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Translation equation on monoids

by ANDRZEJ MACH (Kielce) and ZENON MOSZNER (Krakéw)

Abstract. We give large classes of solutions of the translation equation on a monoid
satisfying the identity condition.

Let X be a nonempty set and let (G, -) be a groupoid. By F': X xG — X
we denote an arbitrary solution of the translation equation:

(1) F(F(a,k),l) = F(a,k-1), a€X; kilcG.

This equation appears in several mathematical domains: abstract geometric
and algebraic objects, abstract automata, groups of transformations, itera-
tions, representations of groups, dynamical systems and others (see [5]) and
therefore has at present a general theory (see [7]).

Jénos Aczél of the University of Waterloo, in a letter to the second
author, posed the following problem: what can we say about solutions F' :
X x N — X of the translation equation (1) for which F(«,1) = « (the
identity condition), where X is an interval and (N, -) is the monoid of natural
numbers?

We give large classes of solutions of the translation equation on mo-
noids G satisfying the identity condition F(a, 1) = «, where 1 denotes the
unit element of (G, -).

The problem of finding the general solution of the translation equation
for (G, ) = (N,-) is still open.

REMARK 1. If F'is a solution of (1), then G acts on X by means of the
mapping k — F(-,k): X — X.

DEFINITION 1. A family {E;};c; of nonempty pairwise disjoint sub-
sets of G is called an invariant decomposition of the groupoid (G,-) if
G =U,es Ej and

(2) VieJVkeG3leJ: (E;j-kCE).
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THEOREM 1. Let X be a nonempty set. Let X = (J,cqXs be a de-
composition of X into a disjoint union of nonempty sets such that for every
s € S there exists an invariant decomposition { Ejs}jc . of the monoid (G, -)
with card Xy = card J,. Let G,: {Ejs}jcs, — X be an arbitrary bijection
and set gs(k) := G,(Ejs) for k € Ejs. Then the function F : X x G — X
defined by

(3) F(ak) = }gs(95 ' ({a}) - b){, a€X,, keG,
is a solution of the translation equation (1) for which F(a,1) = a.

The symbol }A{ in (3) denotes the element of a set A when card A = 1.
The proof of Theorem 1 is a simple verification, so it can be omitted.

REMARK 2. The decomposition {E};};jes of G is invariant if and only if
the relation

a=b & JjeJ:abecE;
is right-compatible with the groupoid operation, i.e.
Va,bce G: [a=b=a-c=b-].

If the groupoid G is Abelian, then every equivalence relation = right-
compatible with the groupoid operation is a congruence relation, that is,

Va,b,c,de G: [(a=b AN c=d)=a-c=0b-d].

An equivalence relation = on a groupoid G is a congruence (respectively: is
right-compatible with the groupoid operation) if and only if there exists a
function h : G — G such that

(4) a=b < h(a) =h(b) and h(a-b) = hl[h(a) - h(D)]

(respectively: h(a -b) = h[h(a) - b]) for a,b € G.

In the case of a congruence relation, the function A is a homomorphism
of G onto the groupoid h(G) with the operation ¢# d = h(c-d). This means
that the equivalence relation = is a congruence in the groupoid (G,-) if
and only if there exists a homomorphism H of G into a groupoid T such
that « = b & H(a) = H(b) (see [2, pp. 35-37]). This yields a method
of constructing invariant decompositions (see Remark 4, due to Andrze]
Schinzel).

REMARK 3. If the groupoid G is a group, then its invariant decomposi-
tions are sets of right cosets of some subgroup (see [1, pp. 34-35]). Moreover,
if the group G is Abelian then invariant decompositions are determined by
quotient groups.

REMARK 4 (by A. Schinzel). By Remark 2 all congruences = in the
monoid (N, -) are obtained by the following
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CONSTRUCTION C;

1° Take an arbitrary Abelian semigroup (T,+) with neutral element 0.

