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Translation equation on monoids

by Andrzej Mach (Kielce) and Zenon Moszner (Kraków)

Abstract. We give large classes of solutions of the translation equation on a monoid
satisfying the identity condition.

Let X be a nonempty set and let (G, ·) be a groupoid. By F : X×G→ X
we denote an arbitrary solution of the translation equation:

F (F (α, k), l) = F (α, k · l), α ∈ X; k, l ∈ G.(1)

This equation appears in several mathematical domains: abstract geometric
and algebraic objects, abstract automata, groups of transformations, itera-
tions, representations of groups, dynamical systems and others (see [5]) and
therefore has at present a general theory (see [7]).

János Aczél of the University of Waterloo, in a letter to the second
author, posed the following problem: what can we say about solutions F :
X × N → X of the translation equation (1) for which F (α, 1) = α (the
identity condition), where X is an interval and (N, ·) is the monoid of natural
numbers?

We give large classes of solutions of the translation equation on mo-
noids G satisfying the identity condition F (α, 1) = α, where 1 denotes the
unit element of (G, ·).

The problem of finding the general solution of the translation equation
for (G, ·) = (N, ·) is still open.

Remark 1. If F is a solution of (1), then G acts on X by means of the
mapping k 7→ F (·, k): X → X.

Definition 1. A family {Ej}j∈J of nonempty pairwise disjoint sub-
sets of G is called an invariant decomposition of the groupoid (G, ·) if
G =

⋃
j∈J Ej and

∀j ∈ J ∀k ∈ G ∃l ∈ J : (Ej · k ⊆ El).(2)
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Theorem 1. Let X be a nonempty set. Let X =
⋃
s∈S Xs be a de-

composition of X into a disjoint union of nonempty sets such that for every
s ∈ S there exists an invariant decomposition {Ejs}j∈Js of the monoid (G, ·)
with cardXs = cardJs. Let gs: {Ejs}j∈Js → Xs be an arbitrary bijection
and set gs(k) := gs(Ejs) for k ∈ Ejs. Then the function F : X × G → X
defined by

F (α, k) = }gs(g−1
s ({α}) · k){, α ∈ Xs, k ∈ G,(3)

is a solution of the translation equation (1) for which F (α, 1) = α.

The symbol }A{ in (3) denotes the element of a set A when cardA = 1.
The proof of Theorem 1 is a simple verification, so it can be omitted.

Remark 2. The decomposition {Ej}j∈J of G is invariant if and only if
the relation

a ≡ b ⇔ ∃j ∈ J : a, b ∈ Ej
is right-compatible with the groupoid operation, i.e.

∀a, b, c ∈ G : [a ≡ b⇒ a · c ≡ b · c].
If the groupoid G is Abelian, then every equivalence relation ≡ right-

compatible with the groupoid operation is a congruence relation, that is,

∀a, b, c, d ∈ G : [(a ≡ b ∧ c ≡ d)⇒ a · c ≡ b · d].

An equivalence relation ≡ on a groupoid G is a congruence (respectively: is
right-compatible with the groupoid operation) if and only if there exists a
function h : G→ G such that

a ≡ b ⇔ h(a) = h(b) and h(a · b) = h[h(a) · h(b)](4)

(respectively: h(a · b) = h[h(a) · b]) for a, b ∈ G.
In the case of a congruence relation, the function h is a homomorphism

of G onto the groupoid h(G) with the operation c#d = h(c ·d). This means
that the equivalence relation ≡ is a congruence in the groupoid (G, ·) if
and only if there exists a homomorphism H of G into a groupoid T such
that a ≡ b ⇔ H(a) = H(b) (see [2, pp. 35–37]). This yields a method
of constructing invariant decompositions (see Remark 4, due to Andrzej
Schinzel).

Remark 3. If the groupoid G is a group, then its invariant decomposi-
tions are sets of right cosets of some subgroup (see [1, pp. 34–35]). Moreover,
if the group G is Abelian then invariant decompositions are determined by
quotient groups.

Remark 4 (by A. Schinzel). By Remark 2 all congruences ≡ in the
monoid (N, ·) are obtained by the following
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Construction C1

1o Take an arbitrary Abelian semigroup (T,+) with neutral element 0.
2o Take an arbitrary function φ : P → T , where P is the set of all prime

numbers. Define a homomorphism H : (N, ·)→ (T,+) by setting , for
a =

∏
p∈P p

α(p) ∈ N, where α(p) are nonnegative integers,

H(a) :=
∑

p∈P
α(p)φ(p).

