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Normal martingales and polynomial families

by H. Hammouch (Evry Val d’Essonne)

Abstract. Wiener and compensated Poisson processes, as normal martingales, are
associated to classical sequences of polynomials, namely Hermite polynomials for the first
one and Charlier polynomials for the second. The problem studied in this paper is to
find if there exist other normal martingales which are associated to classical sequences
of polynomials. Privault, Solé and Vives [5] solved this problem via the quantum Ka-
banov formula under some assumptions on the normal martingales considered. We solve
the problem without these assumptions and we give a complete study of this subject in
Section 2. In Section 3 we introduce the notion of algebraic process and we prove that
Azéma martingales are infinitely algebraic.

1. Introduction. Let {Xt, t ≥ 0} be a semimartingale such that X0−

= 0. By induction on n we define the semimartingales

P
(n)
0− = 0, P

(0)
t = 1,

P
(1)
t = Xt, P

(n)
t =

t�

0

P
(n−1)
s− dXs.

We also define the nth coefficient Cn
t by

C1
t = Xt, C2

t = [X,X]t,

Cnt =
∑

s≤t
(∆Xs)n (∀n > 2).

The Kailath–Segall formula (Meyer [4]) is a relationship of convolution type
which links the semimartingales P (n)

t to the coefficients Cnt :

P
(n)
t =

1
n

[ n∑

k=1

(−1)k+1P
(n−k)
t Ckt

]
.(1)

If X is continuous all the coefficients Cn
t =

∑
s≤t(∆Xs)n vanish for every
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n > 2 and (1) can be written simply as

Pnt =
1
n

[XtP
(n−1)
t − atP (n−2)

t ],(2)

where at is the angle bracket of X. This form resembles the Hermite poly-
nomials whose definition is:

H0(x) = 1, H1(x) = x, H2(x) =
1
2

(x2 − 1),

Hn(x) =
1
n

[xHn−1(x)−Hn−2(x)].

If X is continuous and in particular if X is a Wiener process then the
Kailath–Segall formula can be written formally as

P (n)

an/2
= Hn

(
X

a1/2

)
.(3)

If X is a compensated Poisson process (i.e. Xt = αNt − t/α, where N is a
standard Poisson process) we recognize the Charlier polynomials which are
defined by

C0(x, y) = 1,

Cn(x, y) =
1
n

[
xCn−1 + (x+ y)

( n∑

k=2

(−1)k+1Cn−k
)]
.

P (n)/αn is a Charlier sequence in (X/α, b), where α = ±1/
√
λ, bt = λt, and

λ is the intensity of N . So we can write

P
(n)
t /αn = Cn(Xt/α, bt) for each t ≥ 0.(4)

2. Normal martingales. We will say that X is a normal martingale
if its angle bracket 〈X,X〉 is deterministic and 〈X,X〉t = t. For such a
martingale, the iterated integral � Cn f(s1, . . . , sn) dX1 · · · dXn can be de-
fined for each f in L2(Cn), where Cn = {(s1, . . . , sn) ∈ Rn+ : 0 ≤ s1 <
· · · < sn} (Meyer [4]). The nth chaos subspace of X is the set Hn(X) =
{ � Cn f(s1, . . . , sn) dX1 · · · dXn : f ∈ L2(Cn)}. We denote by FXt the σ-
algebra σ{Xs, 0 ≤ s ≤ t} and by FX∞ the σ-algebra σ{Xt, 0 ≤ t}, so
the chaos subspaces of X are orthogonal subspaces of L2(FX∞). A random
variable F ∈ L2(FX∞) has a chaos decomposition if it is in the Hilbertian
sum

⊕
Hn(X). Finally, recall three important facts which are often used in

our study:

1. If X is a normal martingale then the process {X2
t − t, 0 ≤ t} is a

martingale.
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2. L2(FX∞) and L2(Cn) are isometric spaces, in particular

E
( �

Cn

f(s1, . . . , sn) dX1 · · · dXn

)2
=

�

Cn

f2(s1, . . . , sn) ds1 · · · dsn.

3. If Kt is an integrable process with respect to X then

E
( �
Ks dXs

)2
=

�
E(Ks)2 ds.

As we mentioned in the abstract, Privault, Solé and Vives [5] studied
the question of whether there exist other normal martingales X whose iter-
ated integrals P (n) can be expressed as polynomials in X according to the
following definition:

Definition 1. We will say that a normal martingale X has an associ-
ated family of polynomials (Q[y]

n (x))n∈N, where Q[y]
n is a polynomial of degree

n in x for each y ∈ R, if

P
(n)
t = Q[t]

n (Xt).(5)

They considered normal martingales X satisfying the following assump-
tions:

1) X is in L6(Ω).
2) X is a solution of a structure equation [3] (i.e. d[X,X]t = dt+ φtdXt

and X0 = x0).
3) φ has a chaotic decomposition.

