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Complete pluripolar curves and graphs

by Tomas Edlund (Uppsala)

Abstract. It is shown that there exist C∞ functions on the boundary of the unit disk
whose graphs are complete pluripolar. Moreover, for any natural number k, such functions
are dense in the space of Ck functions on the boundary of the unit disk. We show that
this result implies that the complete pluripolar closed C∞ curves are dense in the space
of closed Ck curves in Cn. We also show that on each closed subset of the complex plane
there is a continuous function whose graph is complete pluripolar.

1. Introduction. In [3] Levenberg, Martin and Poletsky studied which
graphs of analytic functions in the open unit disk D are complete pluripolar
in C2. Recall that a set E ⊂ Cn is complete pluripolar in Cn if there exists
a plurisubharmonic function u(z) defined on Cn such that

E = {z ∈ Cn : u(z) = −∞}.
By the graph of a function f(z) defined on a subset D ⊂ C we mean the set

Γf (D) = {(z, w) ∈ C2 : z ∈ D, w = f(z)}.
It is shown in [3] that nonextendible analytic functions in the unit disk with
very lacunary Taylor series have complete pluripolar graphs. (The condition
is much stronger than Hadamard lacunarity.) That paper also contains an
example of a function f(z) which is holomorphic in the open unit disk and
C∞ on the closed unit disk, so that the graph Γf (D) is complete pluripolar
in C2. We start this paper by solving the following problem that was left
open in [3]:

Does there exist a C∞ function f : T → C whose graph is complete
pluripolar in C2?

Here T denotes the unit circle. In Section 2 we show that the answer to
this question is affirmative and that such functions are not rare, that is, we
prove the following theorem.
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Theorem 1. Let k be an integer , k ≥ 0, g(z) ∈ Ck(T) and ε > 0. Then
there exists a function f(z) ∈ C∞(T) such that the graph of f(z) is complete
pluripolar in C2 and ‖f(z)− g(z)‖Ck < ε.

Using a classical result of J. Wermer concerning the polynomial hull of
closed real-analytic curves in Cn and a result on approximation of biholo-
morphic mappings by automorphisms of Cn due to Forstneric and Rosay we
extend this result to arbitrary closed curves instead of graphs.

Theorem 2. Let k be an integer , k ≥ 0, γ a closed Ck curve in Cn and
ε > 0. Then there exists an embedded closed C∞ curve γ1 in Cn such that
‖γ(z)− γ1(z)‖Ck < ε and γ1 is complete pluripolar in Cn.

This is done in Section 3. Finally, in Section 4 we give a proof of the
following theorem.

Theorem 3. For any nonempty closed subset F ⊂ C there exists a con-
tinuous function f(z) on F such that its graph Γf (F ) is complete pluripolar
in C2.

2. Proof of Theorem 1. Choose an increasing sequence n(k) of natural
numbers, k = 1, 2, . . . , satisfying the growth condition

n(k + 1) ≥ k2n(k).(2.1)

Set an(k) = (1− 1/k)n(k) and define, for each natural j ≥ 2,

hj(z) =
∞∑

k=j

an(k)(z
n(k) + z−n(k)).(2.2)

Lemma 1. For each j the function hj(z) given by (2.2) is a smooth func-
tion on T. Moreover , for large enough numbers j the following estimate
holds:

∞∑

k=j+1

an(k) ≤ 2an(j+1).(2.3)

The proof of Lemma 1 is postponed until the end of this section. We now
turn to the construction of the function f(z). First we approximate g(z) in
Ck-norm by a trigonometric polynomial. Take

p(z) =
N∑

k=−N
bkz

k so that ‖g(z)− p(z)‖Ck < ε/2.

Choose now a natural number j0 > N so that

‖hj(z)‖Ck < ε/2
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and (2.3) holds for all j > j0. Define

f(z) = p(z) + hj0(z).