3o For a, b ∈ N define: a ≡ b⇔ H(a) = H(b), that is,
∏

p∈P
pα(p) ≡

∏

p∈P
pβ(p) ⇔

∑

p∈P
α(p)φ(p) =

∑

p∈P
β(p)φ(p),

where α(p), β(p) are nonnegative integers.

To describe all congruence relations means to describe all semigroups
and, in consequence, to solve the association equation

F (F (a, b), c) = F (a, F (b, c)), where F : G×G→ G.

Example 1 (by A. Schinzel). Let T := 2N be the monoid with the union
operation. If we define φ(p) := {p} we get the congruence relation

a ≡ b ⇔ a and b have the same prime factors;

this means that components of the invariant decomposition of N are sets of
natural numbers having the same prime factors.

Remark 5. To obtain the same invariant decomposition as in Example 1,
it is possible to take N with a suitable operation in place of 2N. The function
h : N → N such that h(a) equals the product of the prime factors of a for
a > 1 and h(1) = 1 satisfies (4), hence h is a homomorphism of (N, ·) into
N with the operation a# b = h(a · b).

Remark 6. When the monoid (G, ·) is the group then Theorem 1 yields
all solutions of the translation equation (1) satisfying F (α, 1) = α. In this
case the invariant decompositions consist of right cosets of some subgroup
Gs of G (see Remark 3) and gs is equal to gs and gs : G/Gs → Xs. Also the
general solution of the translation equation (1) satisfying F (α, 1) = α has
been given in [4] by the following

Construction C2

1o Let X =
⋃
s∈S Xs be a disjoint union of nonempty sets (fibres) Xs

such that for every s ∈ S there exists a subgroup Gs ≤ G and a
bijection gs : G/Gs → Xs, where G/Gs is the set of right cosets of Gs
in G.

2o Then F (α, k) = gs(g−1
s (α) · k), α ∈ Xs, k ∈ G.
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Remark 7. Construction C3 mentioned below, quoted from [3], includes
the general form of invariant decompositions for the subsemigroup G+ of
positive elements of the group (G,+,≤), linearly ordered and Abelian.

Before the presentation of the construction of the decompositions, we
need two definitions.

Definition 2. A subset A of G is called bounded if ∃z ∈ G+ ∀a ∈ A :
(a < z and a > −z), and unbounded if it is not bounded.

Definition 3. Let A, B be subsets of G and A ⊆ B ⊆ G. We say that:

(a) A is an initial interval of B if

∀a0 ∈ A : {a ∈ B : a ≤ a0} ⊆ A,
(b) A is a final interval of B if

∀a0 ∈ A : {a ∈ B : a0 ≤ a} ⊆ A.
All G+-invariant decompositions of the semigroup G+ of positive ele-

ments of a linearly ordered, Abelian group G are obtained by

Construction C3

1o Take a family {Gs}s∈S of distinct , bounded subgroups of G forming
a chain, i.e. Gs ⊂ Gt or Gt ⊂ Gs for s, t ∈ S, and an unbounded
subgroup G∗ such that G∗ ⊇ ⋃s∈S Gs.

2o Let Φ be a function from the family {Gs}s∈S onto a family of initial
intervals of G+ such that

(a) Φ(Gs) is a union of intersections with G+ of cosets of C(Gs) in G,
where C(Gs) denotes the smallest convex subgroup containing Gs
(the convexity of C(Gs) means that together with every positive
element a the subgroup C(Gs) contains all elements x ∈ G+ with
x ≤ a),

(b) if Gs ⊂ Gt, then Φ(Gs) ⊂ Φ(Gt).

3o Every nonempty set

W ∩
[
Φ(Gs) \

⋃

Gt Gs
Φ(Gt)

]
, W ∈ Gs, s ∈ S,

is a component of the decomposition.
4o The sets

V ∩
[
G+ \

⋃

s∈S
Φ(Gs)

]
, V ∈ G/G∗,

are the remaining components.

If we assume additionally that (G,+,≤) is an Archimedian group, then
Construction C3 is reduced to the following result from the paper [6].
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Every G+-invariant decomposition of the semigroup G+ of positive ele-
ments of a linearly ordered , Archimedian group is of the following form:

(a) there exists a right-closed or right-open interval [0, x0| such that every
element belonging to [0, x0| is a component of the decomposition (this
interval may be empty),

(b) the remaining components are the intersections with G+ \ [0, x0| of
cosets of some subgroup G∗ in G.

