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A boundary cross theorem
for separately holomorphic functions

by Peter Pflug and Viê.t-Anh Nguyên (Oldenburg)

Abstract. Let D ⊂ Cn and G ⊂ Cm be pseudoconvex domains, let A (resp. B) be an
open subset of the boundary ∂D (resp. ∂G) and let X be the 2-fold cross ((D∪A)×B)∪
(A× (B ∪G)). Suppose in addition that the domain D (resp. G) is locally C2 smooth on

A (resp. B). We shall determine the “envelope of holomorphy” X̂ of X in the sense that
any function continuous on X and separately holomorphic on (A×G)∪ (D×B) extends

to a function continuous on X̂ and holomorphic on the interior of X̂. A generalization of
this result to N -fold crosses is also given.

1. Introduction and statement of the main results. In order to
recall here the classical cross theorem and to state our results, we need to
introduce some notation and terminology. In fact, we keep the main notation
from the book by Jarnicki and the first author [6] and from the survey article
by Sadullaev [16].

1.1. Plurisubharmonic measures. Let Ω ⊂ Cn be an open set. For any
function u defined on Ω, let

û(z) :=




u(z), z ∈ Ω,
lim sup
w∈Ω,w→z

u(w), z ∈ ∂Ω.

For a set A ⊂ Ω put

hA,Ω := sup{u : u ∈ PSH(Ω), u ≤ 1 on Ω, û ≤ 0 on A},
where PSH(Ω) denotes the set of all functions plurisubharmonic on Ω.

We first suppose that Ω is bounded. Then the plurisubharmonic measure
of A relative to Ω is given by

(1.1) ω(z,A,Ω) := ĥ∗A,Ω(z), z ∈ Ω ∪ A,
where u∗ denotes the upper semicontinuous regularization of a function u.
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From now on let Ω be an arbitrary (not necessarily bounded) open set
and we shall be concerned with the following two cases.

Case I: A ⊂ Ω. In this case, we define the plurisubharmonic measure
of A relative to Ω as follows:

ω(·, A,Ω) := lim
k→∞

h∗A∩Ωk,Ωk ,

where (Ωk)
∞
k=1 is a sequence of relatively compact open sets Ωk ⊂ Ωk+1 b Ω

with
⋃∞
k=1Ωk = Ω. Observe that the definition is independent of the ex-

hausting sequence (Ωk)
∞
k=1. Moreover, ω(·, A,Ω) ∈ PSH(Ω).

Case II: A is an open subset of ∂Ω. We suppose in addition that Ω is
locally C2 smooth on A (i.e. for any ζ ∈ A, there exist an open neighborhood
U = Uζ of ζ in Cn and a real function % = %ζ ∈ C2(U) such that Ω ∩ U =
{z ∈ U : %(z) < 0} and d%(ζ) 6= 0).

In this case, the plurisubharmonic measure of A relative toΩ is a function
on Ω ∪A given by

ω(z,A,Ω) := lim
k→∞

ω(z,Ak, Ωk), z ∈ Ω ∪A,

where the function ω(·, Ak, Ωk) is given by (1.1) and (Ωk)
∞
k=1 is a sequence

of relatively compact open sets Ωk b Cn and (Ak)
∞
k=1 is a sequence of open

subsets of A such that

(i) Ωk ⊂ Ωk+1 and
⋃∞
k=1Ωk = Ω;

(ii) Ak ⊂ Ak+1 and Ak ⊂ ∂Ω ∩ ∂Ωk and
⋃∞
k=1Ak = A;

(iii) for any ζ ∈ A there is an open neighborhood V = Vζ of ζ in Cn
such that V ∩Ω = V ∩Ωk for some k.

In Section 3, we shall prove that the definition is independent of the ex-
hausting sequences (Ωk)

∞
k=1 and (Ak)

∞
k=1 chosen. Moreover, ω(·, A,Ω)|Ω ∈

PSH(Ω).

1.2. Cross and separate holomorphicity. Let N ∈ N, N ≥ 2, and let
∅ 6= Aj ⊂ Dj ⊂ Cnj , where Dj is a domain, j = 1, . . . , N. We define an
N -fold cross X, its interior Xo and a new set A as

X = X(A1, . . . , AN ;D1, . . . ,DN )

:=
N⋃

j=1

A1 × · · · × Aj−1 × (Dj ∪ Aj)×Aj+1 × · · · × AN

⊂ Cn1+···+nN = Cn,
Xo = Xo(A1, . . . , AN ;D1, . . . ,DN )

:=

N⋃

j=1

A1 × · · · × Aj−1 ×Dj × Aj+1 × · · · × AN ,

A := A1 × · · · × AN .
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In particular, if Aj ⊂ Dj, j = 1, . . . , N, then X = Xo. Moreover put

ω(z) :=
N∑

j=1

ω(zj, Aj ,Dj), z = (z1, . . . , zN ) ∈ (D1∪A1)×· · ·×(DN ∪AN ).

For an N -fold cross X := X(A1, . . . , AN ;D1, . . . ,DN ) let

X̂ := {z = (z1, . . . , zN ) ∈ (D1 ∪ A1)× · · · × (DN ∪AN ) : ω(z) < 1}.

