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Averaging techniques and oscillation
of quasilinear elliptic equations

by Zhi-Ting Xu, Bao-Guo Jia and Shao-Yuan Xu (Guangzhou)

Abstract. By using averaging techniques, some oscillation criteria for quasilinear
elliptic differential equations of second order

N∑

i,j=1

Di[Aij(x)|Dy|p−2Djy] + p(x)f(y) = 0

are obtained. These results extend and generalize the criteria for linear differential equa-
tions due to Kamenev, Philos and Wong.

1. Introduction. We consider quasilinear elliptic differential equations
of second order

(1.1)
N∑

i,j=1

Di[Aij(x)|Dy|p−2Djy] + p(x)f(y) = 0

in Ω(a), where p > 1, x = (x1, . . . , xN ) ∈ RN , N ≥ 2, Dy = (D1y, . . . ,

DNy), Diy = ∂y/∂xi for i = 1, . . . , N , |x| = [
∑N
i=1 x

2
i ]

1/2, and Ω(a) =
{x ∈ RN : |x| ≥ a} for some a > 0.

Throughout this paper we shall assume that the following conditions
hold.

(A1) A = (Aij(x))N×N is a real symmetric positive definite matrix func-
tion with Aij ∈ C1+µ

loc (Ω(a),R), i, j = 1, . . . , N , 0 < µ < 1. Denote
by λmax(x) the largest eigenvalue of the matrix A. There is a func-
tion λ ∈ C([a,∞),R+) such that

min
|x|= r

|A|(p−2)/(p−1)

λmax(x)
≥ λ(r), r > a,

where |A| denotes the norm of A, i.e., |A| = [
∑N
i,j=1 A

2
ij(x)]1/2.

2000 Mathematics Subject Classification: 35B05, 35J60, 34C10.
Key words and phrases: oscillation, quasilinear elliptic equation, second order, aver-

aging technique.

[45]



46 Z. T. Xu et al.

(A2) p ∈ Cµloc(Ω(a),R), 0 < µ < 1;
(A3) f ∈ C1(R,R), yf(y) > 0, and f ′(y)/|f(y)|(p−2)/(p−1) ≥ k > 0 for

y 6= 0.

In what follows, a solution of (1.1) is every function of class C2+µ
loc (Ω(a),R),

0 < µ < 1, which satisfies (1.1) almost everywhere on Ω(a). We consider
only nontrivial solutions of (1.1) which are defined for all large |x| (cf. [1]).
The oscillation is considered in the usual sense, i.e., a solution y(x) of (1.1) is
said to be oscillatory if it has arbitrarily large zeros, i.e., the set {x ∈ RN :
y(x) = 0} is unbounded. Equation (1.1) is said to be oscillatory if every
solution (if any exists) is oscillatory. Conversely, (1.1) is nonoscillatory if
there exists a solution which is not oscillatory.

If p = 2, then equation (1.1) reduces to the semilinear elliptic equation

(1.2)
N∑

i,j=1

Di[Aij(x)Djy] + p(x)f(y) = 0,

and if A(x) = I (identity matrix), f(y) = |y|p−2y, then (1.1) reduces to the
PDE with p-Laplacian

(1.3) div(|Dy|p−2Dy) + p(x)|y|p−2y = 0.

Many results guaranteeing that the solutions of (1.2) are oscillatory can
be found in the literature (see, for example, [3, 5, 9–12]). The oscillation
criteria of Kamenev [2], Philos [4], Wintner [7] and others for the second
order linear differential equation

(1.4) (r(t)y′(t))′ + p(t)y(t) = 0, p ∈ C([t0,∞),R+),

have been extended to (1.2). Recently, H. Usami [6] established a Wintner-
type oscillation theorem [7] for (1.3). However, to the best of our knowledge,
equation (1.1) in its general form does not seem to have been the object of
systematic investigation. Motivated by this fact, we try to develop oscilla-
tion theory for (1.1). In this paper, by using averaging technique [2] and
general means [4, 8], we establish some oscillation criteria for (1.1), thereby
generalizing results of Kamenev [2], Philos [4] and Wong [8] to (1.1). Our
approach is somewhat different from that of the previous authors. We be-
lieve that our approach is simpler and also provides a more unified account
of Kamenev-type oscillation theorems.

