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On decomposition of pairs of commuting isometries

by Zbigniew Burdak (Kraków)

Abstract. A review of known decompositions of pairs of isometries is given. A new,
finer decomposition and its properties are presented.

1. Introduction. Let H be a complex Hilbert space. Let H0 be a sub-
space of H. Then PH0 is the orthogonal projection on H0. Denote by L(H)
the algebra of all bounded linear operators on H. Recall that an isome-
try S ∈ L(H) is called a unilateral shift if there is a wandering subspace
W which generates H (i.e. SnW ⊥ SmW for any distinct n,m ≥ 0 and
H =

⊕
n≥0 S

nW ). Note that W = kerS∗. The subspace H0 reduces S (or
is reducing for S) if H0 and H⊥0 are invariant for S. Recall Wold’s classical
result [8]:

Theorem 1.1. Let S ∈ L(H) be an isometry. There is a unique decom-
position

H = Hu ⊕Hs

into orthogonal subspaces reducing S such that S|Hu is a unitary operator
and S|Hs is a unilateral shift. Moreover

Hu =
⋂

n≥0

SnH, Hs =
⊕

n≥0

Sn(kerS∗).

Let S1, S2 ∈ L(H) be commuting isometries (we will keep this notation
throughout the paper). We always call them a pair of isometries. A natural
extension of Wold’s result to a pair of commuting isometries would be a
decomposition of the Hilbert space into four subspaces which reduce each
of the operators S1, S2 either to a unitary operator or to a unilateral shift.
Such a decomposition has been proved for pairs of doubly commuting oper-
ators by M. Słociński [6]. It does not exist if the isometries just commute.
For a commuting semigroup of isometries I. Suciu [7] showed the existence
of a decomposition into three parts: a maximal subspace where each oper-
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ator is unitary, a totally non-unitary subspace and a strange subspace. This
result shows that in the case of a pair of commuting isometries, the totally
non-unitary subspace is a subspace where the operators are doubly com-
muting unilateral shifts. The case of commuting isometries has also been
investigated by Popovici. He found the maximal reducing subspace where
the operators doubly commute and the Słociński theorem can be applied.
Moreover, he decomposed the orthogonal complement of that subspace into
a modified bi-shift subspace and an evanescent subspace.

In the present paper we continue the investigation of decompositions
for commuting pairs of isometries. The evanescent subspace is decomposed
according to the existence of “wandering vectors”. We also give some prop-
erties of the parts of the resulting decomposition.

2. The known decompositions. Let G be a subsemigroup of an
abelian group such that G ∩ −G = {0}. Recall ([7]) that {Tg}g∈G ⊂ L(H)
is a semigroup of isometries if T0 = I, Tg1+g2 = Tg1Tg2 for g1, g2 ∈ G and
Tg is an isometry for g ∈ G. Since G is an abelian semigroup, the isometries
commute. A semigroup {Tg}g∈G of isometries is called quasi-unitary if the
set ⋃

f−g 6∈G
T ∗f TgH

is linearly dense in H. A quasi-unitary semigroup is called strange if there
is no non-zero subspace reducing each isometry to a unitary operator. A
semigroup of isometries is called totally non-unitary if there is no non-trivial
subspace which reduces the semigroup to a quasi-unitary semigroup.

Theorem 2.1 (Suciu [7]). Let {Tg}g∈G be a semigroup of isometries
on H. There is a unique decomposition

H = Hu ⊕Hs ⊕Ht

such that Hu,Hs,Ht reduce Tg for g ∈ G and

• {Tg|Hu}g∈G is a semigroup of unitary operators,
• {Tg|Hs}g∈G is a strange semigroup,
• {Tg|Ht}g∈G is a totally non-unitary semigroup.

Having a pair S1, S2 of commuting isometries we obtain a semigroup of
isometries by setting T(n,m) := Sn1 S

m
2 for (n,m) ∈ (Z+∪{0})2. As a corollary

of the above theorem we obtain the existence of a maximal subspace Hu of H
such that S1|Hu , S2|Hu are unitary operators. In [1] it was proved that this
subspace is precisely the unitary subspace of the Wold decomposition for
the product isometry S1S2 (i.e. Hu =

⋂
i≥0(S1S2)iH). The decomposition

theorem below proved by Słociński [6] additionally decomposes the strange
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subspace into two reducing subspaces. Note that the theorem is true only for
pairs of doubly commuting isometries. Recall that isometries S1, S2 doubly
commute if S1S2 = S2S1 and S∗1S2 = S2S

∗
1 .

Theorem 2.2 (Słociński [6]). Suppose S1, S2 is a pair of doubly com-
muting isometries on H. There is a unique decomposition

H = Huu ⊕Hus ⊕Hsu ⊕Hss,

where Huu, Hus, Hsu, Hss are reducing subspaces for S1 and S2 such that

• S1|Huu , S2|Huu are unitary operators,
• S1|Hus is a unitary operator , S2|Hsu is a unilateral shift ,
• S1|Hsu is a unilateral shift , S2|Hsu is a unitary operator ,
• S1|Hss , S2|Hss are unilateral shifts.

The following relations hold between the subspaces considered by Sło-
ciński and Suciu:

Hu = Huu, Hs = Hus ⊕Hsu, Ht = Hss.

The general case has been investigated by Popovici. Set

K1 :=
⋂

i≥0

kerS∗1S
i
2, K2 :=

⋂

i≥0

kerS∗2S
i
1,(1)

and recall the following definition from [4].

Definition 2.3. A pair of isometries S1, S2 is called a weak bi-shift if
S1|K2 , S2|K1 , and the product isometry S1S2 are shifts.

