, y) ∈M (see Figure 5).

I M( ) = (1,0)

M

Fig. 5

Theorem 2 yields a semidynamical system (X̃, π̃). The phase space X̃
is not metrizable. It can be easily verified that it has no countable basis at
(1, 0). One can also see that assertion (a) of Theorem 2 is not satisfied as



Impulsive dynamical systems 23

I−1((1, 0)) is not compact. However, one could glue all the points of M with
(1, 0) and introduce the topology in the new space in another natural way to
get a metric space. We may transform the topology with the use of vertical
segments {x} × (−1, 1) for x < 0. Then the new space X̆ may be described

(after a suitable homeomorphism f) as X̆ = [0,+∞) × (−1, 1) × {0} ∪ Z,
where Z = {(x, y, z) ∈ R3 : x = 1, z > |y|} with euclidean topology (we get
this by transforming any segment {(x, y) : x = −α, y ∈ (−1, 1)} linearly
onto a segment {(x, y, z) : x = 1, z = α, |y| < z}) (see Figure 6). In the new
system, for any y the point (0, y, 0) is a start point.

(1,0)

Fig. 6

Obviously the resulting space is metric. However, after glueing we cannot
get a semidynamical system, as the function π̆ obtained is not continuous!
We can only get the continuity of the motion π̆(·, p) for the given p.

To show the discontinuity of π̆, consider pn = (−1/n, 1− 1/n) ∈ X and
t = 1. After the transformation f of (−∞, 0) × (−1, 1) onto Z we have
f(pn) = qn, where qn = (1, βn, 1/n) with βn < 1/n. Hence qn → (1, 0, 0).

Notice that π̆(1, qn) ∈ Z for n > 1, as e1+1/(1−1/n−1) < 1/n and π(1, pn) ∈
(−1/n, 0)×(−1, 1) (it does not reach M). It follows that π̆(1, qn)→ (1, 0, 0).
On the other hand, π̆(1, (1, 0, 0)) 6= (1, 0, 0), so that π̆(1, qn) 9 π̆(1, (1, 0, 0)).
Therefore the constructed system is pseudo-semidynamical, but not semi-
dynamical.
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