Then the set of all interior points of X̂ is given by

X̂o := {z = (z1, . . . , zN ) ∈ D1 × · · · ×DN : ω(z) < 1}.
We say that a function f : X → C is separately holomorphic on Xo, and
write f ∈ Os(X

o), if for any j ∈ {1, . . . , N} and (a′, a′′) ∈ (A1×· · ·×Aj−1)×
(Aj+1 × · · · × AN ) the function f(a′, ·, a′′)|Dj is holomorphic on Dj.

Finally, throughout the paper, the notation |f |M stands for supM |f |.
1.3. Motivations for our work. We are now able to formulate what we

will cite in what follows as the classical cross theorem.

Theorem 1 (Alehyane & Zeriahi [1]). Let Dj ⊂ Cnj be a pseudoconvex
domain and Aj ⊂ Dj a locally pluriregular subset , j = 1, . . . , N. Then for

any f ∈ Os(X), there is a unique f̂ ∈ O(X̂) such that f̂ = f on X.

There is a long list of papers dealing with this theorem under various
assumptions. For a historical discussion, see the survey article [14].

The question naturally arises how the situation changes when the sets Aj
live on the boundary ∂Dj, j = 1, . . . , N.

The first results in this direction were obtained by Malgrange–Zerner
[17], Komatsu [10] and Drużkowski [2], but only for some special crosses.
Recently, Gonchar [3, 4] has proved the following remarkable more general
theorem.

Theorem 2. Let Dj ⊂ C be a Jordan domain and let ∅ 6= Aj be an open
subset of the boundary ∂Dj, j = 1, . . . , N. Then for any f ∈ C(X)∩Os(X

o)

there is a unique f̂ ∈ C(X̂) ∩ O(X̂o) such that f̂ = f on X. Moreover , if
|f |X <∞ then

(1.2) |f̂(z)| ≤ |f |1−ω(z)
A |f |ω(z)

X , z ∈ X̂.
It should be observed that under the hypothesis of Theorem 2 one has

X ⊂ X̂. We remark that Gonchar’s original formulation is slightly different.
However, his proof still works for this new formulation.

The main purpose of this work is to generalize Gonchar’s theorem to
higher dimensions.
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1.4. The main result. We are now ready to state the main result.

Main Theorem. Let Dj ⊂ Cnj be a pseudoconvex domain and let
∅ 6= Aj be an open subset of ∂Dj, j = 1, . . . , N. Suppose in addition that

each domain Dj is locally C2 smooth on Aj , j = 1, . . . , N. Then X ⊂ X̂ and

for any f ∈ C(X) ∩ Os(X
o), there is a unique f̂ ∈ C(X̂) ∩ O(X̂o) such that

f̂ = f on X. Moreover , if |f |X <∞ then

(1.3) |f̂(z)| ≤ |f |1−ω(z)
A |f |ω(z)

X , z ∈ X̂.
We now give a short outline of the proof. The main idea is to com-

bine Gonchar’s theorem and the classical cross theorem with the slicing
method. More precisely, with each domain Dj we shall associate a family
of C2 smooth planar domains which are, roughly speaking, the intersection
of an open tubular neighborhood of Aj in Dj ∪ Aj with the family of com-
plex lines normal to Aj parameterized by Aj . One important property of
this family is that the harmonic measures for its domains depend, in some
sense, continuously on the parameter of Aj . Another important property is
that there is a relation between the plurisubharmonic measure of Dj and
the harmonic measure of the domains in the above family. Applying Gon-

char’s theorem and the slicing method, we shall find an extension f̂ such

that f̂ is holomorphic on a subdomain of each domain in this family. The
two important properties mentioned above, combined with a variant of the
classical cross theorem, will allow us to propagate the holomorphicity from
those one-dimensional subdomains to the desired envelope of holomorphy.

The paper is organized as follows.
We begin Section 2 by collecting some background of potential theory

and some classical results. Next we establish a uniform estimate for the
Poisson kernels which will play an important role in the proof of the Main
Theorem.

Based on the results of Section 2, Section 3 develops necessary estimates
for the plurisubharmonic measures that will be used later in Section 5.

Section 4 provides the first step of the proof. More precisely, we will
consider the mixed situation where there is at least one j such that Aj
is inside Dj . Moreover, we will establish some quantitative versions of the
classical cross theorem.

Section 5 establishes the Main Theorem in the case of a 2-fold cross.
The complete proof of the Main Theorem will be given in Section 6

together with some concluding remarks and open questions.

Acknowledgments. The paper was written while the second author
was visiting the Carl von Ossietzky Universität Oldenburg being supported
by the Alexander von Humboldt Foundation. He wishes to express his grat-
itude to these organizations.
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2. Auxiliary results

2.1. Harmonic measure for a planar domain. We recall some classical
facts from the book of Ransford [15]. Let D be a proper subdomain of
C∪{∞} such that the boundary ∂D (with respect to C∪{∞}) is nonpolar.
Let PD be the Poisson projection of D, and A a Borel subset of ∂D. Consider
the bounded function

1∂D\A(ζ) :=

{
1, ζ ∈ ∂D \A,
0, ζ ∈ A.

