Translation equation on monoids

by ANDRZEJ MACH (Kielce) and ZENON MOSZNER (Kraków)

Abstract. We give large classes of solutions of the translation equation on a monoid satisfying the identity condition.

Let X be a nonempty set and let (G, \cdot) be a groupoid. By $F : X \times G \to X$ we denote an arbitrary solution of the *translation equation*:

(1) $F(F(\alpha, k), l) = F(\alpha, k \cdot l), \quad \alpha \in X; \ k, l \in G.$

This equation appears in several mathematical domains: abstract geometric and algebraic objects, abstract automata, groups of transformations, iterations, representations of groups, dynamical systems and others (see [5]) and therefore has at present a general theory (see [7]).

János Aczél of the University of Waterloo, in a letter to the second author, posed the following problem: what can we say about solutions F: $X \times \mathbb{N} \to X$ of the translation equation (1) for which $F(\alpha, 1) = \alpha$ (the *identity condition*), where X is an interval and (\mathbb{N}, \cdot) is the monoid of natural numbers?

We give large classes of solutions of the translation equation on monoids G satisfying the identity condition $F(\alpha, 1) = \alpha$, where 1 denotes the unit element of (G, \cdot) .

The problem of finding the general solution of the translation equation for $(G, \cdot) = (\mathbb{N}, \cdot)$ is still open.

REMARK 1. If F is a solution of (1), then G acts on X by means of the mapping $k \mapsto F(\cdot, k) \colon X \to X$.

DEFINITION 1. A family $\{E_j\}_{j\in J}$ of nonempty pairwise disjoint subsets of G is called an *invariant decomposition* of the groupoid (G, \cdot) if $G = \bigcup_{i\in J} E_j$ and

(2)
$$\forall j \in J \ \forall k \in G \ \exists l \in J : (E_j \cdot k \subseteq E_l).$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 39B82; Secondary 39B12, 39B52.

 $Key\ words\ and\ phrases:$ translation equation, grupoid, monoid, invariant decomposition.

THEOREM 1. Let X be a nonempty set. Let $X = \bigcup_{s \in S} X_s$ be a decomposition of X into a disjoint union of nonempty sets such that for every $s \in S$ there exists an invariant decomposition $\{E_{js}\}_{j \in J_s}$ of the monoid (G, \cdot) with card $X_s = \text{card } J_s$. Let $\overline{g}_s: \{E_{js}\}_{j \in J_s} \to X_s$ be an arbitrary bijection and set $g_s(k) := \overline{g}_s(E_{js})$ for $k \in E_{js}$. Then the function $F: X \times G \to X$ defined by

(3)
$$F(\alpha, k) = g_s(g_s^{-1}(\{\alpha\}) \cdot k)\{, \quad \alpha \in X_s, \ k \in G,$$

is a solution of the translation equation (1) for which $F(\alpha, 1) = \alpha$.

The symbol $A\{$ in (3) denotes the element of a set A when card A = 1. The proof of Theorem 1 is a simple verification, so it can be omitted.

REMARK 2. The decomposition $\{E_j\}_{j\in J}$ of G is invariant if and only if the relation

$$a \equiv b \Leftrightarrow \exists j \in J : a, b \in E_j$$

is *right-compatible* with the groupoid operation, i.e.

$$\forall a, b, c \in G: \quad [a \equiv b \Rightarrow a \cdot c \equiv b \cdot c].$$

If the groupoid G is Abelian, then every equivalence relation \equiv rightcompatible with the groupoid operation is a *congruence* relation, that is,

$$\forall a, b, c, d \in G: \quad [(a \equiv b \land c \equiv d) \Rightarrow a \cdot c \equiv b \cdot d].$$

An equivalence relation \equiv on a groupoid G is a congruence (respectively: is right-compatible with the groupoid operation) if and only if there exists a function $h: G \to G$ such that

(4)
$$a \equiv b \Leftrightarrow h(a) = h(b) \text{ and } h(a \cdot b) = h[h(a) \cdot h(b)]$$

(respectively: $h(a \cdot b) = h[h(a) \cdot b]$) for $a, b \in G$.