2° Take an arbitrary function ¢ : P — T, where P is the set of all prime
numbers. Define a homomorphism H : (N,-) — (T,4) by setting, for
a= HpeP p*P) € N, where a(p) are nonnegative integers,

H(a):=)_ a(p)é(p).

peP
3° For a,b € N define: a =b < H(a) = H(b), that is,

[[r®=1]2"" < > amop) =D Bm)é),

peEP peEP peEP peEP
where a(p), B(p) are nonnegative integers.

To describe all congruence relations means to describe all semigroups
and, in consequence, to solve the association equation

F(F(a,b),c) = F(a, F(b,c)), where F:GxG— G.

EXAMPLE 1 (by A. Schinzel). Let T := 2" be the monoid with the union
operation. If we define ¢(p) := {p} we get the congruence relation

a=b < a and b have the same prime factors;

this means that components of the invariant decomposition of N are sets of
natural numbers having the same prime factors.

REMARK 5. To obtain the same invariant decomposition as in Example 1,
it is possible to take N with a suitable operation in place of 2V. The function
h : N — N such that h(a) equals the product of the prime factors of a for
a > 1 and h(1) = 1 satisfies (4), hence h is a homomorphism of (N, ) into
N with the operation a # b = h(a - b).

REMARK 6. When the monoid (G, -) is the group then Theorem 1 yields
all solutions of the translation equation (1) satisfying F'(a, 1) = «. In this
case the invariant decompositions consist of right cosets of some subgroup
G5 of G (see Remark 3) and g, is equal to gs and gs : G/Gs — X;. Also the
general solution of the translation equation (1) satisfying F'(c, 1) = « has
been given in [4] by the following

CONSTRUCTION (5

1° Let X = [U,eq Xs be a disjoint union of nonempty sets (fibres) X,
such that for every s € S there exists a subgroup Gy < G and a
bijection gs : G/Gs — Xs, where G /Gy is the set of right cosets of G
n G.

2° Then F(a, k) = gs(g5 () - k), a € X5, k € G.
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REMARK 7. Construction Cs mentioned below, quoted from [3], includes
the general form of invariant decompositions for the subsemigroup G* of
positive elements of the group (G, +, <), linearly ordered and Abelian.

Before the presentation of the construction of the decompositions, we
need two definitions.

DEFINITION 2. A subset A of G is called bounded if 3z € G+ Va € A :
(a < z and @ > —z), and unbounded if it is not bounded.

DEFINITION 3. Let A, B be subsets of G and A C B C (G. We say that:
(a) A is an initial interval of B if

Vap e A: {a€B: a<ap} C A,
(b) A is a final interval of B if

Vape A: {a€B: ag<a} CA.

All G -invariant decompositions of the semigroup G+ of positive ele-
ments of a linearly ordered, Abelian group G are obtained by

CONSTRUCTION Cj

1° Take a family {Gs}ses of distinct, bounded subgroups of G forming
a chain, i.e. Gs C Gy or Gy C Gy for s,t € S, and an unbounded
subgroup G* such that G* 2 | J,c g Gs.
2° Let @ be a function from the family {Gs}ses onto a family of initial
intervals of Gt such that
(a) D(Gy) is a union of intersections with G of cosets of C(Gs) in G,
where C(Gs) denotes the smallest convex subgroup containing G
(the convexity of C(Gs) means that together with every positive
element a the subgroup C(Gs) contains all elements © € G with
x < a),
(b) if Gs C Gy, then &(Gs) C P(Gy).

3° Fvery nonempty set
W N [@(Gs)\ U @(Gt)], WeG,, ses,
GGGy
is a component of the decomposition.
4° The sets
VN [G+ VU @(GS)], Veaq/ar,
seS
are the remaining components.