Observe that if a pair of isometries S1, S2 doubly commute then
Ki = kerS∗i for i = 1, 2, and a weak bi-shift is precisely a pair of doubly
commuting shifts. By [2] for any pair of isometries there is a space H includ-
ing H and unitary operators U1, U2 on H such that Si = Ui|H for i = 1, 2.
The space H can be chosen minimal among all having this property. Then
U∗1 |H	H , U∗2 |H	H is called a dual pair of isometries to S1, S2, and the space
H	H a dual space to H.

Theorem 2.4 (Popovici). For any pair of commuting isometries S1, S2

on H there is a unique decomposition

H = Huu ⊕Hus ⊕Hsu ⊕Hws

such that Huu, Hus, Hsu, Hws reduce S1 and S2 and

• S1|Huu , S2|Huu are unitary operators,
• S1|Hus is a unitary operator , S2|Hus is a unilateral shift ,
• S1|Hsu is a unilateral shift , S2|Hsu is a unitary operator ,
• S1|Hws , S2|Hws is a weak bi-shift.
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Moreover , the subspace Hws can be uniquely decomposed as

Hws = Hss ⊕Hm ⊕He,

where Hss, Hm, He reduce S1 and S2 and

• Hss is a maximal subspace such that the restrictions S1|Hss and S2|Hss

are doubly commuting unilateral shifts,
• Hm is a maximal subspace such that a pair of isometries dual to S1|Hm,
S2|Hm is a doubly commuting pair of unilateral shifts,
• He := Hws 	 (Hss ⊕Hm).

The above subspaces can be described in the following way:

Huu =
⋂

n≥0

(S1S2)nH,(2)

Hus =
⊕

n≥0

Sn2

( ⋂

m≥0

Sm1 (K2)
)
,(3)

Hsu =
⊕

n≥0

Sn1

( ⋂

m≥0

Sm2 (K1)
)
,(4)

Hss =
⊕

n,m≥0

Sn1 S
m
2 (K1 ∩K2),(5)

Hm =
⊕

(m,n)∈Z2\(Z−)2

(S1, S2)(m,n)(H1
u ∩H2

u ∩ ker (S1S2)∗),(6)

where H i
u is the subspace of the Wold decomposition for the single isometry

Si where Si is a unitary operator, and

(S1, S2)(m,n) =





Sm1 S
n
2 for m ≥ 0, n ≥ 0,

S
∗|m|
1 Sn2 for m < 0, n ≥ 0,

S
∗|n|
2 Sm1 for m ≥ 0, n < 0.

All the subspaces considered except Hm and He are denoted as in the Sło-
ciński theorem. They are in fact the same subspaces in the case of doubly
commuting isometries. Moreover for any pair of commuting isometries the
orthogonal sum Huu⊕Hus⊕Hsu⊕Hss is a maximal reducing subspace where
the isometries doubly commute. Comparing the Popovici and Suciu results,
we easily get Hu = Huu. We also have the following

Corollary 2.5. Let S1, S2 be a pair of commuting isometries. The sub-
space Ht of the Suciu decomposition is equal to the subspace Hss of the
Popovici decomposition.

Proof. Put G := (Z+ ∪ {0})2 and T(n,m) := Sn1 S
m
2 . According to

the proof of existence of a maximal totally non-unitary subspace (see [7]),
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Ht :=
⊕

f∈G TfN , where N = (
⋃
f−g 6∈G T

∗
f TgH

)⊥. It can be proved that

N =
⋂

f−g 6∈G
ker (T ∗f Tg)

∗ =
⋂

f−g 6∈G
ker (T ∗g Tf ).

Then

N =
⋂

(k,l)−(n,m)6∈(Z+∪{0})2

kerS∗n1 S∗m2 Sk1S
l
2

=
⋂

n>k,m≤l
kerS∗n−k1 Sl−m2 ∩

⋂

m>l, n≤k
kerS∗m−l2 Sk−n1 ∩

⋂

n>k,m>l

kerS∗n−k1 S∗m−l2 .

Since kerS∗1S
i
2 ⊂ kerS∗j1 S

i
2 for i ≥ 0, j ≥ 1, we have

N =
⋂

n>k,m≤l
kerS∗1S

l−m
2 ∩

⋂

m>l, n≤k
kerS∗2S

k−n
1

∩
⋂

n>k,m>l

kerS∗n−k1 S∗m−l2

=
⋂

i≥0

kerS∗1S
i
2 ∩

⋂

i≥0

kerS∗2S
i
1 ∩

⋂

i,j≥1

kerS∗i1 S
∗j
2

= K1 ∩K2 ∩ kerS∗1S
∗
2 = K1 ∩K2.

Since G = (Z+ ∪ {0})2 and T(n,m) = Sn1 S
m
2 , it follows that N = K1 ∩ K2

and we obtain

Ht =
⊕

g∈G
Tg(N) =

⊕

(n,m)∈(Z+∪{0})2

Sn1 S
m
2 (K1 ∩K2),

which finishes the proof.

By this theorem and Huu = Hu the strange part in the case of a pair of
commuting isometries decomposes into four orthogonal subspaces reducing
both isometries S1, S2:

Hs = Hus ⊕Hsu ⊕Hm ⊕He,

where He is called the evanescent subspace.

3. New results

3.1. Examples. The evanescent subspace He considered by Popovici has
not been characterized. Let us consider a few examples of pairs of isometries
on H such that H = He. Recall that K1,K2 are the subspaces given by (1).
An easy consequence of (3)–(5) may be helpful.