In the case of a congruence relation, the function h is a homomorphism of G onto the groupoid h(G) with the operation $c \# d = h(c \cdot d)$. This means that the equivalence relation \equiv is a congruence in the groupoid (G, \cdot) if and only if there exists a homomorphism H of G into a groupoid T such that $a \equiv b \Leftrightarrow H(a) = H(b)$ (see [2, pp. 35–37]). This yields a method of constructing invariant decompositions (see Remark 4, due to Andrzej Schinzel).

REMARK 3. If the groupoid G is a group, then its invariant decompositions are sets of right cosets of some subgroup (see [1, pp. 34–35]). Moreover, if the group G is Abelian then invariant decompositions are determined by quotient groups.

REMARK 4 (by A. Schinzel). By Remark 2 all congruences \equiv in the monoid (\mathbb{N}, \cdot) are obtained by the following

Construction C_1

- 1° Take an arbitrary Abelian semigroup (T, +) with neutral element 0.
- 2° Take an arbitrary function $\phi: P \to T$, where P is the set of all prime numbers. Define a homomorphism $H: (\mathbb{N}, \cdot) \to (T, +)$ by setting, for $a = \prod_{p \in P} p^{\alpha(p)} \in \mathbb{N}$, where $\alpha(p)$ are nonnegative integers,

$$H(a) := \sum_{p \in P} \alpha(p)\phi(p).$$

3° For $a, b \in \mathbb{N}$ define: $a \equiv b \Leftrightarrow H(a) = H(b)$, that is,

$$\prod_{p \in P} p^{\alpha(p)} \equiv \prod_{p \in P} p^{\beta(p)} \iff \sum_{p \in P} \alpha(p)\phi(p) = \sum_{p \in P} \beta(p)\phi(p),$$

where $\alpha(p)$, $\beta(p)$ are nonnegative integers.

To describe all congruence relations means to describe all semigroups and, in consequence, to solve the association equation

$$F(F(a, b), c) = F(a, F(b, c)), \text{ where } F: G \times G \to G.$$

EXAMPLE 1 (by A. Schinzel). Let $T := 2^{\mathbb{N}}$ be the monoid with the union operation. If we define $\phi(p) := \{p\}$ we get the congruence relation

 $a \equiv b \Leftrightarrow a \text{ and } b \text{ have the same prime factors;}$

this means that components of the invariant decomposition of \mathbb{N} are sets of natural numbers having the same prime factors.

REMARK 5. To obtain the same invariant decomposition as in Example 1, it is possible to take \mathbb{N} with a suitable operation in place of $2^{\mathbb{N}}$. The function $h: \mathbb{N} \to \mathbb{N}$ such that h(a) equals the product of the prime factors of a for a > 1 and h(1) = 1 satisfies (4), hence h is a homomorphism of (\mathbb{N}, \cdot) into \mathbb{N} with the operation $a \# b = h(a \cdot b)$.

REMARK 6. When the monoid (G, \cdot) is the group then Theorem 1 yields all solutions of the translation equation (1) satisfying $F(\alpha, 1) = \alpha$. In this case the invariant decompositions consist of right cosets of some subgroup G_s of G (see Remark 3) and \overline{g}_s is equal to g_s and $g_s : G/G_s \to X_s$. Also the general solution of the translation equation (1) satisfying $F(\alpha, 1) = \alpha$ has been given in [4] by the following

CONSTRUCTION C_2

- 1° Let $X = \bigcup_{s \in S} X_s$ be a disjoint union of nonempty sets (fibres) X_s such that for every $s \in S$ there exists a subgroup $G_s \leq G$ and a bijection $g_s : G/G_s \to X_s$, where G/G_s is the set of right cosets of G_s in G.
- 2° Then $F(\alpha, k) = g_s(g_s^{-1}(\alpha) \cdot k), \ \alpha \in X_s, \ k \in G.$

REMARK 7. Construction C_3 mentioned below, quoted from [3], includes the general form of invariant decompositions for the subsemigroup G^+ of positive elements of the group $(G, +, \leq)$, linearly ordered and Abelian.

