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Proper holomorphic self-mappings
of the symmetrized bidisc

by ARMEN EDIGARIAN (Krakéw)

Abstract. We characterize proper holomorphic self-mappings Go — G2 for the sym-
metrized bidisc Go = {(A1 4+ A2, A1A2) : [A1], [Ae| < 1} c C2

Let D be the unit disc. Set
7T:C23 (A, A2) = (A1 4 A2, M Ag) € C2

and Go = 7(D?). The domain Gy is called the symmetrized bidisc. It has
recently been studied by many authors, e.g. [1], [7], [10], [3], [4]. The original
motivation for the study of the complex geometry of the symmetrized bidisc
comes from control engineering [2].

From the complex analysis point of view the symmetrized bidisc is im-
portant since it is the first known example of a bounded pseudoconvex do-
main for which the Carathéodory and Lempert functions coincide, but which
cannot be exhausted by domains biholomorphic to convex ones (see [6],
3], [4]).

Recall that a mapping f : X — Y between topological spaces X,Y is
called proper if f~1(K) is a compact subset of X for any compact set K C Y,
The main purpose of the paper is to give the following characterization of
proper holomorphic self-mappings of the symmetrized bidisc.

THEOREM 1. Let f : Gog — Ga be a proper holomorphic mapping. Then
there exists a finite Blaschke product B such that

(1) F(m(M;A2)) = m(B(M), B(A2))
for any A, Ao € D.
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By a (finite) Blaschke product we mean a function of the form

m

; A—aj
2 B(A) =€ -7
@) W =173
7j=1
where 7 € R, m € Nand a1, ...,a, € D. Recall that a holomorphic function

g : D — D is proper if and only if it is a finite Blaschke product.
Theorem 1 implies that if f is an automorphism then f(w()\l,)\z)) =
7(h(A1), h(A2)), where h is an automorphism of the unit disc D (see [7]).
The above result is a corollary of the following:

THEOREM 2. Let f : D? — Gy be a proper holomorphic mapping. Then
there exist finite Blaschke products By, Bo such that

(3) F(A1,A2) = (Bi(A1) 4+ Ba(X2), Bi(M1)Ba(X2)),
for any A1, A9 € D.

Note that 7 : C2 — C? is a proper holomorphic mapping and the singular
set is equal to Xo = 7(A), where A = {(\,\) : A € C}, ie. 7: C2\ A —
C?\ X5 is a holomorphic covering.

Let us first gather some elementary properties of the symmetrized bidisc
(see e.g. [1]).

PROPOSITION 3. (1) (s,p) € Go if and only if |s — 3p| + |p|? < 1;

(2) if (s,p) € Gy then |s —3p| + |p|* = 1;

(3) 7 HGy) = D%

(4) 71(9G,) = O(D?);

(5) YoN oGy = {(2/\,/\2) : ‘)\‘ = 1}.

LEMMA 4. Assume that ¢ : D — 0Gy is a holomorphic mapping. Then
there exist a § € R and a holomorphic function ¢ : D — D such that
e(A) = (e + P(N), e?p(N)) for any X € D.

Proof. We know that 0Go C {(s,p) : |s — 3p| + |p|? = 1}. If p(Xg) €
Y9 N 0Gy for some g € D then o = e'™ for some 7 € R and therefore
(1 = const.

So, assume that (D) C C?\ X,. Hence, there exists a holomorphic
mapping @ : D — C? such that ¢ = 7 o @. Now, it suffices to note that
$:D— 9(D?). =

Proof of Theorem 2. We use similar methods to those in the proof of the
Remmert—Stein theorem (see e.g. [9, p. 71]).

Let f = (f1, f2). Assume that D > w, — wy € ID, v € N, is any se-
quence. The functions ¢;,(2) = fj(z,wy), j € {1,2}, v > 1, are holomorphic
in D. By Montel’s theorem there is a subsequence {4} so that ¢j, — ¢;
uniformly on compact subsets of . Moreover, (¢1(2), p2(2)) € G, for any
z € D (here we use the properness of f).
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By Lemma 4, ¢; = € + ¢ and oo = €1). Now, by the Weierstrass
theorem,

afl(Z’ka) 82f1(szl/k)

(4) T 0. - w’(z), T 0.2 - w”(z),
(5) 48]“2(;,;11% ) — efy/(2), 482]02;2’;0”’“) — ey (2).

(6) Hi(z,w) = Ofi(z,w) O fa(z,w) O fi(z,w) Dfa(z,w)

0z 922 022 9.
2 2
~ fizw) PG OB 0]
From (4) and (5) we get
(8) Hl(z,w,,k) — 0, HQ(Z,wyk) = 0.

Hence, Hi(z,w) =0 and Ha(z,w) = 0.

Set A = {(z,w) € D?: %(z, w) = 0}. Note that A is a proper analytic
subset of D?. Indeed, if A = D? then the function 1 in (4) is identically zero,
so from (5) we have dfy/0z = 0. Hence, fi(z,w) = g1(w) and fao(z,w) =
go(w) for (z,w) € D?, where g1, go are holomorphic functions on D. This
contradicts the properness of f (for a fixed w € D take z — 0D).

Note that D? \ A4 is a domain (i.e. an open connected set). By (6) there
exists a holomorphic function g; such that

) ORC) _ g,y 2112 0)

on D? \ A. From (7) we get

(10) faz,w) = g1 (w) fi(z,w) — gt (w)

for (z,w) € D?\ A. Note that f(z,w) = m(g1(w), f1(z,w) — gi(w)). So,
f(z,w) = (g1(w), f1(z,w) — g1(w)) is a holomorphic mapping D? \ A — D2,
Since g1 is bounded on D2\ 4, it extends holomorphically to D?. So, f = 7o f

where f = (g1, f1 — 91)-
Repeating similar arguments for w we show that there exists a holomor-
phic mapping g2 such that

(11) fa(z,w0) = g2(2) f1(z, w) — g3 (2).

From (10) and (11) we get f1(z,w)=g1(w)+g2(2) and fo(z,w)=g1(w)g2(2).
Now, it suffices to note that g1, go : D — ID are proper holomorphic functions
and, therefore, they are finite Blaschke products. =
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REMARK 5. Note that one may consider proper holomorphic self-map-

pings of the symmetrized polydisc (see e.g. [8]). In [5], we will show that
they have a similar description.
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