Corollary 3.1. If K1 = K2 = {0} then Hsu = Hus = Hss = {0}.
Example 3.2. Fix n,m ∈ Z+ and take a pair Sn, Sm, where S is a com-

pletely non-unitary isometry (i.e.
⋂
i≥0 S

iH = {0}). Hence the isometries
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Sn, Sm are completely non-unitary. Therefore Huu = {0} and by (6) we
have Hm = {0}. By Corollary 3.1 we get Hsu = Hus = Hss = {0}. Hence
H = He. Note that in this example there are k, l such that Sk1 = Sl2.

Recall from [5] that J ⊂ Z2 is called a diagram (in Z2) if for any g ∈
(Z+ ∪ {0})2 and any j ∈ J the element g + j belongs to J .

Example 3.3. Let us fix a diagram J in Z2 and orthonormal vectors
{ei,j}(i,j)∈J in a complex Hilbert space. We can define a new Hilbert space

H =
⊕

(i,j)∈J
Cei,j

and isometries
S1(ei,j) = ei+1,j, S2(ei,j) = ei,j+1.

The properties of isometries given in this example depend on the dia-
gram J . Some examples in this paper are obtained by specifying J . The
following one shows that the converse of Corollary 3.1 is not true.

Example 3.4 ([3]). Let J = (Z+∪{0})2\(0, 0) in Example 3.3. We have
K1 =

⊕
i∈Z+

Ce0,i and K2 =
⊕

j∈Z+
Cej,0. But K1 ∩K2 = {0}. By (5) we

have Hss = {0}. The operators S1, S2 are unilateral shifts so Hus = Hsu =
Huu = {0}. Moreover H1

u = H2
u = {0} implies H1

u ∩H2
u ∩ ker (S1S2)∗ = {0}

and using (6) we get Hm = {0}. So H = He.

Let G be a semigroup and {Tg}g∈G be a semigroup of isometries on H.
A vector x ∈ H is called a wandering vector (for a given semigroup of
isometries) if (Tg1x, Tg2x) = 0 for any distinct g1, g2 ∈ G. In Example 3.4
each ei,j is a wandering vector for the semigroup T(n,m) = Sn1 S

m
2 , where

(n,m) ∈ Z+. Hence there is no relation like that in Example 3.2. These two
examples show two quite different types of pairs of isometries. Now consider
the next example, similar to Example 3.4, but having K1 = K2 = {0}.

Example 3.5. Let J = {(i, j) ∈ (Z)2 : j ≥ −i} in Example 3.3. Then
K1 = K2 = {0}. By similar arguments to those in Example 3.4 we obtain
H = He.

3.2. New spaces. Let S be a subset of H. Denote by 〈S〉 the smallest
closed linear subspace containing S. Then for any z ∈ H we have 〈z〉 = Cz.
For every x ∈ H we define

H(x) := 〈{Si1Sj2x : i, j ≥ 0}〉,(7)

K1(x) :=
⋂

n≥0

ker (S1|H(x))
∗Sn2 , K2(x) :=

⋂

n≥0

ker (S2|H(x))
∗Sn1 .(8)

Lemma 3.6. For any x ∈ He there are y, z ∈ H(x) such that H(x) =
H(z)⊕H(y) and K1(z)∩K2(z) = 〈z〉, K1(y)∩K2(y) = {0}. Moreover the
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vector z is either zero or the orthogonal projection of x on ker (S1|H(x))∗ ∩
ker (S2|H(x))∗.

Proof. Let x ∈ He. Define w := PFx, where F = ker (S1|H(x))∗ ∩
ker (S2|H(x))∗. Note that

F ⊥ Si1Sj2(H(x)) for i, j ≥ 0, i+ j ≥ 1.(9)

Therefore if w = 0 then F = {0}. Since K1(x) ∩K2(x) ⊂ F , taking y = x,
z = 0 we finish the proof for w = 0.

Now consider the case w 6= 0. We can assume that ‖w‖ = 1. Let
u ∈ F . The projection of u on the space orthogonal to 〈w〉 is (I − P〈w〉)u =
u− (u,w)w. Since u,w ∈ F , we have (I −P〈w〉)u ∈ F as well. Hence by (9),
((I − P〈w〉)u, Sk1S

l
2x) = 0 for (k, l) 6= (0, 0), while for (k, l) = (0, 0) we

have 0 = ((I − P〈w〉)u,w) = ((I − P〈w〉)u, PFx) = (PF (I − P〈w〉)u, x) =
((I −P〈w〉)u, x). Thus (I −P〈w〉)u ⊥ H(x) so 0 = (I −P〈w〉)u = u− (u,w)w
and u = (u,w)w. Since u was an arbitrary vector in F this proves the in-
clusion F ⊂ 〈w〉. Hence also K1(x) ∩K2(x) ⊂ 〈w〉. If K1(x) ∩K2(x) = {0}
then taking z = 0, y = x we finish the proof.

Assume K1(x) ∩ K2(x) = 〈w〉. Decompose x = xw + v, where xw :=
PH(w)x. Since w ∈ H(x) the vectors xw, v belong to H(x) as well. Moreover,
w ⊥ v and by (9) we also have w ⊥ R(Si|H(x)) for i = 1, 2 and thus
w ⊥ H(v). Note also that v ⊥ H(w) by definition. Since w ∈ K1(x)∩K2(x),
by the following calculation we obtain H(w) ⊥ H(v):

(Sk1S
l
2w,S

n
1 S

m
2 v)

=





(Sk−n1 Sl−m2 w, v) = 0 for k ≥ n, l ≥ m,

(S∗2S
k−n
1 w,Sm−l−1

2 v) = (0, Sm−l−1
2 v) = 0 for k > n, l < m,

(w,Sn−k1 Sm−l2 v) = 0 for k ≤ n, l ≤ m,

(S∗1S
l−m
2 w,Sn−k−1

1 v) = (0, Sn−k−1
1 v) = 0 for k < n, l > m.