Clearly f(z) is a smooth function on T and ‖g(z) − f(z)‖Ck < ε. We will
prove that the graph of f is complete pluripolar. We want to construct a
plurisubharmonic function u(z, w) which will be equal to −∞ exactly on the
graph of f . Define, for k ≥ j0,

fk(z) =
k∑

j=j0

an(j)(z
n(j) + z−n(j)) = hj0(z)− hk+1(z)

and put

u(z, w) =
∞∑

k=j0

max
{

1
n(k + 1)

log |zn(k)(w− (p(z) + fk(z)))|,−1
}
.(2.4)

The following lemma holds.

Lemma 2. The function u(z, w) given by (2.4) is plurisubharmonic in C2.

We also postpone the proof of Lemma 2 until the end of this section and
turn to the examination of the −∞ locus of u(z, w).

Lemma 3. u(z, w) = −∞ if and only if (z, w) belongs to the graph of f .

Proof. The proof is done in four steps. First we consider the case when
z = 0 and w is a fixed complex number. Then the polynomial zn(k)(w −
(p(z) + fk(z))) equals an(k) and by the growth condition (2.1) the series∑

k(1/n(k + 1)) log an(k) is convergent. Hence we conclude that

u(0, w) =
∞∑

k=j0

max
{

1
n(k + 1)

log an(k),−1
}
> −∞.

Secondly we consider the case when |z| = 1 and w 6= f(z). Since p(z) +
fk(z) → f(z) as k → ∞ there exists δ > 0 and a natural number k0 such
that |zn(k)(w − (p(z) + fk(z)))| ≥ δ when k ≥ k0. By the growth condition
(2.1) the series

∑
k(1/n(k + 1)) log δ is convergent so we obtain

u(z, w) =
∞∑

k=j0

max
{

1
n(k + 1)

log |(w − (p(z) + fk(z)))|,−1
}

≥ −k0 +
∞∑

k=k0+1

1
n(k + 1)

log δ > −∞.

We now consider the case when (z, w) belongs to the graph of f , that is,
|z| = 1 and w = f(z). We use the definition of the function f(z) and the
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estimate (2.3) in Lemma 1 to conclude that

u(z, f(z)) =
∞∑

k=j0

max
{

1
n(k + 1)

log |f(z)− (p(z) + fk(z))|,−1
}

=
∞∑

k=j0

max
{

1
n(k + 1)

log |hk+1(z)|,−1
}

≤
∞∑

k=j0

max
{

1
n(k + 1)

log(4an(k+1)),−1
}
.(2.5)

By the growth condition (2.1) we know that the series
∑

(1/n(k + 1)) log 4
is convergent and by the choice of the coefficients an(k+1) we see that
(1/n(k + 1)) log an(k+1) tends to zero as k tends to infinity. Therefore the
series in (2.5) is dominated from above by const+

∑
(1/n(k+1)) log an(k+1).

Since the sum of the latter series equals −∞ we conclude that the series in
(2.5) equals −∞.

Finally, we consider the case when 0 < |z| < 1 or 1 < |z| and w is a
fixed complex number. If |z| > 1 then by the choice of the coefficients an(k)

and the growth condition (2.1) we find that |∑l
k=j0 an(k)z

−n(k)| converges

and |∑l
k=j0 an(k)z

n(k)| → ∞ as l → ∞. (For a proof see [3, pp. 519–520].)
Consequently,

|fk(z)| ≥
∣∣∣
∣∣∣

l∑

k=j0

an(k)z
n(k)
∣∣∣−
∣∣∣

l∑

k=j0

an(k)z
−n(k)

∣∣∣
∣∣∣→∞ as l→∞.