By Theorem 4.3.3 of [15], the harmonic measure of the set ∂D \ A (or
equivalently hA,D) is exactly the Perron solution of the generalized Dirichlet
problem with boundary data 1∂D\A. In other words,

(2.1) hA,D = PD[1∂D\A].

2.2. A uniqueness theorem and the Two-Constant Theorem. The follow-
ing uniqueness theorem is very useful.

Theorem 2.1 (see [5]). Let D ⊂ Cn be a domain such that D is locally
C1 smooth on some open set U of ∂D. If a set E ⊂ D ∪ U has a positive
(2n − 1)-dimensional Hausdorff measure, then, for f ∈ C(D ∪ U) ∩ O(D),
f = 0 on E implies f ≡ 0.

Proof. The only nontrivial case is that E ⊂ U. In this case by taking the
intersection of D with a bundle of complex lines and applying the classical
one-dimensional boundary uniqueness theorem of Privalov, one may find a
set E′ ⊂ D close to E such that E′ has a positive 2n-dimensional Hausdorff
measure and f = 0 on E′. This completes the proof.

The following Two-Constant Theorem for plurisubharmonic functions
will play a vital role in this paper.

Theorem 2.2. If u is a plurisubharmonic function in a bounded open
set D ⊂ Cn and u ≤M on D and û ≤ m on some subset A of D, then

û(z) ≤ m(1− ω(z,A,D)) +Mω(z,A,D), z ∈ D.
Proof. This follows immediately from the definition of ω(·, A,D) given

in Subsection 1.1.

2.3. Uniform estimate for the Poisson kernels of a family of C2 smooth
domains. In what follows we fix an integer N ≥ 2 and let dist(·, ·) denote
the Euclidean distance and B(a, r) (a ∈ RN , r > 0) the Euclidean ball of
center a and radius r. We say that a domain D ⊂ RN is C2 smooth if D is
bounded and admits a defining function % ∈ C2(RN ) such that d%(z) 6= 0 for
all z ∈ ∂D. Let PD denote its Poisson kernel. The following result is due to
N. Kerzman (see [8] and [11]).
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Theorem 2.3. Let D ⊂ RN be a C2 smooth domain that satisfies

diam(D) := sup
x,y∈D

|x− y| ≤M for some constant M.

Then

(1) there is a positive number r = r(D) such that for each y ∈ ∂D there
are balls B(cy, r) ⊂ D and B(c̃y, r) ⊂ RN \D that satisfy

B(c̃y, r) ∩D = {y}, B(cy, r) ∩ (RN \D) = {y};
(2) there is a constant C which depends only on N, r, and M such that

PD(x, y) ≤ C dist(x, ∂D)

|x− y|N , x ∈ D, y ∈ ∂D.

Proof. This theorem is implicitly proved in Lemmas 8.2.3–8.2.5 and
Proposition 8.2.6 of Krantz [11]. We only mention here that Kerzman’s
idea is to compare the Green function and the Poisson kernel for D with
the corresponding functions for the internally and externally tangent balls
B(cy, r) and B(c̃y, r) (and also for their complement).

Now we reformulate Kerzman’s theorem in order to obtain a uniform
upper bound for the Poisson kernels of a family of domains which depend,
in some sense, continuously on a parameter.

Corollary 2.4. Let (Dα)α∈I be a family of C2 smooth domains in RN
indexed by a set I. Suppose that

(1) there is a constant M such that for all α ∈ I,
diam(Dα) ≤M ;

(2) there is a positive number r such that for each α ∈ I, y ∈ ∂Dα, there
are balls B(cy,α, r) ⊂ Dα and B(c̃y,α, r) ⊂ RN \Dα that satisfy

B(c̃y,α, r) ∩Dα = {y}, B(cy,α, r) ∩ (RN \Dα) = {y}.
Then there exists a constant C such that

PDα(x, y) ≤ C dist(x, ∂Dα)

|x− y|N , x ∈ Dα, y ∈ ∂Dα, α ∈ I.

Proof. This follows immediately from Theorem 2.3.

We conclude this section with an example of a family of C2 smooth
domains satisfying the hypothesis of Corollary 2.4.

Let D be a domain in Cn which is locally C2 smooth on an open neighbor-
hood of a point P ∈ ∂D. Let TCP (resp. TRP ) denote the complex (resp. real)

tangent hyperplane to ∂D at P , and π (resp. πC) the orthogonal projection
from Cn onto TRP (resp. TCP ). By an affine transformation, we may suppose

without loss of generality that P = 0, TCP = {z1 = 0} and TRP = {Re z1 = 0}.
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Moreover, there are an open neighborhood U of the origin and a function
% ∈ C2(U) such that

(2.2) %(0) = 0, d%(0) = (1, 0, . . . , 0), U ∩D = {% < 0}.
For any domain V ⊂ U and any Q := (0, z′) = (0, z2, . . . , zn) ∈ TCP , consider
the planar domain

(2.3) VQ := env(V ∩ {(t, z′) : t ∈ C}),
where env(G) denotes the smallest simply connected domain containing (a
given planar domain) G, in other words, env(G) is obtained from G by
adding all its holes.