2. Main results. First of all, we introduce the general means [4, 8] and
present some properties which will be used in the proof of our results.

Let D = {(r, s) : r ≥ s ≥ a} and D0 = {(r, s) : r > s ≥ a}. We will say
that the function H ∈ C(D,R) belongs to the class = (written H ∈ =) if

(H1) H(r, r) = 0 for r ≥ a, H(r, s) > 0 on D0;
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(H2) H has a continuous and nonpositive partial derivative in D0 with
respect to the second variable;

(H3) there exist % ∈ C1([a,∞),R+) and h ∈ C(D,R) such that

∂

∂s
[H(r, s)%(s)] = −H(r, s)h(r, s), (r, s) ∈ D0.

Let % ∈ C1([a,∞),R+) and H ∈ =. We consider the integral operator

(2.1) Θ%b (φ; r) =
r�
b

H(r, s)φ(s)%(s) ds, r ≥ b ≥ a,

where φ ∈ C([a,∞),R) (see [8]). It is easily seen that

(2.2) Θ%b (α1h1 + α2h2; r) = α1Θ
%
b (h1, r) + α2Θ

%
b (h2, r),

(2.3) Θ%b (h3, r) ≥ 0 whenever h3 ≥ 0,

(2.4) Θ%b (h′4; r) = −H(r, b)h4(b)%(b) +Θ%b (%−1h4h; r).

Here hi ∈ C([a,∞),R) and α1, α2 are real numbers.
For each ξ ∈ C([a,∞),R+) with � ∞

a
(1/ξ(τ)) dτ = ∞, define the kernel

function

(2.5) H(r, s) =
( r�
s

du

ξ(u)

)m
, m > p− 1.

For example, an important particular case is ξ(τ) = τn, where n ≤ 1 is real.
When ξ(τ) = 1 we have H(r, s) = (r − s)m, and when ξ(τ) = τ we have
H(r, s) = (ln r/ ln s)m. It is easily verified that the kernel function (2.5)
satisfies (H1)–(H3).

Theorem 2.1. Suppose that there exist φ ∈ C1([a,∞),R+) and H,h ∈
C(D,R) such that H ∈ = and

(2.6) lim sup
r→∞

1
H(r, a)

Θ%a(ϕ− p−pg1−p|h|p; r) =∞,

where

g(r) =
kp

p2 − 1
λ(r)[%(r)]q[ωNrN−1φ(r)]1/(1−p),

ϕ(r) = φ(r)
�
Sr

p(x) dσ − 1
p

[g(r)]1−p[%(r)]p
∣∣∣∣
φ′(r)
φ(r)

∣∣∣∣
p

,

q is the conjugate number to p, i.e., q = p/(p− 1), Sr = {x ∈ RN : |x| = r},
r > 0, σ denotes the measure on Sr and ωN denotes the surface of the unit
sphere in RN , i.e, ωN = 2πN/2/Γ (N/2). Then equation (1.1) is oscillatory.

Proof. Suppose y(x) is a nonoscillatory solution of (1.1). Without loss of
generality we assume that y(x) > 0 for |x| > a. Hence, the N -dimensional
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vector Riccati operator

(2.7) W (x) =
1

f(y)
A(x)|Dy|p−2Dy

exists on Ω(a). By differentiating W (x) and making use of (1.1), we see
that, for all x ∈ Ω(a), W (x) satisfies the Riccati equation

(2.8) divW (x) = −p(x)− f ′(y)|Dy|2−p(WTA−1W )(x).

Note that

|W (x)| ≤ 1
|f(y)| |A(x)| |Dy|p−1,

and
(WTA−1W )(x) ≥ λ−1

max(x)|W (x)|2.
Then (2.8) implies that

(2.9) divW (x) ≤ −p(x)− f ′(y)
|f(y)|(p−2)/(p−1)

|A(x)|(p−2)/(p−1)

λmax(x)
|W (x)|q.