If we assume additionally that (G, +, <) is an Archimedian group, then
Construction Cj is reduced to the following result from the paper [6].
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Every G -invariant decomposition of the semigroup G of positive ele-
ments of a linearly ordered, Archimedian group is of the following form:

(a) there exists a right-closed or right-open interval [0, xo| such that every
element belonging to [0, zo| is a component of the decomposition (this
interval may be empty),

(b) the remaining components are the intersections with G* \ [0, zo| of
cosets of some subgroup G* in G.

Using Construction Cs and Theorem 1 we can obtain examples of solu-
tions for the semigroup G of positive elements of a linearly ordered, Abelian
group (G, +, <).

EXAMPLE 2. Let Z denote the set of integes and G := {ax+b: a,b € Z}
be the group of linear polynomials with ordinary addition and with linear
order defined as follows:

(ax+b<cx+d) & (a<c)or (a=candb<d).
The semigroup of positive elements is
Gt ={ar+b:a>0,bcZ}UZT,

where Z* :={a € Z : a > 0}. According to Construction C3, take the chain
of bounded subgroups {0} C Z and the unbounded subgroup G* := G.
Define @({0}) := Z* and ®(Z) := Z" U (Z + z), where Z + z € G/Z.
Every element of Z* is a component of the decomposition. The sets Z + x,
Gt \ (Z* U (Z + x)) are also components.

Let now X := [0,00[, S := [0,1], Xs :={s+j:j =0,1,2,...} and
Js := NU{0} for s € S. Moreover, Eos := Z+x, E15 := GT\(Z1U(Z+x)) and
Ejs:={j—2} for j € {2,3,4,...} and s € S. Assume that g ,(E;s) :==s+j
for j € NU{0} and for s € S. We get the following solution F' : X x Gt — X
of the translation equation:

o ifae0,1]and weZ' or a€[1,2] and we G,
a+1 if « € [0,1] and w € Gt \ ZT,
Fla,w)=¢ a— E(a) ifae X\[0,2[and w € Z + z,
a—FE(a)+1 ifae X \[0,2[and w € G\ (ZT U (Z + x)),
a+w ifae X\[0,2] and w € ZT,
where E(«) denotes the integer part of «.
In what follows (N, -) and (Q, ) denote the monoid of natural numbers
and the group of positive rational numbers respectively.
Using Theorem 1 we can obtain examples of solutions for (G,-) = (N, ).
EXAMPLE 3. Let X := ]1/4,1] and take S := |1/2,1], X, = ]s/2, ],
Js :={1,2} for s € S. Moreover, E14 :={1,3,5,...}, Fas :={2,4,6,...} for
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s € S. Define G,(F15) := s/2, g,(Ess) := s for s € S. We get the following

solution:
Flo k) = 2a for a €]1/4,1/2], k € {2,4,6,...},
“7V\a foraell/2,1), keNoraell/4,1/2, ke {1,3,5,...}.

EXAMPLE 4. Let X, S, {X;}, Js for s € S be as in Example 3. We take
Eys := {1}, Eas := N\ {1} for s € S. The functions g, are defined as in
Example 2. We get the following solution:

_ [2a forae€]1/4,1/2], k€ N\ {1},
F(a’k)_{a for a € ]1/2,1], k € Nor a € ]1/4,1/2], k = 1.

EXAMPLE 5. Let X :=[0,00[, S :=[0,1[, Xs:={s+j:5=0,1,2,...},
Js :=NU{0} for s € S. Moreover, Eos := {2,4,6,...} and Ej, := {25 — 1}
for j € N and s € S. Define g,(Ejs) := s+ j for j e NU{0} and s € S. We
get the following solution:

F(a, k)
a— E(a) fora € X\ [0,1] and k € {2,4,6,...},
= or o € [0,1] and k € N,
a+Ela)(k—1)—(k—1)/2 forae X \[0,1[and k € {1,3,5,...},

where E(«) denotes the integer part of .