They proved, by applying the quantum Kabanov formula [5], that only
Wiener and compensated Poisson processes can satisfy Definition 1.

We study this problem without the above hypotheses. We show that the
second and third hypotheses are automatically satisfied since we just assume
that P (2)

t is a polynomial of degree 2 in Xt. In this way, we prove that φ
is exactly in

⊕2
k=0Hk(X). The study of P (3)

t permits us to conclude that
X is a Wiener or a compensated Poisson process. This is the subject of the
following theorem:

Theorem 1. Let {Xt, t ≥ 0} be a normal martingale starting at x0.
Then

(i) X is associated to a sequence of polynomials if and only if for each
integer k the coefficient Ckt can be written as Ckt = P

[t]
k (Xt), where

P
[t]
k (x) is a polynomial in x of degree at least k for all t ≥ 0.

(ii) If C2
t = [X,X]t is a polynomial in Xt of degree at least two, then

there exist two real numbers β and γ such that

d[X,X]t = dt+ (βXt− + γ)dXt.(6)
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(iii) If X satisfies (6) with β 6= −2, then C2
t is a polynomial of degree

two in Xt.
(iv) If β = −2, then P

(2)
t is not a polynomial in Xt.

(v) P (2)
t and P (3)

t are polynomials in Xt, of degrees respectively at least
two and three, if and only if X is a Wiener or a compensated Pois-
son process.

Proof. (i) A slight transformation of the Kailath–Segall formula (1) al-
lows us to link the nth coefficient Cn

t with the n− 1 others:

Cnt = (−1)n+1
[
nP

(n)
t +

n−1∑

k=1

(−1)kP (n−k)
t Ckt

]
.(7)

By induction on n we can easily see that the coefficients Cn
t are polynomials

in Xt if and only if P (n)
t are.

(ii) We will first establish that if C2
t = [X,X]t is a polynomial in Xt of

degree at least two, then X satisfies a structure equation

d[X,X]t = dt+ φtdXt.

Assume that [X,X]t is a polynomial in Xt of degree at least two. Then there
exist deterministic functions a(t), b(t) and c(t) such that

X2
t − [X,X]t = a(t)X2

t + b(t)Xt + c(t).

For simplicity we assume here that x0 = 0. We have

X2
t − [X,X]t = 2

t�

0

Xs− dXs = 2
t�

0

s−�

0

dXu dXs ∈ H2(X).

Now a(t) 6= 0, since otherwise the above formulas imply that X2
t − [X,X]t ∈

[H0(X) ⊕ H1(X)] ∩ H2(X) = {0} and then � t0Xs− dXs = 0, therefore
� t0E(X2

s−) ds = 0, which is impossible since X is a normal martingale and
E(X2

s−) = s.
Thus X2

t − [X,X]t = a(t)X2
t + b(t)Xt+ c(t) ∈ H0(X)⊕H1(X)⊕H2(X),

whence X2
t ∈ H0(X)⊕H1(X)⊕H2(X), so its chaos decomposition can be

written as

X2
t = t+

t�

0

f(s1) dXs1 +
t�

0

s2�

0

g(s1, s2) dXs1 dXs2 = 2
t�

0

Xs− dXs + [X,X]t,

where f ∈ L2(R+) and g ∈ L2(C2), and f and g are independent of t. In
fact by a formula due to C. Dellacherie, B. Maisonneuve and P. A. Meyer
[2] the nth chaotic coefficient of a r.v. F is

fn(s1, . . . , sn) = L2- lim
ε↓0

1
εn
E[F (Xs1+ε −Xs1) · · · (Xsn+ε −Xsn)]
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Then with F = X2
t we have

f(s1) = L2- lim
ε↓0

1
ε
E[X2

t (Xs1+ε −Xs1)]

= L2- lim
ε↓0

1
ε
E[(X2

t − t+ t)(Xs1+ε −Xs1)]

= L2- lim
ε↓0

1
ε
E[(X2

s1+ε − s1 − ε)(Xs1+ε −Xs1)]

for s1 < t, and for a sufficiently small ε we have s1 < s1 + ε ≤ t. Then
Xs1+ε−Xs1 is FXs1+ε-measurable. Since X is a normal martingale we obtain
the last equality. The same argument leads to

g(s1, s2) = L2- lim
ε↓0

1
ε2 E[X2

t (Xs1+ε −Xs1)(Xs2+ε −Xs2)]

= L2- lim
ε↓0

1
ε2 E[(X2

s2+ε − s2 − ε)(Xs1+ε −Xs1)(Xs2+ε −Xs2)],

whence f and g are independent of t and then

d[X,X]t = dt+ f(t)dXt +
( t�

0

[g(t, s)− 2] dXs

)
dXt,

which can be written as

d[X,X]t = dt+ φtdXt with φt = f(t) +
t�

0

[g(t, s)− 2] dXs.