Proposition 2.5. Under the above hypotheses and notation, there are
open neighborhoods U1 of P in TCP , U2 of P in TRP and U3 of P in Cn and
a C2 smooth subdomain V ⊂ D such that

(1) U1 = U2 ∩ TCP ;
(2) ∂V ∩ ∂D is an open neighborhood of P in ∂D and in ∂V , and π is

one-to-one from ∂V ∩ ∂D onto an open neighborhood of U2;
(3) (VQ)Q∈U1 is a family of C2 smooth planar simply connected domains

which satisfies (1) and (2) of Corollary 2.4 and VQ ⊂ D;
(4) there is a constant C such that for all Q ∈ U1, z ∈ VQ ∩ U3 and

ζ ∈ ∂V ∩ ∂D satisfying π(ζ) = π(z),

dist(z, ∂VQ) ≤ C dist(z, ∂D), dist(z, ζ) ≤ C dist(z, ∂D);

in other words, the quantities dist(z, ∂VQ), dist(z, ζ) and dist(z, ∂D)
are equivalent.

Proof. Since D is locally C2 smooth on an open neighborhood of P ∈
∂D, a geometric argument (see [11, p. 325]) shows that there is an r > 0
such that the sphere ∂B is internally tangent to D at P, where B :=
B((−r, 0, . . . , 0), r).

Consider the following defining function for B:

(2.4) φ(z) :=
(x1 + r)2 + y2

1 + |z′|2 − r2

2r
, z = (x1 + iy1, z

′) ∈ Cn.

A straightforward computation shows that |dφ| = 1 on ∂B. Next fix a radial
function ψ ∈ C0(Cn) such that 0 ≤ ψ ≤ 1, ψ(z) = 1 for |z| ≤ 1 and ψ(z) = 0
for |z| ≥ 2. Since d%(0) = dφ(0), we may choose ε0 such that 0 < ε0 < r/4
and

(2.5) |(d%− dφ)(z)| < 1/8, |z| ≤ 2ε0.

Now define for any 0 < ε < ε0,

(2.6) ψε(z) := ψ(z/ε), %ε := φ+ ψε(%− φ).
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Observe that %ε(z) = %(z) for |z| ≤ ε and %ε(z) = φ(z) for |z| ≥ 2ε.Moreover
using (2.5)–(2.6) and the identities %(0) = φ(0) and d%(0) = dφ(0), we have
for |z| ≤ 2ε,

|(d%ε − dφ)(z)| ≤ ψε(z)|(d%− dφ)(z)|+ |dψε(z)| · |(%− φ)(z)|

≤ 1

8
+
C ′ε2

ε
,

where C ′ is a constant. Therefore there exists ε1 > 0 such that for all
0 < ε < ε1,

(2.7) |(d%ε − dφ)(z)| ≤ 1/4, |z| ≤ 2ε.

For any 0 < ε < min{ε0, ε1} define

(2.8) V ′ := {z ∈ Cn : %ε(z) < 0}
and let V be the connected component of V ′ satisfying P ∈ ∂V. Then (2.7)
implies that |d%ε(z)| > 1/2 for |z| ≤ 2ε. Since 0 ≤ ψ ≤ 1 and %ε(z) = φ(z)
for |z| ≥ 2ε, we deduce from (2.6) that V is a C2 smooth subdomain of D.

Now let

U3 := B(0, ε), U2 := U3 ∩ TRP , U1 := U3 ∩ TCP .
Then by (2.4)–(2.6), we see that (1) and (2) are satisfied when ε in (2.8) is
sufficiently small.

We next turn to (3). Fix Q ∈ U1 and z ∈ ∂VQ. Then there are two cases.
If |z| ≤ 2ε, then by (2.7),

|dz1%ε| ≥ |dz1φ| − |d%ε − dφ| >
|z1 + r|

r
− 1

4
>

1

4
.

If |z| ≥ 2ε, then by (2.6),

|dz1%ε| = |dz1φ| =
|z1 + r|

r
> 0.

Thus for any Q = (0, z′) ∈ U1 the set V ∩ {(t, z′) : t ∈ C} is a C2 smooth
planar region contained in D. Since for sufficiently small ε > 0, ∂D ∩ U3 is
a graph over TRP , a geometric argument shows that VQ is also a C2 smooth
planar simply connected region contained in D. We see that one may assume
that VQ is a domain.

To complete the proof of (3) we still need to check that the family
(VQ)Q∈U1 satisfies (1) and (2) of Corollary 2.4. Indeed, let %Q be the re-
striction of % to the complex line containing VQ. Clearly, the Hessian d2%Q
depends continuously on Q ∈ U1. This, combined with the geometric fact
proved in [11, p. 325], implies the remaining assertion of (3).