So for a fixed (z, w) with |z| > 1 and a fixed δ > 0, there exists a natural
number k0 such that if k ≥ k0 then

∣∣|w| − |fk(z) + p(z)|
∣∣ > δ. Therefore

u(z, w) =
∞∑

k=j0

max
{

1
n(k + 1)

log |zn(k)(w − (p(z) + fk(z)))|,−1
}

≥ −k0 +
∑

k=k0+1

max
{

n(k)
n(k + 1)

log |z|+ 1
n(k + 1)

log δ,−1
}
.(2.6)

By the growth condition (2.1) the series
∑

(n(k)/n(k + 1)) log |z| and∑
(1/n(k + 1)) log δ converge and hence the series in (2.6) converges, so

we conclude that u(z, w) > −∞. If 0 < |z| < 1 then |∑l
k=j0 an(k)z

n(k)|
converges and |∑l

k=j0 an(k)z
−n(k)| → ∞ as l → ∞, so we may repeat the

arguments above and conclude that also in this case u(z, w) > −∞.

Proof of Lemma 1. First we prove that h(z) is a smooth function on T;
for this it is enough to show that, for each natural number p,

n(k)p(1− 1/k)n(k) = o(1/k2) as k →∞.(2.7)
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But this is indeed the case since the growth condition (2.1) implies that
n(k) ≥ k4 for large k. Using this together with standard estimates we obtain,
for those k,

k2n(k)p(1− 1/k)n(k) ≤ n(k)p+1(1− 1/k)n(k) = e(p+1) logn(k)+n(k) log(1−1/k)

≤ e
√
n(k)−n(k)/2k ≤ e

√
n(k)−(k/2)

√
n(k).

The last expression tends to zero as k →∞, and (2.7) follows.
It therefore remains to prove the estimate (2.3) and for this it is enough

to show that for all sufficiently large natural numbers k we have an(k+1) ≤
(1/2)an(k). But this is true since for large k we have

an(k+1) =
(

1− 1
k + 1

)n(k+1)

≤
(

1− 1
k + 1

)kn(k)

≤
(

1
2

(
1− 1

k

))n(k)

≤ 1
2
an(k).

Here the second inequality follows from the fact that
(

1− 1
k + 1

)k
→ 1

e
<

1
2

as k →∞.

Proof of Lemma 2. Since plurisubharmonicity is a local property it is
enough to show that u(z, w) is plurisubharmonic in each bidisk.

Put C = max−N≤k≤N |bj |. Fix r > 1 and denote by B the bidisk
{(z, w) ∈ C2 : |z|, |w| < r}. Fix a natural number k ≥ j0. By counting the
number of terms in the polynomial zn(k)p(z) and estimating each of them
we obtain the uniform estimate |zn(k)p(z)| ≤ 3NCr2n(k) when (z, w) ∈ B.
Proceeding in the same way with the polynomial zn(k)(w − fk(z)) we get
the estimate |zn(k)(w − fk(z))| ≤ 3kr2n(k) when (z, w) ∈ B. Consequently,
for j ≥ j0 the plurisubharmonic functions

j∑

k=j0

max
{

1
n(k + 1)

log |zn(k)(w − (p(z) + fk(z)))|,−1
}

are uniformly bounded from above by the finite constant
∞∑

k=j0

(
log(3(NC + k))

n(k + 1)
− 2n(k) log r

n(k + 1)

)

in B. Hence the series
∞∑

k=j0

max
{

1
n(k + 1)

log |zn(k)(w − (p(z) + fk(z)))|,−1
}

converges to a plurisubharmonic function in B. Since B was an arbitrary
bidisk the function u is plurisubharmonic in C2.
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3. Proof of Theorem 2. Let γ be a connected closed Ck curve in Cn.
Approximate it by a C∞ curve, use Whitney’s embedding theorem ([2]) and
approximate the coordinate functions by trigonometric polynomials. We get
a real-analytic embedding γ̃ : T → Cn which approximates γ in Ck(T).
Moreover the coordinate functions γ̃j of γ̃ are trigonometric polynomials
and we may assume that γ̃′1 does not vanish on T. By a theorem of Wermer
([4]), γ̃(T) is not polynomially convex if and only if