The case x0 6= 0 is similar, since if Yt = Xt−x0 then [X,X]t is a polynomial
in Xt if and only if [Y, Y ]t is a polynomial in Yt. Now φt is of the form
βXt− + γ. Indeed, the equality of expectations in

X2
t − [X,X]t = a(t)X2

t + b(t)Xt + c(t)

gives
a(t)(x2

0 + t) + b(t)x0 + c(t) = 0,

whence
X2
t − [X,X]t = a(t)(X2

t − x2
0 − t) + b(t)(Xt − x0).

On the other hand, the structure equation and the Itô formula

[X,X]t = x2
0 + t+

t�

0

φs dXs, X2
t − [X,X]t = 2

t�

0

Xs− dXs

permit us to write
t�

0

[2Xs− − a(t)(φs + 2Xs−)− b(t)] dXs = 0.
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The expectation of its square also vanishes:
t�

0

E[2Xs− − a(t)(φs + 2Xs−)− b(t)]2 ds = 0

and thus ds-a.e. on [0, t],

2Xs− = a(t)(φs + 2Xs−) + b(t) a.s.

Since a(t) does not vanish we obtain

φs =
2(1− a(t))

a(t)
Xs− −

b(t)
a(t)

a.s. and ds-a.e. on [0, t].

Define now on R∗+ two functions

βt =
2(1− a(t))

a(t)
, γt = − b(t)

a(t)
.

Then βt and γt are constant because if t1 < t2 then for almost every s in
[0, t1],

βt1Xs− + γt1 = βt2Xs− + γt2 a.s.,

whence βt = β = cte and γt = γ = cte.
(iii) Conversely, if X satisfies

d[X,X]t = dt+ (βXt− + γ)dXt a.s.

with β 6= −2, then

[X,X]t = x2
0 + t+ β

t�

0

Xt− dXt + γXt(8)

= x2
0 + t+

β

2
(X2

t − [X,X]t) + γXt

and
β + 2

2
[X,X]t =

β

2
X2
t + γXt + x2

0 + t,(9)

so [X,X]t is a polynomial of degree two in Xt.
(iv) Assume now that β = −2. Then

[X,X]t = x2
0 + t+

t�

0

(−2Xs− + γ) dXs, X2
t = 2

t�

0

Xs− dXs + [X,X]t.

Therefore

X2
t = x2

0 + t+ γ(Xt − x0) = λ2(t, x0) + µ2(t, x0)Xt,

where λ2(t, x0) = x2
0 + t − γx0 and µ2(t, x0) = γ. A simple induction on n

shows us that there exist two deterministic functions λn(t, x0) and µn(t, x0)
such that

Xn
t = λn(t, x0) + µn(t, x0)Xt.
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Therefore if P (2)
t is a polynomial in Xt, its degree cannot exceed 1 and

P
(2)
t can be written as P

(2)
t = λ(t, x0) + µ(t, x0)Xt. Then it belongs to

H0(X)⊕H1(X). On the other hand,

P
(2)
t = 2

t�

0

Xs− dXs = 2
t�

0

s−�

0

dXu dXs,

so P
(2)
t is in H2(X) − {0}, which is impossible since [H0(X) ⊕ H1(X)] ∩

(H2(X)− {0}) = ∅. Therefore P (2)
t is not a polynomial in Xt.

(v) Assume now (6) with β ∈ R∗ − {−2}. From (8) and (9) we obtain

P
(2)
t = a0(t) + a1(t)Xt + a2(t)X2

t ,

where

a0(t) = −x
2
0 + t− γx0

β + 2
, a1(t) = − γ

β + 2
, a2(t) =

1
β + 2

.

If P (3)
t is a polynomial in Xt of degree at least three, then

P
(3)
t = b0(t) + b1(t)Xt + b2(t)X2

t + b3(t)X3
t .

Since P
(3)
t = � t0 P (2)

s− dXs, we will first write P
(3)
t as a stochastic integral

� t0Ks dXs with respect to X, where Ks is a polynomial in Xs− of de-

gree two, and then identify Ks and P
(2)
s− . Indeed, in the expression P

(3)
t =

b0(t)+b1(t)Xt+b2(t)X2
t +b3(t)X3

t , we have Xt = x0 + � t0 dXs. The structure
equation (6) gives

X2
t = x2

0 + t+
t�

0

[(β + 2)Xs− + γ] dXs.