Since x ∈ H(w)⊕H(v) ⊂ H(x), we have H(x) = H(w)⊕H(v). On the
other hand, by the definition H(w),H(v) are S1, S2 invariant. Therefore,
both are reducing for S1|H(x), S2|H(x). Thus (S1|H(v))∗ = (S1|H(x))∗|H(v) and
(S2|H(v))∗ = (S2|H(x))∗|H(v). Hence K1(v) ∩K2(v) = K1(x) ∩K2(x) ∩H(v)
= {0}. The same arguments show that K1(w) ∩ K2(w) = 〈w〉. Therefore
taking y = v and z = w we finish the proof.

Although the evanescent subspace He does not contain any non-zero sub-
space reducing the isometries to a doubly commuting pair, we can look for
invariant subspaces where the restrictions of the isometries doubly commute.
If both restrictions were unitary, the subspace would be not only invariant
but also reducing. This is impossible. The following proposition helps us find
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an invariant subspace where the restrictions are doubly commuting unilat-
eral shifts.

Proposition 3.7. Let S1, S2 be a pair of commuting isometries on H.
Let x ∈ H. There is a vector z such that H(z) is a maximal subspace of
H(x) which reduces S1|H(x), S2|H(x) to doubly commuting unilateral shifts.
Moreover , S1|H(x), S2|H(x) are doubly commuting unilateral shifts on H(x)
if and only if (Sn1S

m
2 x, S

k
1S

l
2x) = 0 for any (n,m) 6= (k, l).

Proof. By the proof of Lemma 3.6, K1(x) ∩K2(x) = 〈z〉, where z = 0
or z is the orthogonal projection of x onto ker (S1|Hx)∗ ∩ ker (S2|Hx)∗. Then
H(z) =

⊕
n,m≥0 S

n
1 S

m
2 (K1(x)∩K2(x)), which, by (5), is a maximal subspace

of H(x) reducing S1|H(x), S2|H(x) to doubly commuting unilateral shifts.
By similar arguments, for the second part of the theorem, it is enough

to show that the condition (Sn1S
m
2 x, S

k
1S

l
2x) = 0 for any (n,m) 6= (k, l) is

equivalent to K1(x) ∩K2(x) = 〈x〉. Assume K1(x) ∩K2(x) = 〈x〉. We can
rewrite (Sk1S

l
2x, S

m
1 S

n
2 x) = 0 as either (Si1S

j
2x, x) = 0 or (Si1x, S

j
2x) = 0,

where i := |k − m| and j := |l − n|. Note that (n,m) 6= (k, l) implies
(i, j) 6= (0, 0). Since x ∈ K1(x), for i > 0 we have either (Si−1

1 Sj2x, S
∗
1x) =

(Si−1
1 Sj2x, 0) = 0 or (Si−1

1 x, S∗1S
j
2x) = (Si−1

1 x, 0) = 0, and similarly for
i = 0, j > 0. Conversely, if (Sk1S

l
2x, S

m
1 S

n
2 x) = 0 for any non-negative

(k, l) 6= (m,n), then (S∗1S
j
2x, S

n
1 S

m
2 x) = (Sj2x, S

n+1
1 Sm2 x) = 0. Since n,m

are arbitrary, S∗1S
j
2x ⊥ H(x), so (S1|H(x))∗S

j
2x = 0. Similarly we can prove

that (S2|H(x))∗Si1x = 0.

Let us make a few observations.

Remark 3.8. Let x ∈ H and z ∈ H(x). Consider three conditions:

(1) K1(x) ∩K2(x) = 〈z〉,
(2) (Sk1S

l
2z, S

m
1 S

n
2 z) = 0 for any (n,m) 6= (k, l), n,m, k, l ≥ 0,

(3) K1(z) ∩K2(z) = 〈z〉.
By the proof of Lemma 3.6 if K1(x) ∩ K2(x) 6= {0} then K1(x) ∩ K2(x)
= 〈z〉, where z is such that K1(z) ∩K2(z) = 〈z〉. Therefore (1) implies (3)
if K1(x) ∩ K2(x) 6= {0}. However, K1(0) ∩ K2(0) = {0}, which shows the
implication in case K1(x) ∩ K2(x) = {0}. The equivalence of (2) and (3)
has been shown in the proof of Proposition 3.7. To show that (2) and (3)
do not always imply (1) take x ∈ H such that K1(x)∩K2(x) = 〈v0〉, where
v0 6= x. Then z = Siv0 ⊥ 〈v0〉 for i = 1, 2. However, (Sn1S

m
2 z, S

k
1S

l
2z) =

(Sn1 S
m
2 Siv0, S

k
1S

l
2Siv0) = (Sn1 S

m
2 v0, S

k
1S

l
2v0) = 0 for any (n,m) 6= (k, l).

Remark 3.9. The sets {z :K1(z)∩K2(z) = 〈z〉} and {z :K1(z)∩K2(z)
6= 〈z〉} ∪ {0} are linear manifolds if and only if {z : K1(z) ∩K2(z) = 〈z〉}
= {0}.
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The set of vectors such that condition (2) of Remark 3.8 holds is S1, S2
invariant. Since conditions (2) and (3) of Remark 3.8 are equivalent the set
{z : K1(z) ∩ K2(z) = 〈z〉} is S1, S2 invariant. Assume there is a non-zero
vector w ∈ {z : K1(z)∩K2(z) = 〈z〉}. Then S1w ∈ {z : K1(z)∩K2(z) = 〈z〉}.
Since (w+S1w,S1(w+S1w)) = (S1w,S1w) = ‖w‖2 6= 0 the vector w+S1w
does not satisfy condition (2) of Remark 3.8 for the pairs of integers (0, 0),
(1, 0). Consequently, {z : K1(z) ∩ K2(z) = 〈z〉} is not a linear manifold,
unless it is {0}.