Before the presentation of the construction of the decompositions, we need two definitions.

DEFINITION 2. A subset A of G is called *bounded* if $\exists z \in G^+ \ \forall a \in A : (a < z \text{ and } a > -z)$, and *unbounded* if it is not bounded.

DEFINITION 3. Let A, B be subsets of G and $A \subseteq B \subseteq G$. We say that:

(a) A is an *initial interval* of B if

$$\forall a_0 \in A : \{a \in B : a \le a_0\} \subseteq A,$$

(b) A is a *final interval* of B if

$$\forall a_0 \in A : \{a \in B : a_0 \le a\} \subseteq A.$$

All G^+ -invariant decompositions of the semigroup G^+ of positive elements of a linearly ordered, Abelian group G are obtained by

CONSTRUCTION C_3

- 1° Take a family $\{G_s\}_{s\in S}$ of distinct, bounded subgroups of G forming a chain, i.e. $G_s \subset G_t$ or $G_t \subset G_s$ for $s, t \in S$, and an unbounded subgroup G^* such that $G^* \supseteq \bigcup_{s\in S} G_s$.
- 2° Let Φ be a function from the family $\{G_s\}_{s\in S}$ onto a family of initial intervals of G^+ such that
 - (a) $\Phi(G_s)$ is a union of intersections with G^+ of cosets of $C(G_s)$ in G, where $C(G_s)$ denotes the smallest convex subgroup containing G_s (the convexity of $C(G_s)$ means that together with every positive element a the subgroup $C(G_s)$ contains all elements $x \in G^+$ with $x \leq a$),

(b) if
$$G_s \subset G_t$$
, then $\Phi(G_s) \subset \Phi(G_t)$.

3° Every nonempty set

$$W \cap \Big[\Phi(G_s) \setminus \bigcup_{G_t \subsetneq G_s} \Phi(G_t) \Big], \quad W \in G_s, \ s \in S,$$

is a component of the decomposition.

4° The sets

$$V \cap \left[G^+ \setminus \bigcup_{s \in S} \Phi(G_s)\right], \quad V \in G/G^*,$$

are the remaining components.

If we assume additionally that $(G, +, \leq)$ is an Archimedian group, then Construction C_3 is reduced to the following result from the paper [6]. Every G^+ -invariant decomposition of the semigroup G^+ of positive elements of a linearly ordered, Archimedian group is of the following form:

- (a) there exists a right-closed or right-open interval $[0, x_0]$ such that every element belonging to $[0, x_0]$ is a component of the decomposition (this interval may be empty),
- (b) the remaining components are the intersections with $G^+ \setminus [0, x_0]$ of cosets of some subgroup G^* in G.

Using Construction C_3 and Theorem 1 we can obtain examples of solutions for the semigroup G^+ of positive elements of a linearly ordered, Abelian group $(G, +, \leq)$.

EXAMPLE 2. Let \mathbb{Z} denote the set of integes and $G := \{ax + b : a, b \in \mathbb{Z}\}$ be the group of linear polynomials with ordinary addition and with linear order defined as follows:

$$(ax + b \le cx + d) \Leftrightarrow (a < c) \text{ or } (a = c \text{ and } b \le d).$$

The semigroup of positive elements is

$$G^{+} := \{ax + b : a > 0, b \in \mathbb{Z}\} \cup \mathbb{Z}^{+},$$

where $\mathbb{Z}^+ := \{a \in \mathbb{Z} : a \geq 0\}$. According to Construction C_3 , take the chain of bounded subgroups $\{0\} \subset \mathbb{Z}$ and the unbounded subgroup $G^* := G$. Define $\Phi(\{0\}) := \mathbb{Z}^+$ and $\Phi(\mathbb{Z}) := \mathbb{Z}^+ \cup (\mathbb{Z} + x)$, where $\mathbb{Z} + x \in G/\mathbb{Z}$. Every element of \mathbb{Z}^+ is a component of the decomposition. The sets $\mathbb{Z} + x$, $G^+ \setminus (\mathbb{Z}^+ \cup (\mathbb{Z} + x))$ are also components.