It remains to establish (4). Also by [11, p. 325], when ε > 0 in (2.8) is
sufficiently small, for any z ∈ U3 ∩D there are unique θ ∈ ∂D and a point
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η ∈ ∂VQ such that

|z − θ| = dist(z, ∂D), |z − η| = dist(z, ∂VQ).

Let nθ (resp. nη) be the inward unit normal vector to ∂D (resp. ∂VQ) at θ
(resp. η). Then a geometric argument shows that the orthogonal projection
of the real line containing nη onto VQ passes through z. Since Q is close
to P, the angles between the vectors z − η and nη and between nη and
nθ are arbitrarily small when ε in (2.8) is sufficiently small. Thus the angle
between z−η and z−θ is arbitrarily small. Since |d%(0)| = 1 and % ∈ C2(U),
it follows that

|z − θ| ≤ |z − η| ≤ C|z − θ|
for some constant C, which proves that dist(z, ∂VQ) ≤ C dist(z, ∂D).

The second estimate of (4) can be proved in exactly the same way. This
completes the proof.

3. Estimates for the plurisubharmonic measures. In this section
we apply the result of the previous one to establish some inequalities con-
cerning plurisubharmonic measures. These estimates will be crucial for the
proof of the Main Theorem.

Proposition 3.1. Let D be a bounded planar domain with C2 smooth
boundary. Then there is a constant C such that for any finite union A of
open connected arcs on ∂D,

ω(z,A,D) ≤ C dist(z, ∂D)

dist(z, ∂D \A)2
, z ∈ D ∪ A.

Proof. By Theorem 2.3 we know that there is a constant C ′ such that

PD(x, y) ≤ C ′ dist(x, ∂D)

|x− y|2 , x ∈ D, y ∈ ∂D.

This, combined with identity (2.1), implies that

ω(z,A,D) ≤ C ′
�

∂D\A

dist(z, ∂D)

|z − ζ|2 dσ(ζ),

where dσ is the Lebesgue measure on ∂D. We easily see that the right side
of the latter estimate is dominated by

C
dist(z, ∂D)

dist(z, ∂D \ A)2
.

Observe that as in Theorem 2.3 and Corollary 2.4, the constant C in
Proposition 3.1 depends only on σ(∂D \A), diam(D) and the radius r(D).

Proposition 3.2. Let D ⊂ Cn be a bounded open set and let A be an
open subset of ∂D such that D is locally C2 smooth on A. Then for any set
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K b A, there is a constant C = CK such that

ω(z,A,D) ≤ C dist(z,K), z ∈ D ∪A.
In particular , ω(·, A,D) = 0 on A.

Proof. Since ω(·, A,D) ≤ ω(·, B,G) if B ⊂ A and G ⊂ D, by a com-
pactness argument and Proposition 2.5 we may suppose that K b A is the
intersection of A and a sufficiently small ball U centered at P , and D is a
C2 smooth domain such that Proposition 2.5 is applicable. Namely, keeping
the notation of (2.2) and (2.3), we assume that P = 0 ∈ Cn and (VQ)Q∈U1 is
a family of C2 smooth planar simply connected domains satisfying (1) and
(2) of Corollary 2.4.

Observe that it suffices to prove the proposition for the case where z is
sufficiently close to K. Now let Q := πC(z) and note that z ∈ DQ. Then
Proposition 2.5(4) gives a constant C ′ such that

(3.1) dist(z,K) ≤ dist(z, ∂VQ) ≤ C ′ dist(z,K).

Combining Propositions 2.5, 3.1 and the remark following the proof of
Proposition 3.1, we see that there is a constant C ′′ such that

(3.2) ω(z,A ∩ ∂VQ, VQ) ≤ C ′′ dist(z,K ∩ ∂VQ).

Next observe that for any u ∈ PSH(D) with u ≤ 1 on D and û ≤ 0 on A,
by the very definition,

u(z) ≤ ω(z,A ∩ ∂VQ, VQ).

Combined with (3.1) and (3.2), this implies that

ω(z,A,D) ≤ C ′C ′′ dist(z,K),

which completes the proof of the desired estimate. The identity ω(·, A,D)
= 0 on A follows immediately from this estimate.

The next result tells us that the definition of the plurisubharmonic mea-
sure given in Case II of Subsection 1.1 is independent of the choices made.

Proposition 3.3. Let D ⊂ Cn be an open set and let A be an open
subset of ∂D such that D is locally C2 smooth on A. Then there is a function
ω(·, A,D) plurisubharmonic in D with the following property :

Let (Dk)
∞
k=1 be a sequence of relatively compact open sets Dk b Cn and

(Ak)
∞
k=1 a sequence of open subsets of A such that

(i) Dk ⊂ Dk+1 and
⋃∞
k=1Dk = D;

(ii) Ak ⊂ Ak+1 and Ak ⊂ ∂D ∩ ∂Dk and
⋃∞
k=1Ak = A;

(iii) for any ζ ∈ A there is an open neighborhood V = Vζ of ζ in Cn
such that V ∩D = V ∩Dk for some k.