The change of variable formula due to Emery [3] permits us to write

X3
t = x3

0 + λβ

t�

0

X2
s−dXs + µβ

t�

0

Xs− ds

= x3
0 + µβtx0 +

t�

0

[λβX2
s− + µβ(t− s)] dXs

where

λβ =
(β + 1)3 − 1

β
, µβ =

(β + 1)3 − 1− 3β
β2 .

From the above equalities we deduce the expression of Ks. Its identification
with P

(2)
s− leads us in particular to

λβ = µβ,

but this equation has no solution in R∗ − {−2}.
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In the case β = −2, we showed that X cannot be associated to polyno-
mials. We can also see that if γ = 0, this martingale satisfies X2

t = x2
0 + t

and is called parabolic.
In the case β = 0 the structure equation becomes

d[X,X]t = dt+ γdXt.

If γ = 0 this is a Wiener process and if γ 6= 0 it is a compensated Poisson
process.

We say that a normal martingale is an Azéma martingale [3] if its struc-
ture equation is of the form d[X,X]t = dt+βXt−dXt. From the above study
we can obtain

Corollary. A normal martingale is a non-parabolic Azéma martingale
if and only if [X,X]t is a polynomial of degree two in Xt.

3. Algebraic processes. We saw that Azéma martingales are not as-
sociated to polynomials according to Definition 1. The aim of this section is
to define a context where they are. In this context we give explicitly a new
sequence of polynomials which is linked to them.

Definition 2. Let C be a class of processes and X ∈ C. We say that X
is algebraic on C if there exists a polynomial Q(t, x) =

∑n
k=0 ak(t)x

k in x of
degree higher than two such that the process {Q(t,Xt), t ≥ 0} is still in C.
The deterministic functions ak are in C∞(R+).

The algebraic degree of X is the integer dal(X) = inf{degxQ : Q(·,X.)
∈ C}. If the set {degxQ : Q(·,X.) ∈ C} is infinite we say that X is in-
finitely algebraic on C; if card{degxQ : (·,X.) ∈ C} < 2 we say that X is
transcendent on C.

For example, Wiener processes are algebraic, as are all normal martin-
gales; for those process we have dal(X) = 2. Azéma martingales are alge-
braic; in the next theorem we show that they are infinitely algebraic.

For each integer k ≥ 2 define

λk =
(β + 1)k − 1

β
, µk =

(β + 1)k − 1− kβ
β2 ,

r0 = r1 = 1, rk =





1
µ2µ4 · · ·µk

if k is even,

1
µ3µ5 · · ·µk

if k is odd.

Finally, we define the sequence of polynomials Sβn by

Sβn(t, x) = tn/2Rβn

(
x√
t

)
, where Rβn(x) =

[n/2]∑

k=0

(−1)krn−2k

k!
xn−2k.
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Theorem 2. Let {Xt, t ≥ 0} be an Azéma martingale satisfying the
structure equation

d[X,X]t = dt+ βXt−dXt, X0 = 0.

(i) There exists no martingale of the form Q(Xt) + h(t), where Q is
a polynomial of degree higher than three and h is a deterministic
function on R+. If degQ = 1 or 2 the only martingales of this form
are aXt + b or a(X2

t − t) + bXt + c.
(ii) Azéma martingales are infinitely algebraic, more precisely the pro-

cess {Sβn(t,Xt), t ≥ 0} is a martingale for each even integer n.

Proof. (i) and (ii) are immediately derived from a change of variable
formula due to Yor [7]. Indeed, for a function φ ∈ C1,2(R+×R), the process
φ(t,Xt) is a martingale if and only if

Lβφ+
∂φ

∂t
= 0,(10)

where the operator Lβφ is defined by

Lβφ(t, x) =
φ(t, (1 + β)x)− φ(t, x)− βxφ′x(t, x)

β2x2

and Lβφ(t, 0) is the limit of Lβφ(t, x) at zero. Then the application of the
condition (10) with φ(t, x) =

∑n
j=1 aj(t)x

j leads us to a simple differential
system satisfied by the n functions aj on R+, j = 1, . . . , n. For n = 2p, if
we choose a2p(t) = 1 and a2p−1(t) = 0, then one solution of this system is
given by

a2j(t) = (−1)p−j
( p−j−1∏

l=0

1
µ2(p−l)

)
tp−j

(p− j)! , j = 1, . . . , p− 1,

a2j−1(t) = 0,

and we obtain a martingale of the form Mt = φ(t,Xt) =
∑p

j=1 a2j(t)X
2j
t ;

we see clearly that Mt = Sβ2p(t,Xt).
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XXIV ), Hermann, 1992, 199–270.
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