Using Construction C3 and Theorem 1 we can obtain examples of solu-
tions for the semigroupG+ of positive elements of a linearly ordered, Abelian
group (G,+,≤).

Example 2. Let Z denote the set of integes and G := {ax+ b : a, b ∈ Z}
be the group of linear polynomials with ordinary addition and with linear
order defined as follows:

(ax+ b ≤ cx+ d) ⇔ (a < c) or (a = c and b ≤ d).

The semigroup of positive elements is

G+ := {ax+ b : a > 0, b ∈ Z} ∪ Z+,

where Z+ := {a ∈ Z : a ≥ 0}. According to Construction C3, take the chain
of bounded subgroups {0} ⊂ Z and the unbounded subgroup G∗ := G.
Define Φ({0}) := Z+ and Φ(Z) := Z+ ∪ (Z + x), where Z + x ∈ G/Z.
Every element of Z+ is a component of the decomposition. The sets Z+ x,
G+ \ (Z+ ∪ (Z+ x)) are also components.

Let now X := [0,∞[, S := [0, 1[, Xs := {s + j : j = 0, 1, 2, . . .} and
Js := N∪{0} for s ∈ S. Moreover,E0s := Z+x, E1s := G+\(Z+∪(Z+x)) and
Ejs := {j − 2} for j ∈ {2, 3, 4, . . .} and s ∈ S. Assume that gs(Ejs) := s+ j
for j ∈ N∪{0} and for s ∈ S. We get the following solution F : X×G+ → X
of the translation equation:

F (α,w) =





α if α∈ [0, 1[ and w ∈Z+ or α∈ [1, 2[ and w ∈G+,

α+ 1 if α ∈ [0, 1[ and w ∈ G+ \ Z+,

α− E(α) if α ∈ X \ [0, 2[ and w ∈ Z+ x,

α−E(α)+1 if α ∈ X \ [0, 2[ and w ∈ G+ \ (Z+ ∪ (Z+ x)),

α+ w if α ∈ X \ [0, 2[ and w ∈ Z+,

where E(α) denotes the integer part of α.

In what follows (N, ·) and (Q+, ·) denote the monoid of natural numbers
and the group of positive rational numbers respectively.

Using Theorem 1 we can obtain examples of solutions for (G, ·) = (N, ·).
Example 3. Let X := ]1/4, 1] and take S := ]1/2, 1], Xs := ]s/2, s],

Js := {1, 2} for s ∈ S. Moreover, E1s := {1, 3, 5, . . .}, E2s := {2, 4, 6, . . .} for
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s ∈ S. Define gs(E1s) := s/2, gs(E2s) := s for s ∈ S. We get the following
solution:

F (α, k) =
{

2α for α ∈ ]1/4, 1/2], k ∈ {2, 4, 6, . . .},
α for α ∈ ]1/2, 1], k ∈ N or α ∈ ]1/4, 1/2], k ∈ {1, 3, 5, . . .}.

Example 4. Let X, S, {Xs}, Js for s ∈ S be as in Example 3. We take
E1s := {1}, E2s := N \ {1} for s ∈ S. The functions gs are defined as in
Example 2. We get the following solution:

F (α, k) =
{

2α for α ∈ ]1/4, 1/2], k ∈ N \ {1},
α for α ∈ ]1/2, 1], k ∈ N or α ∈ ]1/4, 1/2], k = 1.

Example 5. Let X := [0,∞[, S := [0, 1[, Xs := {s+ j : j = 0, 1, 2, . . .},
Js := N ∪ {0} for s ∈ S. Moreover, E0s := {2, 4, 6, . . .} and Ejs := {2j − 1}
for j ∈ N and s ∈ S. Define gs(Ejs) := s+ j for j ∈ N ∪ {0} and s ∈ S. We
get the following solution:

F (α, k)

=





α− E(α) for α ∈ X \ [0, 1[ and k ∈ {2, 4, 6, . . .},
or α ∈ [0, 1[ and k ∈ N,

α+ E(α)(k − 1)− (k − 1)/2 for α ∈ X \ [0, 1[ and k ∈ {1, 3, 5, . . .},
where E(α) denotes the integer part of α.