Let now $X := [0, \infty[, S := [0, 1[, X_s := \{s + j : j = 0, 1, 2, ...\}$ and $J_s := \mathbb{N} \cup \{0\}$ for $s \in S$. Moreover, $E_{0s} := \mathbb{Z} + x$, $E_{1s} := G^+ \setminus (\mathbb{Z}^+ \cup (\mathbb{Z} + x))$ and $E_{js} := \{j - 2\}$ for $j \in \{2, 3, 4, ...\}$ and $s \in S$. Assume that $\overline{g}_s(E_{js}) := s + j$ for $j \in \mathbb{N} \cup \{0\}$ and for $s \in S$. We get the following solution $F : X \times G^+ \to X$ of the translation equation:

$$F(\alpha, w) = \begin{cases} \alpha & \text{if } \alpha \in [0, 1[\text{ and } w \in \mathbb{Z}^+ \text{ or } \alpha \in [1, 2[\text{ and } w \in G^+, \alpha + 1] \\ \alpha + 1 & \text{if } \alpha \in [0, 1[\text{ and } w \in G^+ \setminus \mathbb{Z}^+, \alpha - E(\alpha)] \\ \alpha - E(\alpha) & \text{if } \alpha \in X \setminus [0, 2[\text{ and } w \in \mathbb{Z} + x, \alpha - E(\alpha) + 1] \\ \alpha + w & \text{if } \alpha \in X \setminus [0, 2[\text{ and } w \in G^+ \setminus (\mathbb{Z}^+ \cup (\mathbb{Z} + x)), \alpha + w] \end{cases}$$

where $E(\alpha)$ denotes the integer part of α .

In what follows (\mathbb{N}, \cdot) and (\mathbb{Q}_+, \cdot) denote the monoid of natural numbers and the group of positive rational numbers respectively.

Using Theorem 1 we can obtain examples of solutions for $(G, \cdot) = (\mathbb{N}, \cdot)$.

EXAMPLE 3. Let X := [1/4, 1] and take S := [1/2, 1], $X_s := [s/2, s]$, $J_s := \{1, 2\}$ for $s \in S$. Moreover, $E_{1s} := \{1, 3, 5, \ldots\}$, $E_{2s} := \{2, 4, 6, \ldots\}$ for

 $s \in S$. Define $\overline{g}_s(E_{1s}) := s/2$, $\overline{g}_s(E_{2s}) := s$ for $s \in S$. We get the following solution:

$$F(\alpha, k) = \begin{cases} 2\alpha & \text{for } \alpha \in [1/4, 1/2], \ k \in \{2, 4, 6, \ldots\}, \\ \alpha & \text{for } \alpha \in [1/2, 1], \ k \in \mathbb{N} \text{ or } \alpha \in [1/4, 1/2], \ k \in \{1, 3, 5, \ldots\}. \end{cases}$$

EXAMPLE 4. Let X, S, $\{X_s\}$, J_s for $s \in S$ be as in Example 3. We take $E_{1s} := \{1\}, E_{2s} := \mathbb{N} \setminus \{1\}$ for $s \in S$. The functions \overline{g}_s are defined as in Example 2. We get the following solution:

$$F(\alpha, k) = \begin{cases} 2\alpha & \text{for } \alpha \in]1/4, 1/2], \ k \in \mathbb{N} \setminus \{1\}, \\ \alpha & \text{for } \alpha \in]1/2, 1], \ k \in \mathbb{N} \text{ or } \alpha \in]1/4, 1/2], \ k = 1. \end{cases}$$