�

|z|=1

γ̃m1
1 (z) · · · γ̃mnn (z) · γ̃′1(z) dz = 0(3.1)

for all n-tuples (m1, . . . ,mn) of nonnegative integers. This theorem allows
us to approximate γ̃ by a polynomially convex real-analytic embedding.
Indeed, suppose that all terms in (3.1) vanish. Then, in particular, the term
of order −1 in the Laurent expansion of γ̃n(z)γ̃′1(z) vanishes. Define γ̃∗n(z) =
γ̃n(z) + czN , where N is an integer such that the Laurent expansion of
γ̃′1(z) contains a nonvanishing term of order −N − 1, and γ̃∗j (z) = γ̃j(z) for
j = 1, . . . , n−1. If |c| is small enough then γ̃∗ is close to γ̃ in Ck(T) and the
term of order −1 in the Laurent expansion of γ̃∗n(γ̃∗1)′ is different from zero.
Hence the integral (3.1) for the multi-index (0, . . . , 0, 1) does not vanish.

We will apply the following result of Forstneric and Rosay. Let γa and
γb be real-analytic embeddings of T into Cn such that Γa = γa(T) and
Γb = γb(T) are polynomially convex. Then there is a sequence Ψj of au-
tomorphisms of Cn which converges uniformly on a neighborhood U of
Γa to a biholomorphic map Ψ : U → Ψ(U) satisfying Ψ(Γa) = Γb. Let
γa(z) = (z, . . . , z, 1/z), z ∈ T. Take γb = γ∗ and let Ψj be the sequence
of holomorphic automorphisms of Cn obtained for those γa and γb by the
theorem of Forstneric and Rosay. Then Ψj ◦ γa is close to γ∗ in Ck(T) if j is
large.

Theorem 1 gives a C∞ function f on T which is Ck close to 1/z and such
that the graph Γf (T) = {(z, w) ∈ C2 : z ∈ T, w = f(z)} considered as a
subset of C2 is complete pluripolar in C2. Hence the image Γ of T under the
mapping γf (z) = (z, . . . , z, f(z)) is complete pluripolar in Cn. Indeed, since
Γf (T) is complete pluripolar in C2 there exists a plurisubharmonic function
u defined on C2 which equals −∞ exactly on Γf (T). Hence the function
max{u(z1, zn), u(z2, zn), . . . , u(zn−1, zn)} is a plurisubharmonic function on
Cn which is equal to −∞ exactly on Γ .

Since each Ψj is a holomorphic automorphism of Cn each Ψj(Γ ) is com-
plete pluripolar and Ψj ◦ γf is close to Ψj ◦ γa for a fixed j. Choosing first j
suitably large and then f(z) close to 1/z we conclude that Ψj ◦ γf approxi-
mates γ∗, and hence γ, in Ck(T). Theorem 2 is proved.
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4. Proof of Theorem 3. The graph of any entire function over the com-
plex plane is complete pluripolar. Therefore we assume that F is a proper
closed subset of C. Let ∆ = {D(zi, ri)}∞i=1 be a sequence of disks with radii
< 1 and pairwise disjoint centers, and with the following properties. Each
disk D(zi, ri) is contained in the complement of the set F and the union of
disks from ∆ is equal to the complement of F and ∆ is locally finite, i.e.
each compact subset of Cr F intersects only a finite number of disks from
the sequence ∆. Without loss of generality we may assume that ri ≤ r1 for
i = 1, 2, . . . . The function f(z) in the statement of Theorem 3 will be of the
form

f(z) =
∞∑

i=1

∞∑

j=1

ai,j
1

(z − zi)n(j)
,(4.1)

where the natural numbers n(j) and the coefficients ai,j are chosen in the
following way. Put