Put
Z(r) = φ(r)

�
Sr

W (x) · ν(x) dσ,

where ν(x) = x/|x|, |x| 6= 0, denotes the outward unit normal to Sr, r = |x|.
By means of the Green formula and (2.9), we obtain

Z ′(r) =
φ′(r)
φ(r)

Z(r) + φ(r)
�
Sr

divW (x) dσ(2.10)

≤ φ′(r)
φ(r)

Z(r)− φ(r)
[ �
Sr

p(x) dσ + kλ(r)
�
Sr

|W (x)|q dσ
]
.

The Hölder inequality yields

|Z(r)| ≤ φ(r)
[ �
Sr

|ν(x)|p dσ
]1/p[ �

Sr

|W (x)|q dσ
]1/q

≤ φ(r)[ωNrN−1]1/p
[ �
Sr

|W (x)|q dσ
]1/q

,

which is equivalent to�
Sr

|W (x)|q dσ ≥ [φ(r)]−q[ωNrN−1]1/(1−p)|Z(r)|q.

Thus, (2.10) gives

(2.11) Z ′(r) ≤ −φ(r)
�
Sr

p(x) dσ+
φ′(r)
φ(r)

Z(r)− p
2 − 1
p

g(r)[%(r)]−q|Z(r)|q.
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The Young inequality implies that
∣∣∣∣
φ′(r)
φ(r)

Z(r)
∣∣∣∣ ≤

1
q
g(r)[%(r)]−q|Z(r)|q +

1
p

[g(r)]1−p[%(r)]p
∣∣∣∣
φ′(r)
%(r)

∣∣∣∣
p

.

Combining this inequality with (2.11) gives

(2.12) Z ′(r) ≤ −ϕ(r)− (p− 1)g(r)[%(r)]−q|Z(r)|q.
Applying the operator Θ%b , b ≥ a, to (2.12) and using (2.4), we obtain

Θ%b (ϕ; r) ≤ H(r, b)%(b)Z(b) +Θ%b (%−1|h| |Z|; r)(2.13)

− (p− 1)Θ%b (g%−q|Z|q; r).
In view of the Young inequality,

%−1|h| |Z| ≤ (p− 1)g%−q|Z|q + p−pg1−p|h|p.
Substituting the above inequality into (2.13), we get

(2.14) Θ%b (ϕ; r) ≤ H(r, b)%(b)Z(b) + p−pΘ%b (g1−p|h|p; r).
Set b = a and divide (2.14) through by H(r, a), then take limsup as r →∞.
Condition (2.6) gives the desired contradiction.

As an immediate consequence of Theorem 2.1, we obtain the following
corollary.

Corollary 2.1. Let the assumptions of Theorem 2.1 be satisfied except
that condition (2.6) is replaced by

(2.15) lim sup
r→∞

1
H(r, a)

Θ%a(ϕ; r) =∞,

and

(2.16) lim sup
r→∞

1
H(r, a)

Θ%a(g1−p|h|p; r) <∞.

Then equation (1.1) is oscillatory.

Note that condition (2.15) in Theorem 2.1 is necessary. In the remainder
of this paper, we do not require this condition, but will have some other con-
ditions instead. The following result provides an essentially new oscillation
theorem for (1.1).

Theorem 2.2. Let H and h be as in Theorem 2.1. Suppose that there
exist φ1, φ2 ∈ C([a,∞),R) such that for all b ≥ a,

lim sup
r→∞

1
H(r, b)

Θ%b (ϕ; r) ≥ φ1(b),(2.17)

lim sup
r→∞

1
H(r, b)

Θ%b (g1−p|h|p; r) ≤ φ2(b),(2.18)
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where φ1 and φ2 satisfy

(2.19) lim inf
r→∞

1
H(r, a)

Θ%a(g%−2q(ϕ1 − p−pφ2)q+; r) =∞,

where φ+ = max{0, φ}. Then equation (1.1) is oscillatory.

Proof. We proceed as in the proof of Theorem 2.1 to get (2.13) and
(2.14). Then, by (2.14), we have, for all r > b ≥ a,

1
H(r, b)

Θ%b (ϕ; r)− 1
ppH(r, b)

Θ%b (g1−p|h|p; r) ≤ %(b)Z(b).

Taking limsup in the above inequality as r → ∞ and applying (2.17) and
(2.18), we obtain

φ1(b)− p−pφ2(b) ≤ %(b)Z(b),

from which it follows that

(2.20)
1

H(r, b)
Θ%b (g%−2q(φ1 − p−pφ2)q+; r) ≤ 1

H(r, b)
Θ%b (g%−q|Z|q; r).