EXAMPLE 5. Let $X := [0, \infty[, S := [0, 1[, X_s := \{s + j : j = 0, 1, 2, ...\}, J_s := \mathbb{N} \cup \{0\}$ for $s \in S$. Moreover, $E_{0s} := \{2, 4, 6, ...\}$ and $E_{js} := \{2j - 1\}$ for $j \in \mathbb{N}$ and $s \in S$. Define $\overline{g}_s(E_{js}) := s + j$ for $j \in \mathbb{N} \cup \{0\}$ and $s \in S$. We get the following solution:

$$F(\alpha, k) = \begin{cases} \alpha - E(\alpha) & \text{for } \alpha \in X \setminus [0, 1[\text{ and } k \in \{2, 4, 6, \ldots\}, \\ & \text{or } \alpha \in [0, 1[\text{ and } k \in \mathbb{N}, \\ \alpha + E(\alpha)(k-1) - (k-1)/2 & \text{for } \alpha \in X \setminus [0, 1[\text{ and } k \in \{1, 3, 5, \ldots\}, \end{cases} \end{cases}$$

where $E(\alpha)$ denotes the integer part of α .

REMARK 8. If we define $\phi : P \to T = 2^{\mathbb{N}}$ by $\phi(p) := \emptyset$ for $p \neq 2$ and $\phi(2) := \{1\}$, where $T = 2^{\mathbb{N}}$ denotes the monoid described in Example 1, then by Construction $C_1(3^{\circ})$ in Remark 4 we get the congruence equivalent to the invariant decomposition from Example 3, which means that $E_1 := \{1, 3, 5, \ldots\}, E_2 := \{2, 4, 6, \ldots\}.$

Similarly, if we define $\phi: P \to T = 2^{\mathbb{N}}$ by $\phi(p) := \mathbb{N}$ for all $p \in P$, then by Construction $C_1(3^\circ)$ we get the congruence equivalent to the invariant decomposition from Example 4, which means that $E_1 := \{1\}, E_2 := \mathbb{N} \setminus \{1\}$.

To obtain the invariant decomposition from Example 5, it is sufficient to consider the semigroup $(T, \cdot) := (2^{\mathbb{R} \setminus \{0\}}, \cdot)$, where the operation is defined by $A \cdot B := \{a \cdot b : a \in A, b \in B\}$ for $A, B \in 2^{\mathbb{R} \setminus \{0\}}$, and to define $\phi : P \to T = 2^{\mathbb{R} \setminus \{0\}}$ by $\phi(p) := \{p\}$ for $p \neq 2$ and $\phi(2) := \mathbb{R} \setminus \{0\}$.

REMARK 9. If the solution of equation (1) is trivial, that is, $F(\alpha, k) := \alpha$ for every $(\alpha, k) \in X \times \mathbb{N}$, where X denotes an arbitrary nonempty set, then the invariant decomposition of \mathbb{N} has exactly one element $\{\mathbb{N}\}$, the set X is decomposed into singletons and $\overline{g}_s(\mathbb{N}) := s$.

REMARK 10. The function $F(\alpha, k) := k \cdot \alpha$ for $(\alpha, k) \in X \times \mathbb{N}$ and $X :=]0, \infty[$ is a solution of the translation equation (1). This solution is not of the form (3) (see Remark 11).

THEOREM 2. Let $X \subset \mathbb{R}$ be an arbitrary interval. Suppose that a solution $F: X \times \mathbb{N} \to X$ of the translation equation (1) satisfying $F(\alpha, 1) = \alpha$ for $\alpha \in X$ can be extended to a solution $\overline{F}: X \times \mathbb{Q}_+ \to X$ of this equation. Then there exists a family $\{X_s\}_{s \in S}$ of disjoint sets such that $\bigcup_{s \in S} X_s = X$ and for every $s \in S$ there exists a subgroup $\mathbb{Q}_s \leq \mathbb{Q}_+$ and a bijection $g_s: \mathbb{Q}_+/\mathbb{Q}_s \to X_s$ for which

(5)
$$F(\alpha, k) = g_s(g_s^{-1}(\alpha) \cdot k), \quad \alpha \in X_s, \ k \in \mathbb{N}.$$

Proof. This follows immediately from Construction C_2 .