Ck = max
i=1,...,k

|zi|+ k(4.2)

and choose an increasing sequence of natural numbers n(j) so that the
growth condition

n(j + 1) ≥ j3n(j)(4.3)

is satisfied and so that the series
∞∑

k=1

kn(k)
n(k + 1)

logCk(4.4)

and the series
∞∑

k=1

n(k)
n(k + 1)

log
k∏

i=1

dist(zi, F )(4.5)

are convergent. Here dist(zi, F ) denotes the Euclidean distance from the
point zi to the set F . Put

a1,j = (r1(1− 1/j))n(j), ai,j = (a1,i)j(ri(1− 1/j))n(j) for i > 1.(4.6)

Let fk(z) be the rational function

fk(z) =
k∑

i=1

k∑

j=1

ai,j
1

(z − zi)n(j)
(4.7)

with poles outside F and denote by pk(z, w) the polynomial

pk(z, w) =
( k∏

i=1

(z − zi)n(k)
)

(w − fk(z)).

Then we have the following lemmas.
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Lemma 4. The function f(z) given by (4.1) is continuous on F . More-
over the estimate

|f(z)− fk(z)| ≤ 8k
(

1− 1
k + 1

)n(k+1)

(4.8)

holds uniformly for z ∈ F for all sufficiently large natural numbers k.

Lemma 5. If z ∈ C r F and z 6= zi for all centers zi of disks in ∆ then
|fk(z)| → ∞ as k →∞.

Lemma 6. Put

u(z, w) =
∞∑

k=1

max
{

1
n(k + 1)

log |pk(z, w)|,−1
}
.(4.9)

The series converges for each point (z, w) ∈ C2 and u(z, w) is plurisubhar-
monic in C2.

The proofs of Lemmas 4–6 are postponed until the end of this section.
Theorem 3 follows from the next lemma.

Lemma 7. u(z, w) = −∞ if and only if (z, w) belongs to the graph of f .

Proof. First we consider the case when z belongs to the set F and w 6=
f(z). Since the rational function fk(z) tends to f(z) as k tends to infinity
there exists a δ > 0 and a natural number k0 such that if k ≥ k0 then
|w − fk(z)| > δ. Moreover, since z belongs to F we may estimate |z − zi|
from below by dist(zi, F ). Hence

u(z, w) =
∞∑

k=1

max
{

1
n(k + 1)

log
∣∣∣
( k∏

i=1

(z − zi)n(k)
)

(w − fk(z))
∣∣∣,−1

}

≥ const +
∞∑

k=k0

max
{

n(k)
n(k + 1)

log
k∏

i=1

dist(zi, F )

+
1

n(k + 1)
log δ,−1

}
.

By the growth condition (4.3) it follows that the series
∑

(1/n(k + 1)) log δ
is convergent and this together with the convergence of the series given
by (4.5) implies that the last series above is convergent and hence u(z, w)
> −∞.

Secondly we consider the case when z ∈ F and w = f(z). The definition
of Ck = maxi=1,...,k |zi|+ k implies that |z|+ |zi| is bounded from above by
Ck for k > |z| and i = 1, . . . , k. Moreover, since z ∈ F , the estimate (4.8)
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holds and therefore there exists a natural number k0 so that

u(z, f(z)) =
∞∑

k=1

max
{

1
n(k + 1)

log
∣∣∣
( k∏

i=1

(z − zi)n(k)
)

(f(z)− fk(z))
∣∣∣,−1

}

≤ const +
∞∑

k=k0

max
{

kn(k)
n(k + 1)

logCk

+
1

n(k + 1)
log
(

8k
(

1− 1
k + 1

)n(k+1))
,−1

}

≤ const +
∞∑

k=k0

{
kn(k)
n(k + 1)

logCk +
1

n(k + 1)
log 8k

+ max
{

log
(

1− 1
k + 1

)
,−1

}}
.

Here we used the inequality max{A + t,−1} ≤ A + max{t,−1} for A > 0
and t ∈ R. The first terms in braces form the convergent series (4.4). By the
growth condition (4.3) it follows that the series formed by the second terms
is convergent. The remaining series diverges to −∞, hence u(z, w) = −∞.