The set {z : K1(z) ∩K2(z) 6= 〈z〉} ∪ {0} is a linear manifold if and only
if {z : K1(z) ∩ K2(z) = 〈z〉} = {0}. If {z : K1(z) ∩ K2(z) = 〈z〉} = {0}
then {z : K1(z)∩K2(z) 6= 〈z〉}∪{0} is the whole space. Conversely, assume
there is w 6= 0 such that K1(w) ∩ K2(w) = 〈w〉. Set y1 := w + Siw and
y2 := w−Siw. We have already shown that y1 does not satisfy condition (2)
of Remark 3.8 for the pairs of integers (0, 0), (1, 0). Hence K1(y1) ∩K2(y1)
6= 〈y1〉. By similar arguments K1(y2)∩K2(y2) 6= 〈y2〉. The equality y1 +y2 =
2w implies H(y1 + y2) = H(w) and K1(y1 + y2) ∩K2(y1 + y2) = 〈y1 + y2〉.
The set {x : K1(x) ∩K2(x) 6= 〈z〉} is not a linear manifold either.

The smallest subspace containing {x ∈ He : K1(x) ∩K2(x) = 〈x〉} and
reducing for S1, S2 is denoted by Hsbs and called a sub-bi-shift subspace. The
orthogonal complement Htno := He 	Hsbs is called totally non-orthogonal .
Note that Htno does not contain any non-zero wandering vector.

3.3. The decomposition theorem. Let us first decompose the operators
given in examples stated in Section 3.1 according to the subspaces intro-
duced in the previous section.

Example 3.10. Let S be a totally non-unitary isometry. Fix n,m ∈ Z+
and set S1 = Sn, S2 = Sm. It was proved in Example 3.2 thatH = He. There
are k, l such that Sk1x = Sl2x for any vector x (e.g. k = m, l = n). Therefore
for any non-zero vector x we have (Sk1x, S

l
2x) = ‖Sknx‖ = ‖x‖ 6= 0. By

Proposition 3.7 there are no non-zero generators of Hsbs. It follows that
Hsbs = {0} and H = Htno.

Example 3.11. Take a pair S1, S2 of commuting isometries and a
Hilbert space H as in Example 3.4. Each vector ei,j satisfies (Sk1S

l
2x, S

n
1 S

m
2 x)

= 0 for every (n,m) 6= (k, l) so by Proposition 3.7, ei,j ∈ Hsbs for every
(i, j) ∈ J . Since these vectors generate the whole space, we have He = Hsbs
and consequently Htno = {0}. In Example 3.4 it was shown that H = He.
Hence H = Hsbs.

Example 3.12. Take a pair S1, S2 of commuting isometries and a
Hilbert space H as in Example 3.5. Then H = Hsbs and Htno = {0} by
the same argument as above.
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We now state the decomposition theorem.

Theorem 3.13. Let S1, S2 be a pair of commuting isometries. Then
there is a unique decomposition

H = Huu ⊕Hus ⊕Hsu ⊕Hss ⊕Hm ⊕Hsbs ⊕Htno,

where Huu,Hus,Hsu,Hss,Hm,Hsbs,Htno are reducing subspaces for S1 and
S2 and :

• S1|Huu , S2|Huu are unitary operators,
• S1|Hus is a unitary operator , S2|Hus is a unilateral shift ,
• S1|Hsu is a unilateral shift , S2|Hsu is a unitary operator ,
• Hss is a maximal subspace such that the restrictions S1|Hss, S2|Hss are

doubly commuting unilateral shifts,
• Hm is a maximal subspace such that a pair of isometries dual to S1|Hm,
S2|Hm is a doubly commuting pair of unilateral shifts,
• Hsbs is a sub-bi-shift subspace,
• Htno is a totally non-orthogonal subspace.

The space Hsbs is a maximal sub-bi-shift subspace. However, the sub-
space Hss is also generated by wandering vectors. The following example
shows that Hm can also be generated by wandering vectors.

Example 3.14. Let J = {(i, j) ∈ Z : i ≥ 0 or j ≥ 0} in Example 3.3.
Since the operators are unilateral shifts, Huu = Hus = Hsu = {0}. Since
K1 =

⊕
n<0Ce0,n and K2 =

⊕
n<0Cen,0, we have K1 ∩K2 = {0}. Conse-

quently, Hss = {0}. The dual space is H̃ =
⊕

(i,j)∈Z2
−
Cei,j and a dual pair

of isometries is
S̃1(ei,j) = ei−1,j, S̃2(ei,j) = ei,j−1.

Therefore, as the dual isometries are doubly commuting unilateral shifts, the
pair S1, S2 is a modified bi-shift. Moreover, each vector ei,j is a wandering
vector.

The space Hsbs is a maximal subspace, among subspaces of He, generated
by wandering vectors. The maximal totally non-orthogonal subspace Htno
is a maximal reducing subspace, among subspaces of He, not containing any
wandering vector. If S1 is the identity then there is no wandering vector,
while the whole space is decomposed as H = Huu⊕Hus. Therefore the space
Htno is not always a maximal reducing subspace in H not containing any
wandering vector.