On the other hand, by (2.13),

p− 1
H(r, b)

Θ%b (g%−q|Z|q; r)− 1
H(r, b)

Θ%b (%−1|h| |Z|; r)

≤ %(b)Z(b)− 1
H(r, b)

Θ%b (ϕ; r).

Thus, by (2.17),

(2.21) lim inf
r→∞

{
p− 1
H(r, b)

Θ%b (g%−q|Z|q; r)− 1
H(r, b)

Θ%b (%−1|h| |Z|; r)
}

≤ %(b)Z(b)− φ1(b) ≤ C0,

where C0 is a constant.
Now, we claim that

(2.22) lim inf
r→∞

1
H(r, b)

Θ%b (g%−q|Z|q; r) <∞.

If (2.22) does not hold, then there exists a sequence {rj}∞j=1 ⊂ [a,∞) with
limj→∞ rj =∞ such that

(2.23) lim
j→∞

1
H(rj , b)

Θ%b (g%−q|Z|q; rj) =∞.

Hence, by (2.21), for j large enough, we have

p− 1
H(rj , b)

Θ%b (g%−q|Z|q; rj)−
1

H(rj ; b)
Θ%b (%−1|h| |Z|; rj) ≤ C0 + 1.
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This and (2.23) give, for j large enough,

Θ%b (%−1|h| |Z|; rj)
Θ%b (g%−q|Z|q; rj)

− (p− 1) ≥ −1
2

(p− 1),

that is,

(2.24) Θ%b (%−1|h| |Z|; rj) ≥
p− 1

2
Θ%b (g%−q|Z|q; rj) for all large j.

By the Hölder inequality,

(2.25) Θ%b (%−1h|Z|; rj) ≤ [Θ%b (g%−q|Z|q; rj)]1/q[Θ%b (g1−p|h|p; rj)]1/p.
From (2.24) and (2.25), we obtain

(2.26)
(
p− 1

2

)p
Θ%b (g%−q|Z|q; rj) ≤ Θ%b (g1−p|h|p; rj).

By (2.18), the right-hand side of (2.26) is bounded, which contradicts (2.23).
Therefore, (2.22) holds. Hence, by (2.20),

lim inf
r→∞

1
H(r, b)

Θ%b (g%−2q(φ1 − p−pφ2)q+; r)

≤ lim inf
r→∞

1
H(r, b)

Θ%b (g%−q|Z|q; r) <∞,

which contradicts (2.19).

3. Corollaries and examples. As Theorems 2.1 and 2.2 are rather
general, it is convenient for applications to derive a number of oscillation
criteria with the appropriate choice of the functions H, φ and %.

Let us first introduce an assumption:

(A4) There exist constants C > 0 and β such that

(3.1) λ(r) ≥ Crβq, r ≥ a.
Now, we establish Kamenev-type oscillation criteria for (1.1). Let

H(r, s) = (r − s)α, %(s) = s−α, φ(r) = r1−N ,

where α > 1 is a constant. Then it is easy to see that

h(r, s) = α(r − s)−1s−α−1r, g(r) ≥ C1r
(β−α)q,

and
ϕ(r) ≥ ωN p̄(r)− C2 r

−(β+1)p,

where

p(r) =
1

ωNrN−1

�
Sr

p(x) dσ, C1 =
kpC

p2 − 1
ω

1/(1−p)
N , C2 =

1
p
C1−p

1 (N−1)p.
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A direct computation yields

Θ%a(g1−p|h|p; r) ≤ C1−p
1 αprp

r�
a

(r − s)α−ps−(β+1)p−α ds,

and

Θ%a(ϕ; r) ≥
r�
a

(r − s)α[ωNp(s)s−α − C2 s
−(β+1)p−α] ds.

Hence, by Theorem 2.1, we have

Corollary 3.1 Let (A4) hold. If there exists a constant α > 1 with
(β + 1)p+ α > 1 such that

(3.2) lim sup
r→∞

r−α
r�
a

(r − s)αp(s)s−αds =∞,

then equation (1.1) is oscillatory.