REMARK 8. If we define ¢ : P — T = 2% by ¢(p) := (0 for p # 2 and
#(2) := {1}, where T = 2" denotes the monoid described in Example 1,
then by Construction C1(3°) in Remark 4 we get the congruence equivalent
to the invariant decomposition from Example 3, which means that F; :=
{1,3,5,...}, B2 :={2,4,6,...}.

Similarly, if we define ¢ : P — T = 2N by ¢(p) := N for all p € P, then
by Construction C7(3°) we get the congruence equivalent to the invariant
decomposition from Example 4, which means that Ey := {1}, Fy := N\ {1}.

To obtain the invariant decomposition from Example 5, it is sufficient to
consider the semigroup (7,-) := (28\{%}.), where the operation is defined
by A-B:={a-b:ac Abec B} for A,B € 280} and to define ¢ : P —
T = 25\0% by (p) i= {p} for p # 2 and 6(2) := R\ {0}.

REMARK 9. If the solution of equation (1) is trivial, that is, F(a, k) := «
for every (a, k) € X x N, where X denotes an arbitrary nonempty set, then
the invariant decomposition of N has exactly one element {N}, the set X is
decomposed into singletons and g,(N) := s.

REMARK 10. The function F(a,k) := k-« for (o, k) € X x N and
X :=1]0,00][ is a solution of the translation equation (1). This solution is not
of the form (3) (see Remark 11).
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THEOREM 2. Let X C R be an arbitrary interval. Suppose that a solution
F : X xN — X of the translation equation (1) satisfying F(a,1) = « for
a € X can be extended to a solution F : X x Qy — X of this equation.
Then there exists a family {Xs}ses of disjoint sets such that | J,cq Xs = X
and for every s € S there exists a subgroup Qs < Q4 and a bijection g :
Q+/Qs — X for which

(5) F(a,k) = gs(g5 () - k), a€ X, k€N,
Proof. This follows immediately from Construction Cs.

THEOREM 3. Let X C R be an arbitrary interval. A function F : X X
N — X is a solution of the translation equation (1) such that for every
a € X the function F(a,-) is increasing and for every k € N the func-
tion F(-, k) is increasing and surjective if and only if there exists a family
{Xs}ses of disjoint sets such that | J,cq Xs = X and there exists a family
of increasing bijections gs : Q1 — Xs, s € S, such that

(6) F(a,k) =gs(g;(a)- k), a€X, keN.

We present two proofs of this theorem. The first one is a corollary from
Theorem 2 and the other proof is direct.

Proof I (of the “only if” part of Theorem 3, using Theorem 2). Note
that the assumptions about F' : X x N — X imply that F(a,1) = a and
F can be extended to a solution F' : X x Q; — X of (1). Indeed, since
F(F(a,1),1) = F(a, 1), by injectivity of F'(-,1) we get F'(a, 1) = a. We can
put
(7) F(a,k/l) := 3 such that F(a, k) = F(3,1),

for every @ € X and k/l € Q4. The existence and uniqueness of (3 result
from the assumption that F(-,1) is surjective and injective, so I is correctly
defined. One can verify easily that F is a solution of the translation equation.
Indeed, let

F|F 05,E ,@ =:~v and F a,m =:9.
l)'n l-n

If we set F'(a,k/l) =: 3, then by definition (7), F(a, k) = F(8,1) and
F(B,m) = F(y,n) and F(a,k-m) = F(J,l-n). Hence
so vy = 4.

Therefore, by Theorem 2, we have the form (5) of the solution F :

X x N — X. Since the functions F(a,-) are injective for every o € X, by
Construction Cy we get Qs = {1} < Q4 for every s € S, which yields (6).
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We will verify that the bijections {gs}secs are increasing. Let k/l < k1 /11
and

gs(k/l) =1 a,  gs(k1/l1) =: B.
By (6) and by definition of F' we get

F(a, :—}f) =gs (? : :—Z) = gs<];—1l> =/, whence F(a,kil)=F(B,kl).
Since kl; < lk1, by assumptions we have
F(a,kly) < F(a,k1l) = F(B,kl1) and a < g.
Since the “if” part is evident, the first proof is complete.