Remark 8. If we define φ : P → T = 2N by φ(p) := ∅ for p 6= 2 and
φ(2) := {1}, where T = 2N denotes the monoid described in Example 1,
then by Construction C1(3o) in Remark 4 we get the congruence equivalent
to the invariant decomposition from Example 3, which means that E1 :=
{1, 3, 5, . . .}, E2 := {2, 4, 6, . . .}.

Similarly, if we define φ : P → T = 2N by φ(p) := N for all p ∈ P , then
by Construction C1(3o) we get the congruence equivalent to the invariant
decomposition from Example 4, which means that E1 := {1}, E2 := N\{1}.

To obtain the invariant decomposition from Example 5, it is sufficient to
consider the semigroup (T, ·) := (2R\{0}, ·), where the operation is defined
by A · B := {a · b : a ∈ A, b ∈ B} for A,B ∈ 2R\{0}, and to define φ : P →
T = 2R\{0} by φ(p) := {p} for p 6= 2 and φ(2) := R \ {0}.

Remark 9. If the solution of equation (1) is trivial, that is, F (α, k) := α
for every (α, k) ∈ X ×N, where X denotes an arbitrary nonempty set, then
the invariant decomposition of N has exactly one element {N}, the set X is
decomposed into singletons and gs(N) := s.

Remark 10. The function F (α, k) := k · α for (α, k) ∈ X × N and
X := ]0,∞[ is a solution of the translation equation (1). This solution is not
of the form (3) (see Remark 11).
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Theorem 2. Let X ⊂ R be an arbitrary interval. Suppose that a solution
F : X × N → X of the translation equation (1) satisfying F (α, 1) = α for
α ∈ X can be extended to a solution F : X × Q+ → X of this equation.
Then there exists a family {Xs}s∈S of disjoint sets such that

⋃
s∈S Xs = X

and for every s ∈ S there exists a subgroup Qs ≤ Q+ and a bijection gs :
Q+/Qs → Xs for which

F (α, k) = gs(g−1
s (α) · k), α ∈ Xs, k ∈ N.(5)

Proof. This follows immediately from Construction C2.

Theorem 3. Let X ⊂ R be an arbitrary interval. A function F : X ×
N → X is a solution of the translation equation (1) such that for every
α ∈ X the function F (α, ·) is increasing and for every k ∈ N the func-
tion F (·, k) is increasing and surjective if and only if there exists a family
{Xs}s∈S of disjoint sets such that

⋃
s∈S Xs = X and there exists a family

of increasing bijections gs : Q+ → Xs, s ∈ S, such that

F (α, k) = gs(g−1
s (α) · k), α ∈ Xs, k ∈ N.(6)

We present two proofs of this theorem. The first one is a corollary from
Theorem 2 and the other proof is direct.

Proof I (of the “only if” part of Theorem 3, using Theorem 2). Note
that the assumptions about F : X × N → X imply that F (α, 1) = α and
F can be extended to a solution F : X × Q+ → X of (1). Indeed, since
F (F (α, 1), 1) = F (α, 1), by injectivity of F (·, 1) we get F (α, 1) = α. We can
put

F (α, k/l) := β such that F (α, k) = F (β, l),(7)

for every α ∈ X and k/l ∈ Q+. The existence and uniqueness of β result
from the assumption that F (·, l) is surjective and injective, so F is correctly
defined. One can verify easily that F is a solution of the translation equation.
Indeed, let

F

(
F

(
α,
k

l

)
,
m

n

)
=: γ and F

(
α,
k ·m
l · n

)
=: δ.

If we set F (α, k/l) =: β, then by definition (7), F (α, k) = F (β, l) and
F (β,m) = F (γ, n) and F (α, k ·m) = F (δ, l · n). Hence

F (γ, n · l) = F (β,m · l) = F (α, k ·m) = F (δ, n · l),
so γ = δ.

Therefore, by Theorem 2, we have the form (5) of the solution F :
X × N → X. Since the functions F (α, ·) are injective for every α ∈ X, by
Construction C2 we get Qs = {1} ≤ Q+ for every s ∈ S, which yields (6).
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We will verify that the bijections {gs}s∈S are increasing. Let k/l < k1/l1
and

gs(k/l) =: α, gs(k1/l1) =: β.

By (6) and by definition of F we get

F

(
α,
k1l

kl1

)
= gs

(
k

l
· k1l

kl1

)
= gs

(
k1

l1

)
= β, whence F (α, k1l) =F (β, kl1).