Finally we consider the case when z belongs to the complement of F and
w is some fixed complex number. Suppose first that z equals the center of
one of the disks from the covering ∆, that is, z = zi for some i. Recall that
∆ has the property that each compact subset of the complement of the set
F intersects only a finite number of disks from ∆. Therefore, zi is contained
in only a finite number of disks D(zj, rj) and consequently there exists a
δ > 0 such that |zi − zj | > δ for those j, j 6= i. Moreover, if k ≥ i the
polynomial pk(zi, w) is equal to ai,k

∏k
j=1, j 6=i(zi − zj)n(k) and therefore the

absolute value of pk(zi, w) is estimated from below by ai,kδ(k−1)n(k). Hence

u(zi, w) =
∞∑

k=1

max
{

1
n(k + 1)

log |pk(zi, w)|,−1
}

≥ const +
∞∑

k=i

max
{

1
n(k + 1)

log ai,kδ(k−1)n(k),−1
}
.

Now, (4.6) implies that log ai,k = n(k)o(1) for k →∞. The growth condition
(4.3) implies that the series above is convergent and hence u(zj , w) > −∞.

Suppose that z ∈ C r F and z is not equal to the center of any disk
from the covering ∆. Again, since each compact set of the complement of
F intersects only a finite number of disks from ∆ there exists a δ > 0 such
that |z − zi| > δ for all i. By Lemma 5, |fk(z)| → ∞ as k → ∞. Thus,
for a fixed complex number w there exists a natural number k0 such that
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∣∣|w| − |fk(z)|
∣∣ > δ for k ≥ k0. Hence

u(z, w) =
∞∑

k=1

max
{

1
n(k + 1)

log
∣∣∣
( k∏

i=1

(z − zi)n(k)
)

(w − fk(z))
∣∣∣,−1

}

≥ const +
∞∑

k=k0

max
{

kn(k)
n(k + 1)

log δ +
1

n(k + 1)
log δ,−1

}
.

By (4.3) the series converges and hence u(z, w) > −∞.

It remains to prove Lemmas 4–6.

Proof of Lemma 4. (4.3) implies that 8k(1 − 1/(k + 1))n(k+1) tends to
zero for k →∞. Hence the continuity of the function f(z) follows if we can
prove the estimate (4.8).

If z ∈ F then ri/(z − zi) < 1 for all i. Hence defining

ã1,j = (1− 1/j)n(j), ãi,j = (ã1,i)j(1− 1/j)n(j) for i > 1,(4.10)

we obtain

|f(z)− fk(z)| ≤
∞∑

i=1

∞∑

j=1

ãi,j −
k∑

i=1

k∑

j=1

ãi,j .(4.11)

The estimate (4.8) follows if we can prove that the right hand side of (4.11)
does not exceed 8k(1−1/(k + 1))n(k+1). As in the proof of Lemma 1 one can
find a natural number k0 such that ã1,k+1 ≤ 1

2 ã1,k for k ≥ k0. Then by (4.10)
also ãi,k+1 ≤ 1

2 ãi,k for all i whenever k ≥ k0. Consequently,
∑

l>k ãi,l ≤
2ãi,k+1. Using this twice together with the immediate estimates ãi,j ≤ ã1,j
and ãi,j ≤ ã1,i we conclude that

∞∑

i=1

∞∑

j=k+1

ãi,j≤
∞∑

i=1

2ãi,k+1≤2kã1,k+1+
∞∑

i=k+1

2ã1,i≤(2k + 4)ã1,k+1.(4.12)

Moreover using the inequalities above one more time we get
k∑

j=1

∞∑

i=k+1

ãi,j ≤
k∑

j=1

∞∑

i=k+1

ã1,i ≤
k∑

j=1

2ã1,k+1 ≤ 2kã1,k+1.(4.13)

Combining (4.12) and (4.13) we obtain the estimate (4.8) and hence Lem-
ma 4 follows.