3.4. Properties of the decomposing subspaces. Examples 3.11 and 3.12
show that Hsbs can be further non-trivially decomposed into subspaces re-
ducing for S1, S2: the subspace containing (K1∪K2)∩He, and the subspace
orthogonal to both Ki for i = 1, 2. The subspace containing (K1 ∪K2)∩He
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in Example 3.11 is the whole space while in Example 3.12 the whole space
is orthogonal to (K1 ∪K2) ∩He.

The following lemma helps us find out whether a given reducing subspace
is orthogonal to the space Ki given by (1) for i = 1, 2.

Lemma 3.15. Let S1, S2 be a pair of isometries on H = H1⊕H2, where
H1,H2 are reducing for S1, S2. The subspaces Ki given by (1) are orthogonal
to H1 if and only if Ki ∩H1 = {0} for i = 1, 2.

Proof. One implication is trivial. For the converse, assume Ki ∩ H1
= {0} for i = 1, 2. It is enough to show that PH1Ki ⊂ Ki for i = 1, 2.
We show this for K1; the proof for K2 is analogous. Consider a vector
v ∈ K1 and its decomposition v = v1 ⊕ v2 ∈ H1 ⊕ H2. For any n we
have 0 = S∗1S

n
2 v = S∗1S

n
2 (v1 ⊕ v2) = S∗1(Sn2 v1 ⊕ Sn2 v2) = S∗1S

n
2 v1 + S∗1S

n
2 v2.

Since H1,H2 are orthogonal and S1, S2 reducing, we have S∗1S
n
2 v1 ⊥ S∗1Sn2 v2.

Hence 0 = S∗1S
n
2 v1⊕S∗1Sn2 v2 and consequently 0 = S∗1S

n
2 v1 = S∗1S

n
2 v2. There-

fore PH1K1 ⊂ K1.

Theorem 3.16. Let S1, S2 be a pair of commuting isometries on H such
that H = Hsbs ⊕Htno. Then Htno ⊂ {x : K1(x) ∩K2(x) = {0}}. Moreover
Ki ⊂ Hsbs for i = 1, 2.

Proof. The inclusion Htno ⊂ {x : K1(x)∩K2(x) = {0}} is a consequence
of Lemma 3.6 and orthogonality of Htno to {x : K1(x) ∩K2(x) = 〈x〉}. For
the second part of the theorem, note that by Lemma 3.15, it is enough to
show Ki ∩Htno = {0} for i = 1, 2. Let y ∈ Htno ∩K1. By Proposition 3.7
since y ∈ Htno there are (n,m) 6= (k, l) such that (Sk1S

l
2y, S

n
1S

m
2 y) 6= 0.

We may assume that k = 0. Since y ∈ K1 we have 0 = (S∗1S
l
2y, S

i
1S

m
2 v) =

(Sl2y, S
i+1
1 Sm2 v) for any v ∈ Htno and i ≥ 0. Since y ∈ Htno we can take

v = y to obtain (Sl2y, S
i+1
1 Sm2 y) = 0 for any i ≥ 0. On the other hand,

(Sl2y, S
n
1S

m
2 y) 6= 0. Therefore n 6= i + 1 for any i ≥ 0, so n cannot be

positive. Hence n = 0 and so (Sl2y, S
m
2 y) 6= 0. We conclude that for any

y ∈ K1∩Htno either there is j ≥ 1 such that (y, Sj2y) 6= 0, or y = 0. Consider
〈{Sj2y : j ≥ 0}〉. Since 〈{Sj2y : j ≥ 1}〉 ⊂ 〈{Sj2y : j ≥ 0}〉 ⊂ K1 ∩Htno, the
vector y0 := y − P〈{Sj2y : j≥1}〉y belongs to K1 ∩Htno. Expanding

P〈{Sj2y : j≥1}〉y =
∑

j≥1

αjS
j
2y,

for any k ≥ 1 we have

0 = (y0, S
k
2y) = (y0, S

k
2y0) +

(
y0, S

k
2

(∑

j≥1

αjS
j
2y
))

= (y0, S
k
2y0) +

∑

j≥1

αj(y0, S
k+j
2 y) = (y0, S

k
2y0).
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Since y0 ∈ K1 ∩ Htno the previous conclusion implies y0 = 0. Therefore
y ∈ 〈{Sj2y : j ≥ 1}〉, and consequently 〈{Sj2y : j ≥ 0}〉 = 〈{Sj2y : j ≥ 1}〉.
Using the same arguments for Sl2y which belongs to K1∩Htno for l = 1, 2, . . .
we have 〈{Sj2y : j ≥ 0}〉 = 〈{Sj2y : j ≥ k}〉 for any k ≥ 0. It follows that
for any k ≥ 0 we can represent y = Sk2 (yk) for some yk =

∑
j≥0 αjS

j
2y in

K1 ∩Htno. Therefore y ∈ ⋂m≥0 S
m
2 (K1). But

⋂
m≥0 S

m
2 (K1) ⊂ Hsu, which

is orthogonal to He = Htno ⊕Hsbs. Hence y = 0.

For completeness recall from [4] the following property of Hm.

Lemma 3.17. Let S1, S2 be a pair of commuting isometries on a Hilbert
space H such that H = Hm. Then kerS∗1 is orthogonal to kerS∗2 .

Proof. Let U1, U2 ∈ L(H) be the minimal unitary extension of S1, S2.
Set

H̃ := H	H, S̃i := U∗i |H̃ for i = 1, 2.