THEOREM 3. Let $X \subset \mathbb{R}$ be an arbitrary interval. A function $F: X \times \mathbb{N} \to X$ is a solution of the translation equation (1) such that for every $\alpha \in X$ the function $F(\alpha, \cdot)$ is increasing and for every $k \in \mathbb{N}$ the function $F(\cdot, k)$ is increasing and surjective if and only if there exists a family $\{X_s\}_{s\in S}$ of disjoint sets such that $\bigcup_{s\in S} X_s = X$ and there exists a family of increasing bijections $g_s: \mathbb{Q}_+ \to X_s, s \in S$, such that

(6)
$$F(\alpha,k) = g_s(g_s^{-1}(\alpha) \cdot k), \quad \alpha \in X_s, \ k \in \mathbb{N}.$$

We present two proofs of this theorem. The first one is a corollary from Theorem 2 and the other proof is direct.

Proof I (of the "only if" part of Theorem 3, using Theorem 2). Note that the assumptions about $F: X \times \mathbb{N} \to X$ imply that $F(\alpha, 1) = \alpha$ and F can be extended to a solution $\overline{F}: X \times \mathbb{Q}_+ \to X$ of (1). Indeed, since $F(F(\alpha, 1), 1) = F(\alpha, 1)$, by injectivity of $F(\cdot, 1)$ we get $F(\alpha, 1) = \alpha$. We can put

(7)
$$\overline{F}(\alpha, k/l) := \beta$$
 such that $F(\alpha, k) = F(\beta, l)$,

for every $\alpha \in X$ and $k/l \in \mathbb{Q}_+$. The existence and uniqueness of β result from the assumption that $F(\cdot, l)$ is surjective and injective, so \overline{F} is correctly defined. One can verify easily that \overline{F} is a solution of the translation equation. Indeed, let

$$\overline{F}\left(\overline{F}\left(\alpha,\frac{k}{l}\right),\frac{m}{n}\right) =: \gamma \text{ and } \overline{F}\left(\alpha,\frac{k\cdot m}{l\cdot n}\right) =: \delta.$$

If we set $\overline{F}(\alpha, k/l) =: \beta$, then by definition (7), $F(\alpha, k) = F(\beta, l)$ and $F(\beta, m) = F(\gamma, n)$ and $F(\alpha, k \cdot m) = F(\delta, l \cdot n)$. Hence

$$F(\gamma, n \cdot l) = F(\beta, m \cdot l) = F(\alpha, k \cdot m) = F(\delta, n \cdot l),$$

so $\gamma = \delta$.

Therefore, by Theorem 2, we have the form (5) of the solution $F : X \times \mathbb{N} \to X$. Since the functions $F(\alpha, \cdot)$ are injective for every $\alpha \in X$, by Construction C_2 we get $\mathbb{Q}_s = \{1\} \leq \mathbb{Q}_+$ for every $s \in S$, which yields (6).

We will verify that the bijections $\{g_s\}_{s \in S}$ are increasing. Let $k/l < k_1/l_1$ and

$$g_s(k/l) =: \alpha, \quad g_s(k_1/l_1) =: \beta.$$

By (6) and by definition of \overline{F} we get

$$\overline{F}\left(\alpha, \frac{k_1 l}{k l_1}\right) = g_s\left(\frac{k}{l} \cdot \frac{k_1 l}{k l_1}\right) = g_s\left(\frac{k_1}{l_1}\right) = \beta, \quad \text{whence} \quad F(\alpha, k_1 l) = F(\beta, k l_1).$$

Since $k l_1 < l k_1$ by assumptions we have

Since $kl_1 < lk_1$, by assumptions we have

$$F(\alpha, kl_1) < F(\alpha, k_1l) = F(\beta, kl_1)$$
 and $\alpha < \beta$.