Proof of Lemma 5. We will prove first that for each z ∈ CrF there exists
a natural number i0 such that for all sufficiently large j the leading term in
the decomposition (4.7) of fj at the point z is the term corresponding to
the principal part of fj at zi0 ; more precisely, we will prove

2ai0,j
1

|z − zi0 |n(j)
> |fj(z)− fj−1(z)| > 1

2
ai0,j

1
|z − zi0 |n(j)

.(4.14)
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Then we will show for the i0 above and all sufficiently large j that

1
2
ai0,j+1

1
|z − zi0 |n(j+1)

> 6ai0,j
1

|z − zi0 |n(j)
.(4.15)

Inequalities (4.14) and (4.15) imply |fj+1(z)−fj(z)| > 3|fj(z)−fj−1(z)| for
large j. Hence |fk(z)| = |∑k

j=2 fj(z)− fj−1(z)| tends to infinity as k →∞.
In order to prove (4.14) denote by D(zi1, ri1), . . . ,D(zin, rin) the disks

of the covering ∆ which contain the point z. If j is larger than the il’s, the
terms in fj(z)− fj−1(z) corresponding to the zil ’s have the form

ail,j
1

(z − zil)n(j)
=





((
1− 1

j

)
r1

z − z1

)n(j)

if il = 1,

(a1,il)
j

((
1− 1

j

)
ril

z − zil

)n(j)

otherwise.

Since z is contained in the above mentioned disks, ril/|z − zil | > 1 for
l = 1, . . . , n and consequently all the terms above tend to infinity as j →∞.
By comparing the rate of growth of the above terms we see that one of them
tends to infinity faster than the sum of the others. (In case the ril/|z − zil |
coincide for different il, the respective factors (a1,il)

j determine the growth
of the ratio of the two terms.) Moreover, a calculation similar to the one in
the proof of Lemma 4 shows that the sum of the terms in fj(z) − fj−1(z)
which do not correspond to any of the zil ’s is uniformly bounded. Hence
there exists i0 so that (4.14) holds for all sufficiently large j.

For the proof of (4.15) we consider the ratio

ai0,j+1
1

|z−zi0 |n(j+1)

/
ai0,j

1
|z − zi0 |n(j)

= C

(
1+

1
j2−1

)n(j+1)−n(j)

,(4.16)

where C is a positive constant (namely C = 1 or C = a1,i0). The growth
condition (4.3) implies that n(j + 1) − n(j) > j3 for all sufficiently large j
and hence the right hand side of (4.16) is larger than Cej+o(j) for j → ∞.
(4.15) follows.

Proof of Lemma 6. We will prove that for each r > 1 the series (4.9)
converges in the bidisk B := {(z, w) ∈ C2 : |z|, |w| < r} to a plurisub-
harmonic function. For (z, w) ∈ B the inequality |∏k

i=1(z − zi)n(k)w| ≤
(r + maxi=1,...,k |zi|)kn(k)r ≤ (r + Ck)kn(k)r holds (see (4.2) for the defini-
tion of Ck). Moreover, the polynomial (

∏k
i=1(z − zi)n(k))fk(z) is the sum

of k2 terms and since the coefficients ai,k < 1, the modulus of each of the
k2 terms may be estimated from above by (r + maxi=1,...,k |zi|)kn(k) when
(z, w) belongs to B. Using the same argument as above we conclude that
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|(∏k
i=1(z − zi)n(k))fk(z)| ≤ k2(r + Ck)kn(k). Therefore the functions

N∑

k=1

max
{

1
n(k + 1)

log |pk(z, w)|,−1
}

are plurisubharmonic in B and uniformly bounded from above by
∞∑

k=1

1
n(k + 1)

log((r + k2)(r + Ck)kn(k)).

The latter series is convergent in view of conditions (4.3) and (4.4). Lemma 6
follows.
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