Note that S̃i ∈ L(H̃). Moreover (S̃i)∗x = PH̃Uix and S∗i y = PHU
∗
i y for x ∈

H̃, y ∈ H and i = 1, 2. Let x ∈ ker (S̃1)∗. Then 0 = (x, S̃1v) = (x,U∗1 v) =
(U1x, v) for any v ∈ H̃. Therefore PH̃U1x = 0, and consequently U1x ∈ H.
Moreover S∗1U1x = PHU

∗
1U1x = PHx = 0. We have shown U1(ker (S̃1)∗) ⊂

kerS∗1 , so that ker (S̃1)∗ ⊂ U∗1 (kerS∗1). Conversely, let y ∈ kerS∗1 . Then 0 =
S∗1y = PHU

∗
1 y. Therefore U∗1 y ∈ H̃ and (S̃1)∗U∗1 y = PH̃U1U

∗
1 y = PH̃y = 0.

Thus ker (S̃1)∗ ⊃ U∗1 (kerS∗1). We have obtained

ker (S̃1)∗ = U∗1 (kerS∗1).

Since S̃1 and S̃2 doubly commute, S̃2(ker (S̃1)∗) ⊂ ker (S̃1)∗. By the above
equality,

U∗2U
∗
1 (kerS∗1) = U∗2 (ker (S̃1)∗) = S̃2(ker (S̃1)∗) ⊂ ker (S̃1)∗ = U∗1 (kerS∗1).

Hence applying U2U1 to the inclusion U∗2U
∗
1 (kerS∗1) ⊂ U∗1 (kerS∗1) we obtain

kerS∗1 ⊂ U2(kerS∗1) = S2(kerS∗1). Consequently, kerS∗1 is orthogonal to
kerS∗2 .

Finally, we obtain the following theorem.

Theorem 3.18. For any pair S1, S2 of commuting isometries on H the
following inclusions hold :

K1 ⊂ Hsu ⊕Hss ⊕Hsbs, K2 ⊂ Hus ⊕Hss ⊕Hsbs.

Proof. Since K1 ⊂ kerS∗1 , it is orthogonal to Huu ⊕ Hus. Similarly K2
is orthogonal to Huu ⊕ Hsu. By Theorem 3.16, Ki ⊥ Htno for i = 1, 2. We
need to show Ki ⊥ Hm for i = 1, 2. By the previous lemma (kerS∗1 ∩Hm) ⊥
(kerS∗2 ∩ Hm). Hence K1 ∩ Hm ⊂ kerS∗1 ∩ Hm ⊂ S2(Hm). Therefore for
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any x ∈ K1 ∩ Hm and any n ≥ 1 we have S∗1S
n
2 S
∗
2x = S∗1S

n−1
2 x = 0.

Moreover S∗1S
∗
2x = S∗2S

∗
1x = 0. Therefore K1 ∩ Hm is S∗2 invariant. To

show that K1 is S2 invariant, take any x ∈ K1 and integer n ≥ 0. Then
0 = S∗1S

n+1
2 x = S∗1S

n
2 S2x. Since n is arbitrary, S2x ∈ K1, and consequently

K1 ∩Hm is S2 invariant as intersection of S2 invariant subspaces. We have
shown that K1 ∩Hm reduces S2.

Consider the space
⊕

n≥0 S
n
1 (K1 ∩ Hm). Since K1 ∩ Hm ⊂ kerS∗1 , the

space
⊕

n≥0 S
n
1 (K1 ∩ Hm) reduces S1 to a unilateral shift. For any x ∈

K1 ∩Hm and n ≥ 0 we have S∗2S
n
1 x = S∗2S

n
1 S2S

∗
2x = Sn1 S

∗
2x ∈ Sn1 (K1∩Hm)

and S2S
n
1 x = Sn1 S2x ∈ Sn1 (K1 ∩Hm). Therefore for any n ≥ 0 the subspace

Sn1 (K1 ∩Hm) is reducing for S2. Hence
⊕

n≥0 S
n
1 (K1 ∩Hm) is reducing for

S1 and S2. Moreover,

Sn1 (K1∩Hm) = Sn1 S
i
2S
∗i
2 (K1∩Hm) = Si2S

n
1 S
∗i
2 (K1∩Hm) ⊂ Si2Sn1 (K1∩Hm)

for any i, n ≥ 0. Consequently,
⊕

n≥0

Sn1 (K1 ∩Hm) =
⋂

i≥0

Si2

(⊕

n≥0

Sn1 (K1 ∩Hm)
)
.

Hence S2 is unitary on
⊕

n≥0 S
n
1 (K1 ∩Hm). Since S1 is a unilateral shift on⊕

n≥0 S
n
1 (K1∩Hm), we have

⊕
n≥0 S

n
1 (K1∩Hm) ⊂ Hsu∩Hm = {0}. Hence

K1 ∩ Hm = {0} and so K1 ⊥ Hm by Lemma 3.15. Similarly we can prove
that K2 ⊥ Hm.

The following theorem helps us find a subspace reducing for isometries
S1, S2 and orthogonal to the space where S1, S2 are unitary operators.

Theorem 3.19. Let H0 be a subspace reducing for S1 and S2 and or-
thogonal to Huu. Then

H0 =
⊕

n≥0

Sn1 S
n
2 (H0 ∩ kerS∗1S

∗
2).

Assume that W is a subspace of kerS∗1S
∗
2 . Then

⊕
n≥0 S

n
1 S

n
2 (W ) reduces

S1, S2 if and only if W is S∗1 , S
∗
2 , S1(I − S2S

∗
2), S2(I − S1S

∗
1) invariant.