Since the "if" part is evident, the first proof is complete.

Proof II (of the "only if" part of Theorem 3). We define the following relation in X:

$$\forall \alpha, \beta \in X : \quad \alpha \sim_F \beta \iff \exists k, l \in \mathbb{N} : F(\alpha, k) = F(\beta, l).$$

It is to verify that it is an equivalence relation. Indeed, evidently it is symmetric and reflexive. Let now $\alpha \sim_F \beta$ and $\beta \sim_F \gamma$. Then

$$\exists k, l, k_1, l_1 \in \mathbb{N}$$
: $F(\alpha, k) = F(\beta, l)$ and $F(\beta, k_1) = F(\gamma, l_1)$.

Hence

$$F(\alpha, k \cdot k_1) = F(\beta, l \cdot k_1) = F(\gamma, l \cdot l_1), \text{ so } \alpha \sim_F \gamma.$$

We denote by $\{X_s\}_{s\in S}$ the set of equivalence classes. Fix $s \in S$ and $\alpha_0 \in X_s$. We define $h_s : X_s \to \mathbb{Q}_+$ by

$$h_s(\alpha) := k/l$$
, where $F(\alpha_0, k) = F(\alpha, l)$.

The function h_s is correctly defined. Indeed, if

$$F(\alpha_0, k) = F(\alpha, l)$$
 and $F(\alpha_0, k_1) = F(\alpha, l_1),$

then

$$F(\alpha_0, l \cdot k_1) = F(\alpha, l \cdot l_1) = F(\alpha_0, l_1 \cdot k).$$

Since $F(\alpha_0, \cdot)$ is injective, $l \cdot k_1 = l_1 \cdot k$, whence $k_1/l_1 = k/l$.

We will show that $h_s : X_s \to \mathbb{Q}_+$ is a bijection. If $h_s(\alpha) = h_s(\beta) = k/l$ then $F(\alpha, l) = F(\alpha_0, k) = F(\beta, l)$ and by injectivity of $F(\cdot, l)$ we get $\alpha = \beta$. To prove the surjectivity, take $m/n \in \mathbb{Q}_+$. Let $F(\alpha_0, m) = \beta$. By the surjectivity of $F(\cdot, n)$, we have $F(\alpha_0, m) = \beta = F(\alpha, n)$ for some α , so $h_s(\alpha) = m/n$.

Now, we will show that h_s is an increasing function. Let $\alpha < \beta$ and

$$h_s(\alpha) = k/l, \quad h_s(\beta) = k_1/l_1.$$

We have $F(\alpha_0, k) = F(\alpha, l)$ and $F(\alpha_0, k_1) = F(\beta, l_1)$. Since $F(\cdot, ll_1)$ is increasing, we obtain

$$F(\alpha_0, kl_1) = F(\alpha, ll_1) < F(\beta, ll_1) = F(\alpha_0, k_1 l),$$

therefore $kl_1 < k_1l$ and $k/l < k_1/l_1$.

Let now $\alpha \in X_s$, $k \in \mathbb{N}$. Let $h_s(\alpha) = K/L$ and $\beta := F(\alpha, k)$. Hence $h_s(\alpha) \cdot k = K \cdot k/L$.

We will show

$$h_s(\beta) = K \cdot k/L$$

Indeed, we have $F(\beta, L) = F(\alpha, kL), F(\alpha_0, K) = F(\alpha, L)$ and

$$F(\alpha_0, Kk) = F(\alpha, Lk) = F(\beta, L)$$

therefore $h_s(\beta) = K \cdot k/L$, and so

$$F(\alpha, k) = \beta = h_s^{-1}(K \cdot k/L) = h_s^{-1}(h_s(\alpha) \cdot k).$$

Putting $g_s = h_s^{-1}$ we have the form (6), which was to be shown.