Then
ω(·, A,D) = lim

k→∞
ω(·, Ak,Dk) on D.
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Proof. First observe that such sequences (Dk)
∞
k=1 and (Ak)

∞
k=1 always

exist. For example, one may take Dk := D ∩B(0, k) and Ak := A∩B(0, k),
k ∈ N. Let (D′k)

∞
k=1 and (A′k)

∞
k=1 be some other sequences which satisfy

(i)–(iii). It is easy to see that the limits of decreasing sequences

u := lim
k→∞

ω(·, Ak,Dk) and u′ := lim
k→∞

ω(·, A′k,D′k)

exist and define two plurisubharmonic functions in D.
Fix k and let ζ be any point in Ak and K be any compact neighborhood

of ζ in Ak. By (i)–(iii), there are an integer N and a bounded open neigh-
borhood U of K in Cn such that U ∩A ⊂ A′n and U ∩D′n = U ∩D for any
n ≥ N. Therefore, applying Proposition 3.2 to the open set D ∩ U, we find
a constant C such that

ω(z,A′n,D
′
n) ≤ ω(z, U ∩ A,U ∩D) ≤ C dist(z,K), z ∈ U ∩D, n ≥ N.

This implies that

û′(ζ) := lim sup
w∈D, w→ζ

u′(w) = 0.

Thus û′ = 0 on Ak and therefore ω(·, Ak,Dk) ≥ u′. This implies that u ≥ u′.
Similarly, one gets u′ ≥ u. Hence u = u′ and the proof is finished.

One should mention that in view of Proposition 3.3, Proposition 3.2
still holds when D is an arbitrary (not necessarily bounded) open set. An
immediate consequence of Proposition 3.3 is the following result.

Proposition 3.4. Let D ⊂ Cn be an open set and let A be an open sub-
set of ∂D such that D is locally C2 smooth on A. Let (Ak)

∞
k=1 be a sequence

of open subsets of ∂D such that Ak ↗ A as k ↗∞. Then

lim
k→∞

ω(·, Ak,D) = ω(·, A,D) on D.

Proof. It suffices to take (Dk)
∞
k=1 with Dk = D, and apply Proposition

3.3.

Proposition 3.5. Let D ⊂ Cn be an open set and let A be an open
subset of ∂D such that D is locally C2 smooth on A. Then for any δ > 0,
there is an open subset Tδ of D such that

(1) Tδ1 ⊂ Tδ2 for 0 < δ1 < δ2;
(2) Tδ ∪A is an open neighborhood of A in A ∪D;
(3) ω(z,A,D)− δ ≤ ω(z, Tδ,D) ≤ ω(z,A,D) for z ∈ D;
(4) supTδ dist(·, A) < δ.

Proof. Fix a sequence (Ak)
∞
k=1 of open subsets of A such that

(i) Ak b Ak+1 ⊂ A;
(ii) Ak ↗ A as k ↗∞;
(iii) Ak consists of a finite number of open connected components.
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By Propositions 3.2 and 3.3, for any k there is a constant Ck > 1 such that

(3.3) ω(z,A,D) ≤ Ck dist(z,Ak).

For δ > 0 consider the following open subset of D:

(3.4) Tδ := {z ∈ D : Ck dist(z,Ak) < δ for some k ∈ N}
In view of (3.3)–(3.4) and (i)–(iii), statements (1) and (2) are proved. More-
over

ω(z,A,D) ≤ δ, dist(z,A) < δ, z ∈ Tδ,
which implies that ω(·, A,D)− δ ≤ ω(·, Tδ,D) on D.

On the other hand, from (2) and the definition of plurisubharmonic mea-
sures, we deduce that ω(·, Tδ,D) ≤ ω(·, A,D) on D. Hence the proof is
complete.

The rest of this section is devoted to some applications of the previous
results.

Proposition 3.6. Let D ⊂ Cn and G ⊂ Cm be two domains and let
A (resp. B) be an open subset of ∂D (resp. ∂G) such that D (resp. G)

is locally C2 smooth on A (resp. B). Put X := X(A,B;D,G) and X̂o :=

X̂o(A,B;D,G). Then

(1) for any finite subset M ⊂ X̂o, there are open sets T ⊂ D, S ⊂ G
and 0 < ε < 1 such that

M ⊂ {(z, w) ∈ D ×G : ω(z, T,D) + ω(w,S,G) < 1− ε} ⊂ X̂o;

(2) the open set X̂o is connected ;

(3) X ⊂ X̂.
Proof. Fix ε > 0 such that

ω(z,A,D) + ω(w,B,G) < 1− 2ε, (z, w) ∈M.

Applying Proposition 3.5, we find two open sets T ⊂ D, S ⊂ G of the form
(3.4) such that

|ω(z,A,D)− ω(z, T,D)| < ε/2, z ∈ D,
|ω(w,B,G)− ω(w,S,G)| < ε/2, w ∈ G.

Therefore,

M ⊂ {(z, w) ∈ D ×G : ω(z, T,D) + ω(w,S,G) < 1− ε} ⊂ X̂o,

which yields (1).