Proof II (of the “only if” part of Theorem 3). We define the following
relation in X:
Va,0€ X: a~pf < 3k 1eN: Fla, k)= F(8,1).

It is to verify that it is an equivalence relation. Indeed, evidently it is sym-
metric and reflexive. Let now a ~p 8 and 3 ~p 7. Then

Elk’laklvll eN: F(aak) = F(ﬂal) and F(/())a kl) = F(’%ll)
Hence
F(a,k-ki)=F(B,1- ki) =F(v,l-1l1), so a~p~.
We denote by {X }scs the set of equivalence classes. Fix s € S and
ag € Xs. We define hg : Xg — Q4 by
hs(a) :=k/l, where F(ao, k)= F(a,l).
The function hg is correctly defined. Indeed, if
F(ap, k) = F(a,l) and Fl(ag, k1) = F(a,lh),
then
F(ap,l- k1) = F(a,l-11) = Fap, 1y - k).
Since F(ayp,-) is injective, | - k1 = Iy - k, whence k1 /l; = k/I.

We will show that hs : X — Q4 is a bijection. If hs(a) = hs(8) =
k/l then F(a,l) = F(ag, k) = F(8,1) and by injectivity of F(-,1) we get
a = . To prove the surjectivity, take m/n € Q4. Let F(ag,m) = (. By
the surjectivity of F(-,n), we have F(ag,m) = 8 = F(a,n) for some «, so
hs(a) =m/n.

Now, we will show that hg is an increasing function. Let o < 3 and

hs(a) =k/l,  hs(B) = k1/11.
We have F(ag, k) = F(a,l) and F(ag, k1) = F(8,11). Since F(-,1ll1) is in-
creasing, we obtain
F(ao, kly) = F(a,ll) < F(B3,ll) = F(ao, ki),
therefore kl; < kil and k/l < k1/1.
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Let now a € X, k € N. Let hs(a) = K/L and (3 := F(«, k). Hence
he(a) k=K -k/L.
We will show
ho(B) = K /L.
Indeed, we have F((3,L) = F(a, kL), F(a, K) = F(a, L) and
F(ap, Kk) = F(a, Lk) = F(B, L),
therefore hs() = K - k/L, and so
Fla k) = f = hy (K - k/L) = B (hy() - ).
Putting gs = h; ! we have the form (6), which was to be shown.

REMARK 11. If F': X x N — X satisfies the assumptions of Theorem 3,
then F' cannot be obtained by means of Theorem 1.

Indeed, otherwise let gs(1) =: ag for some s € S. Then X = {F(ap, k) :
k € N} = g5(N) and ap € Xs. Let F': X x Q4 — X be an extension of the
solution F'. Since F'(ap, 1/2) < F(ap, k) for k € N, we have F'(ao,1/2) € Xs.
Let F(a,1/2) € Xy, t # s. Hence

F(F(a0,1/2),2) = F(ag, 1) = ao,

so ag € X;, which contradicts the relation X; N X, = 0.

REMARK 12. Let X := [0, 00] and define F': X x N — X by
a? o e X7 k = 17
Fla,k)=< 1, «a€l0,1], ke N\{1},
ka, ae€ X \[0,1], ke N\ {1}.
Then F is a solution of (1) which cannot be extended to a solution F :
X X Q4 — X and is not of the form (3).
Indeed, for every solution F': X x Q4 — X of (1) satisfying F(a, 1) = o,
all functions F'(-, k) ought to be bijections. But
F(1/2,2) = 1= F(3/4,2),

therefore I cannot be extended to a solution F : X x Q; — X.

Moreover, by Theorem 1, card X; = card J; for s € S. It is easy to see
that for the solution F' one of the elements of the family {X}scg is the set
X, = [0, 1] for some n € S. This implies the following contradiction:

¢ = card [0, 1] = card J,, < card N = N,.
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