Proof. The inclusion
⊕

n≥0 S
n
1 S

n
2 (H0 ∩ kerS∗1S

∗
2) ⊂ H0 is obvious. For

the reverse inclusion note that Huu is precisely the subspace of Wold’s de-
composition for the isometry S1S2 where S1S2 is a unitary operator. There-
fore its orthogonal complement is

⊕
n≥0 S

n
1 S

n
2 (kerS∗1S

∗
2). Let x ∈ H0. Then

x =
∑

n≥0 S
n
1S

n
2 xn, where xn ∈ kerS∗1S

∗
2 for all n ≥ 0. To prove that

H0 ⊂
⊕

n≥0 S
n
1 S

n
2 (H0 ∩ kerS∗1S

∗
2) it is enough to show that xn ∈ H0

for all n ≥ 0. For n = 0 we have x0 = x − S1S2S
∗
1S
∗
2x ∈ H0. Assume

that x0, . . . , xn−1 ∈ H0. Then
∑n−1

i=0 S
i
1S

i
2xi ∈ H0. On the other hand,
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∑n
i=0 S

i
1S

i
2xi = x− Sn1 Sn2 S∗n1 S∗n2 x ∈ H0. Finally,

xn = S∗n1 S∗n2 (Sn1 S
n
2 xn) = S∗n1 S∗n2

( n∑

i=0

Si1S
i
2xi −

n−1∑

i=0

Si1S
i
2xi

)
∈ H0.

The first part of the theorem has been proved.
For the second part, set L =

⊕
n≥0 S

n
1 S

n
2W . Let x ∈ kerS∗1S

∗
2 . Since

S∗2S
∗
1x = 0 implies S∗1x ∈ kerS∗2 ⊂ kerS∗1S

∗
2 , the space kerS∗1S

∗
2 is S∗1 invari-

ant. Since S1(I − S2S
∗
2)H ⊂ kerS∗1S

∗
2 , it is also invariant for S1(I − S2S

∗
2).

Similarly we can prove that it is invariant for S∗2 , S2(I − S1S
∗
1). Assume L

is S1, S2 reducing. Then it is S∗1 , S
∗
2 , S2(I − S1S

∗
1), S1(I − S2S

∗
2) invariant.

By the first part of the theorem, W = L∩kerS∗1S
∗
2 . Hence W is also S∗1 , S

∗
2 ,

S2(I − S1S
∗
1), S1(I − S2S

∗
2) invariant.

Conversely, let x ∈ ⊕n≥0 S
n
1 S

n
2W . Then x =

∑
n≥0 S

n
1 S

m
2 xn, where

xn ∈W for any n ≥ 0. Note that
⊕

n≥0 S
n
1 S

n
2W is invariant for the product

isometry S1S2 and S1x = S∗2S1S2x. Therefore to show that
⊕

n≥0 S
n
1 S

n
2W

is S1, S2 reducing it is enough to show that it is S∗1 , S
∗
2 invariant. This is a

consequence of the following equalities:

S∗1x = S∗1
(∑

n≥0

Sn1 S
n
2 xn

)

= S∗1x0 +
∑

n≥1

Sn−1
1 Sn2 (S1S

∗
1xn + (I − S1S

∗
1)xn)

= S∗1x0 +
∑

n≥1

Sn1 S
n
2 (S∗1xn) +

∑

n≥1

Sn−1
1 Sn−1

2 (S2(I − S1S
∗
1)xn)

=
∑

n≥0

Sn1 S
n
2 (S∗1xn) +

∑

n≥1

Sn−1
1 Sn−1

2 (S2(I − S1S
∗
1)xn).

Since the vectors S∗1xn, S2(I − S1S
∗
1)xn are in W for all n ≥ 0, it follows

that S∗1x ∈
⊕

n≥0 S
n
1 S

n
2W .

Recall that if x∈Htno then (Sn1 S
m
2 x, S

k
1S

l
2x) 6= 0 for some (n,m) 6= (k, l).

This can be restated as (Si1x, S
j
2x) 6= 0 or (Si1S

j
2x, x) 6= 0, where i = |n− k|,

j = |m− l|.
Remark 3.20. In Example 3.2 there are i, j ≥ 0 such that i + j ≥ 1

and (Si1x, S
j
2x) 6= 0 for any x ∈ H, x 6= 0. The set {x : there are i, j ≥ 0

with i+ j ≥ 1 such that (Si1x, S
j
2x) 6= 0} equals Htno \ {0}.

In general the following theorem holds.

Theorem 3.21. Let S1, S2 be a pair of commuting isometries on H such
that H = Htno. Then

Htno = 〈{x : there are i, j ≥ 0 with i+ j ≥ 1 such that (Si1x, S
j
2x) 6= 0}〉.



Decomposition of pairs of isometries 135

Proof. Let x∈Htno∩kerS∗1S
∗
2 . Then (x, Sn1S

m
2 x) = (S∗1S

∗
2x, S

n−1
1 Sm−1

2 x)
= (0, Sn−1

1 Sm−1
2 x) = 0 for n,m ≥ 1. Since x ∈ Htno there are i, j ≥ 0 such

that (Si1x, S
j
2x) 6= 0. Note that (Si1S

n
1 S

n
2 x, S

j
2S

n
1 S

n
2 x) = (Si1x, S

j
2x) 6= 0

for any positive n. Therefore, for any n ≥ 0 and any y ∈ Sn1 S
n
2 (Htno ∩

kerS∗1S
∗
2), there are i, j ≥ 0 such that (Si1y, S

j
2y) 6= 0. By Theorem 3.19

every vector in Htno can be represented as an orthogonal sum of vectors
from {x : there are i, j ≥ 0, with i+ j ≥ 1 such that (Si1x, S

j
2x) 6= 0}.

References

[1] C. A. Berger, L. A. Coburn and A. Lebow, Representation and index theory for
C∗-algebras generated by commuting isometries, J. Funct. Anal. 27 (1978), 51–59.
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