To prove (2) let (z1, w1) and (z2, w2) be two arbitrary points in X̂o. Put
M := {(z1, w1), (z2, w2)}. By (1) there are open sets T ⊂ D, S ⊂ G and
0 < ε < 1 such that

M ⊂ {(z, w) ∈ D ×G : ω(z, T,D) + ω(w,S,G) < 1− ε} ⊂ X̂o.
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Since the middle set above is connected (see, for example, Lemma 4 in [7]),
the conclusion of (2) follows.

Statement (3) holds by Proposition 3.2 and the remark following the
proof of Proposition 3.3.

The next result tells us that the open set X̂o is still connected in the
following mixed situation.

Proposition 3.7. Let D ⊂ Cn and G ⊂ Cm be two domains, let
A ⊂ D and let B be an open subset of ∂G. Assume that A is locally
pluriregular and G is locally C2 smooth on B. Let X := X(A,B;D,G) and

X̂o := X̂o(A,B;D,G). Then

(1) for any finite subset M ⊂ X̂o, there are an open set S ⊂ G and
0 < ε < 1 such that

M ⊂ {(z, w) ∈ D ×G : ω(z,A,D) + ω(w,S,G) < 1− ε} ⊂ X̂o;

(2) the open set X̂o is connected ;

(3) X ⊂ X̂.
Proof. Proceed as in the proof of Proposition 3.6 with obvious changes.

The last result of this section studies the level sets of plurisubharmonic
measures.

Proposition 3.8. Let D ⊂ Cn be an open set and let A be an open
subset of ∂D such that D is locally C2 smooth on A. For any 0 < ε < 1 let

Dε := {z ∈ D : ω(z,A,D) < 1− ε}.
Then

(1) we have

lim
ε→0

ω(·, A,Dε) = ω(·, A,D) on D, ω(·, A,Dε) =
ω(·, A,D)

1− ε on Dε;

(2) if z ∈ D satisfies ω(z,A,D) < 1, then, for any 0 < ε < 1 −
ω(z,A,D), the connected component of Dε which contains z is locally
C2 smooth on a nonempty open subset of A;

(3) for any 0 < ε0 < 1, there is an open neighborhood U of A in D ∪A
such that for all ε ≤ 1 − ε0 there exists exactly one connected com-
ponent of Dε containing U ∩D and satisfying ω(·, A,Dε) < ε0 on U.

Proof. For k ∈ N let Ak := A. It suffices to check that the sequences
(D1/k)

∞
k=N and (Ak)

∞
k=N have properties (i)–(iii) of Proposition 3.3 for a

sufficiently large positive integer N. Observe that the only nontrivial point
is (iii), which however follows immediately from Proposition 3.2. Hence the
first identity of (1) is proved. To verify the second, observe that ω(·, A,Dε) ≥
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ω(·, A,D)/(1− ε) on Dε by the very definition. On the other hand, consider
the function

u(z) :=

{
max{ω(z,A,D), (1− ε)ω(z,A,Dε)}, z ∈ Dε,

ω(z,A,D), z ∈ D \Dε.

Clearly, u ∈ PSH(D) and u ≤ 1 on D. By Proposition 3.2, û = 0 on A.
Thus u ≤ ω(·, A,D), which completes the proof of the second identity of (1).

By (1), ω(z,A,Dε) < 1 for all 0 < ε < 1− ω(z,A,D). This proves (2).
For (3) it suffices to show that every ζ ∈ A has a neighborhood U in

D ∪ A with the required properties. By Proposition 3.2 one may find an
open neighborhood U of ζ such that for some constant C1,

ω(·, A,D) ≤ C1 dist(z,U ∩A) < ε0 on U ∩D.
This shows that U ∩D ⊂ D1−ε0 . We now choose a relatively compact neigh-
borhood U of ζ such that U b U . Then applying Proposition 3.2 and shrink-
ing U if necessary, we also have

ω(·, A,D1−ε0) ≤ C2 dist(z,A) < ε0 on U ∩D,
which completes the proof of the last assertion.

4. A mixed cross theorem and two quantitative cross theorems.
The main result of this section is the following mixed cross theorem.

Theorem 4.1. Let D ⊂ Cn be a bounded pseudoconvex domain, G ⊂ Cm
a domain, A ⊂ D, and B ⊂ ∂G. Assume that A is a locally pluriregular
relatively compact subset of D and A =

⋃∞
k=1Ak with Ak locally pluriregular

and compact ; assume moreover that B is an open subset of ∂G such that G
is locally C2 smooth on B. Let X := X(A,B;D,G), Xo := Xo(A,B;D,G),

X̂ := X̂(A,B;D,G), and X̂o := X̂o(A,B;D,G).
Let Cs(X) be the space of all functions defined on X such that

(i) f is locally bounded on X;
(ii) for any z ∈ A, f(z, ·) ∈ C(G ∪B).