REMARK 11. If $F: X \times \mathbb{N} \to X$ satisfies the assumptions of Theorem 3, then F cannot be obtained by means of Theorem 1.

Indeed, otherwise let $g_s(1) =: \alpha_0$ for some $s \in S$. Then $X_s = \{F(\alpha_0, k) : k \in \mathbb{N}\} = g_s(\mathbb{N})$ and $\alpha_0 \in X_s$. Let $\overline{F} : X \times \mathbb{Q}_+ \to X$ be an extension of the solution F. Since $\overline{F}(\alpha_0, 1/2) < F(\alpha_0, k)$ for $k \in \mathbb{N}$, we have $\overline{F}(\alpha_0, 1/2) \notin X_s$. Let $\overline{F}(\alpha_0, 1/2) \in X_t$, $t \neq s$. Hence

$$F(F(\alpha_0, 1/2), 2) = F(\alpha_0, 1) = \alpha_0,$$

so $\alpha_0 \in X_t$, which contradicts the relation $X_t \cap X_s = \emptyset$.

REMARK 12. Let $X := [0, \infty[$ and define $F : X \times \mathbb{N} \to X$ by $F(\alpha, k) = \begin{cases} \alpha, & \alpha \in X, \ k = 1, \\ 1, & \alpha \in [0, 1], \ k \in \mathbb{N} \setminus \{1\}, \\ k\alpha, & \alpha \in X \setminus [0, 1], \ k \in \mathbb{N} \setminus \{1\}. \end{cases}$

Then F is a solution of (1) which cannot be extended to a solution \overline{F} : $X \times \mathbb{Q}_+ \to X$ and is not of the form (3).

Indeed, for every solution $\overline{F}: X \times \mathbb{Q}_+ \to X$ of (1) satisfying $\overline{F}(\alpha, 1) = \alpha$, all functions $\overline{F}(\cdot, k)$ ought to be bijections. But

$$F(1/2,2) = 1 = F(3/4,2),$$

therefore F cannot be extended to a solution $\overline{F}: X \times \mathbb{Q}_+ \to X$.

Moreover, by Theorem 1, card $X_s = \text{card } J_s$ for $s \in S$. It is easy to see that for the solution F one of the elements of the family $\{X_s\}_{s\in S}$ is the set $X_n = [0, 1]$ for some $n \in S$. This implies the following contradiction:

$$\mathfrak{c} = \operatorname{card} [0, 1] = \operatorname{card} J_n \leq \operatorname{card} \mathbb{N} = \aleph_0.$$

References

 N. Bourbaki, Elements of Mathematics, Algebra I, Chapters 1-3, Springer, New York, 1989.

A. Mach and Z. Moszner

- [2] G. Grätzer, Universal Algebra, Springer, New York, 1968.
- [3] A. Mach, Sur les décompositions invariants du demi-groupe du groupe abélien linéairement ordonné, Rocznik Nauk.-Dydak. WSP w Krakowie, Prace Matematyczne 11 (1985), 119–145.
- [4] Z. Moszner, Structures de l'automate plein, réduit et inversible, Aequationes Math. 9 (1973), 46–59.
- [5] —, The translation equation and its application, Demonstratio Math. 6 (1973), 309–327.
- [6] —, Décompositions invariants du demi-groupe des éléments non-négatifs du groupe archimédien, Tensor (N.S.) 34 (1980), 8–10.
- [7] —, General theory of the translation equation, Aequationes Math. 50 (1995), 17–37.

Institute of Mathematics Świętokrzyska Academy Świętokrzyska 15 25-406 Kielce, Poland E-mail: amach@pu.kielce.pl Institute of Mathematics Pedagogical Academy Pochorążych 2 30-084 Kraków, Poland E-mail: zmoszner@ap.krakow.pl

Reçu par la Rédaction le 11.3.2004 Révisé le 21.10.2004

(1508)

146