Since kl1 < lk1, by assumptions we have

F (α, kl1) < F (α, k1l) = F (β, kl1) and α < β.

Since the “if” part is evident, the first proof is complete.

Proof II (of the “only if” part of Theorem 3). We define the following
relation in X:

∀α, β ∈ X : α ∼F β ⇔ ∃k, l ∈ N : F (α, k) = F (β, l).

It is to verify that it is an equivalence relation. Indeed, evidently it is sym-
metric and reflexive. Let now α ∼F β and β ∼F γ. Then

∃k, l, k1, l1 ∈ N : F (α, k) = F (β, l) and F (β, k1) = F (γ, l1).

Hence
F (α, k · k1) = F (β, l · k1) = F (γ, l · l1), so α ∼F γ.

We denote by {Xs}s∈S the set of equivalence classes. Fix s ∈ S and
α0 ∈ Xs. We define hs : Xs → Q+ by

hs(α) := k/l, where F (α0, k) = F (α, l).

The function hs is correctly defined. Indeed, if

F (α0, k) = F (α, l) and F (α0, k1) = F (α, l1),

then
F (α0, l · k1) = F (α, l · l1) = F (α0, l1 · k).

Since F (α0, ·) is injective, l · k1 = l1 · k, whence k1/l1 = k/l.
We will show that hs : Xs → Q+ is a bijection. If hs(α) = hs(β) =

k/l then F (α, l) = F (α0, k) = F (β, l) and by injectivity of F (·, l) we get
α = β. To prove the surjectivity, take m/n ∈ Q+. Let F (α0,m) = β. By
the surjectivity of F (·, n), we have F (α0,m) = β = F (α, n) for some α, so
hs(α) = m/n.

Now, we will show that hs is an increasing function. Let α < β and

hs(α) = k/l, hs(β) = k1/l1.

We have F (α0, k) = F (α, l) and F (α0, k1) = F (β, l1). Since F (·, ll1) is in-
creasing, we obtain

F (α0, kl1) = F (α, ll1) < F (β, ll1) = F (α0, k1l),

therefore kl1 < k1l and k/l < k1/l1.
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Let now α ∈ Xs, k ∈ N. Let hs(α) = K/L and β := F (α, k). Hence

hs(α) · k = K · k/L.
We will show

hs(β) = K · k/L.
Indeed, we have F (β,L) = F (α, kL), F (α0,K) = F (α,L) and

F (α0,Kk) = F (α,Lk) = F (β,L),

therefore hs(β) = K · k/L, and so

F (α, k) = β = h−1
s (K · k/L) = h−1

s (hs(α) · k).

Putting gs = h−1
s we have the form (6), which was to be shown.

Remark 11. If F : X ×N→ X satisfies the assumptions of Theorem 3,
then F cannot be obtained by means of Theorem 1.

Indeed, otherwise let gs(1) =: α0 for some s ∈ S. Then Xs = {F (α0, k) :
k ∈ N} = gs(N) and α0 ∈ Xs. Let F : X ×Q+ → X be an extension of the
solution F . Since F (α0, 1/2) < F (α0, k) for k ∈ N, we have F (α0, 1/2) 6∈ Xs.
Let F (α0, 1/2) ∈ Xt, t 6= s. Hence

F (F (α0, 1/2), 2) = F (α0, 1) = α0,

so α0 ∈ Xt, which contradicts the relation Xt ∩Xs = ∅.
Remark 12. Let X := [0,∞[ and define F : X × N→ X by

F (α, k) =





α, α ∈ X, k = 1,

1, α ∈ [0, 1], k ∈ N \ {1},
kα, α ∈ X \ [0, 1], k ∈ N \ {1}.

Then F is a solution of (1) which cannot be extended to a solution F :
X ×Q+ → X and is not of the form (3).

Indeed, for every solution F : X×Q+ → X of (1) satisfying F (α, 1) = α,
all functions F (·, k) ought to be bijections. But

F (1/2, 2) = 1 = F (3/4, 2),

therefore F cannot be extended to a solution F : X ×Q+ → X.
Moreover, by Theorem 1, cardXs = cardJs for s ∈ S. It is easy to see

that for the solution F one of the elements of the family {Xs}s∈S is the set
Xn = [0, 1] for some n ∈ S. This implies the following contradiction:

c = card [0, 1] = cardJn ≤ cardN = ℵ0.
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