Corollary 3.2. Suppose that there exists φ ∈ C1([a,∞),R) such that

(3.3) lim sup
r→∞

G−α(r)
r�
a

[G(r)−G(s)]αϕ1(s) ds =∞ for some α > p− 1,

where

g1(r) =
kp

p2 − 1
λ(r)[ωNrN−1φ(r)]1/(1−p), G(r) =

r�
a

g1(s) ds,

ϕ1(r) = φ(r)
�
Sr

p(x) dσ − 1
p

[g1(r)]1−p
∣∣∣∣
φ′(r)
φ(r)

∣∣∣∣
p

.

Then equation (1.1) is oscillatory.

Proof. Let
H(r, s) = [G(r)−G(s)]α, %(r) = 1.

Then
h(r, s) = α[G(r)−G(s)]−1g1(s),

and
r�
a

H(r, s)g1−p
1 (s)|h(r, s)|p ds =

αp

α− p+ 1
[G(r)]α−p+1.

This implies

lim sup
r→∞

1
H(r, a)

Θ%a(ϕ− p−pg1−p|h|p; r)

= lim sup
r→∞

{
G−α(r)

r�
a

[G(r)−G(s)]αϕ1(s) ds− p−pαp

α− p+ 1
[G(r)]1−p

}
=∞,

and it follows from Theorem 2.1 that (1.1) is oscillatory.
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Remark 3.1. Corollary 3.2 improves Theorem 4 for equation (1.2) in [3]
and Theorem 4 for equation (1.3) in [6].

By Theorem 2.2, we have

Corollary 3.3. Assume that limr→∞G(r) = ∞. Suppose that there
exist φ ∈ C1([a,∞), R+) and ψ ∈ C([a,∞),R) such that for all b > a,

lim sup
r→∞

G−α(r)
r�
b

[G(r)−G(s)]αϕ1(s) ds ≥ ψ(b),(3.4)

lim inf
r→∞

G−α(r)
r�
b

g1(s) [G(r)−G(s)]α[ψ(s)]q+ ds =∞,(3.5)

for some α > p− 1. Then equation (1.1) is oscillatory.

Example 3.1. Consider

(3.6)
N∑

i,j=1

Di[Aij(x)|Dy|p−2Djy] +
1 + k sin |x|
|x|ν = 0,

where x ∈ Ω(1), A(x) = diag(|x|, . . . , |x|), p > 1, p(r) = (1 + k sin r)/rν ,
λ(r) = N (p−2)/2(1−p)r1/(1−p). By Corollary 3.1, if there exists a constant
α > 1 with ν + α ≤ 1, then (3.6) is oscillatory.

Example 3.2. Consider the equation

(3.7) div(|Dy|p−2Dy) + (|x|ν cos |x|)|y|p−2y = 0,

where x ∈ Ω(1), λ(r) = N (p−2)/2(p−1), 3 > p > 1, ν ≤ 1. Let %(r) = 1,
φ(r) = r1−N . A direct computation implies

g1(r) = C3, ϕ1(r) = ωNr
ν cos r − C4

rp
,

where
C3 =

p

p2 − 1
N (p−2)/2(p−1)ω

1/(1−p)
N ,

C4 = N (2−p)/2(N − 1)p
ωN
p

(
p

p2 − 1

)1−p
.

In Corollary 3.3, let α = 2. We have

lim sup
r→∞

1
G2(r)

r�
b

[G(r)−G(s)]2ϕ1(s) ds ≥ −rν sin b− ε.

Now, set ψ(b) = −bν sin b − ε and consider an integer J such that 2Jπ +
5π/4 ≥ max{a, (1 +

√
2 ε)1/ν}. Then, for all integers n > J , we have

ψ(b) ≥ 1/
√

2 for every b ∈ [2nπ + 5ν/4, 2nπ + 7π/4],

which implies that
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lim inf
r→∞

1
G2(r)

r�
a

g1(s)[G(r)−G(s)]2[ψ(s)]q+ ds

≥ C3

∞∑

n=J

(
√

2)−q
2nπ+7π/4�
2nπ+5π/4

ds =∞.

Then, by Corollary 3.3, equation (3.7) is oscillatory.
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