Then
(1) for any f ∈ Cs(X) ∩ Os(X

o) there is a unique f̂ ∈ C(X̂) ∩ O(X̂o)

such that f̂ = f on X;
(2) if , moreover , there is a set B′ ⊂ ∂G such that

(i′) f is locally bounded on A× (G ∪B′),
(ii′) for any z ∈ A, f(z, ·) ∈ C(G ∪B′),
(iii′) ω(·, B,G) ∈ C(G ∪B′),

then f̂ extends continuously to every point (z, η) ∈ X̂ ∩ (D ×B′).
A remark is in order. Under the hypothesis of Theorem 4.1, it follows

from Proposition 3.7(3) that X ⊂ X̂.
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Proof. First we prove (1). We argue as in the proof of Theorem 3.5.1
in [6]. For completeness, we give a sketch. Fix an f ∈ Cs(X) ∩ Os(X

o).

Step I: Reduction to the case where D is strongly pseudoconvex , A is
a locally pluriregular compact subset of D and |f | is bounded on X.

One proceeds as in the first and second step of the proof in [6]. More
precisely, let (Gk)

∞
k=1 be an exhausting sequence for G with properties (i)–

(iii) of Proposition 3.3 (with B instead of A). Let Bk := B ∩ ∂Gk. Since D
is a domain of holomorphy, we may find an exhausting sequence (Dk)

∞
k=1

of relatively compact, strongly pseudoconvex subdomains of D with Ak ⊂
Dk ↗ D.

By reduction assumption, for each k there exists an f̂k ∈ C(X̂(Ak, Bk;

Dk, Gk)) ∩ O(X̂o(Ak, Bk;Dk, Gk)) such that f̂k = f on X(Ak, Bk;Dk, Gk).
By Theorem 2.1 and Proposition 3.7 and since fk+1 = fk = f on

X(Ak, Bk;Dk, Gk), one can show that fk+1 = fk = f on X̂(Ak, Bk;Dk, Gk).

On the other hand, by Proposition 3.3, X̂(Ak, Bk;Dk, Gk) ↗ X̂ as k ↗ ∞.
Therefore, we may glue fk together to obtain f̂ ∈ C(X̂) ∩ O(X̂o) such that

f̂ = f̂k = f on X(Ak, Bk;Dk, Gk). Thus f̂ = f on X. The uniqueness of f̂
follows from Theorem 2.1 and Proposition 3.7. This completes Step I.

Step II: The case where D is strongly pseudoconvex , A is a locally
pluriregular compact subset of D and |f | ≤ 1 on X.

The key observation is that we are still able to apply the classical method
of doubly orthogonal bases of Bergman type (see for example [12], [13] for
a systematic study of this method).

Next one observes that Lemma 3.5.10 of [6] is still valid in the present
context. Look at Step 3 in that proof. In what follows, we will use the
notation from [6].

Let µ := µA,D, H0 := L2
h(D), H1 := the closure of H0|A in L2(A,µ) and

let (bk)
∞
k=1 be the basis from Lemma 3.5.10 in [6], νk := ‖bk‖H0 , k ∈ N,

and νk ↗ ∞. For any w ∈ B, we have f(·, w) ∈ H0 and f(·, w)|A ∈ H1.
Hence

(4.1) f(·, w) =
∞∑

k=1

ck(w)bk,

where

(4.2) ck(w) =
1

ν2
k

�

D

f(z, w)bk(z) dΛ2n(z) =
�

A

f(z, w)bk(z) dµ(z), k ∈ N.

Since |f | ≤ 1 on X and f ∈ Cs(X)∩Os(X), applying Lebesgue’s Dominated
Convergence Theorem, we see that the formula
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(4.3) ĉk(w) :=
�

A

f(z, w)bk(z) dµ(z), w ∈ G ∪B, k ∈ N,

defines a bounded function which is holomorphic in G. Moreover, from (4.2)–
(4.3) it follows that

(4.4) lim
w∈G,w→η

ĉk(w) = ĉk(η) = ck(η), η ∈ B.

Thus ĉk ∈ C(G ∪B) ∩ O(G).
Observe that as in [6], using (4.2)–(4.4), we obtain the following esti-

mates:

log |ĉk|
log νk

≤
√
µ(A)

log νk
, k ∈ N,

lim sup
w∈G, w→η

log |ĉk(η)|
log νk

≤ log
√
Λ2n(D)

log νk
− 1, η ∈ B, k ∈ N.

This shows that for any ε > 0, there is an N such that for all k ≥ N,

(4.5)
log |ĉk|
log νk

≤ ω(·, B,G) + ε− 1 on G.

Take a compact K b D, let α > maxK h
∗
A,D, and let ε > 0 be so small

that α+ 2ε < 1. Consider the open set

GK := {w ∈ G : ω(·, B,G) < 1− α− 2ε}.
By (4.5) there is a constant C ′(K) such that

(4.6) ‖ĉk‖ ≤ C ′(K)ν
ω(·,B,G)+ε−1
k ≤ C ′(K)ν−α−εk , k ≥ 1.

Now we wish to show that

(4.7)
∞∑

k=1

ĉk(w)bk(z)

converges locally uniformly in X̂o. Indeed, by (4.6) and Lemma 3.5.10 in [6],

∞∑

k=1

‖ĉk‖GK‖bk‖K ≤
∞∑

k=1

C ′(K)ν−α−εk C(K,α)ναk

≤ C ′(K)C(K,α)
∞∑

k=1

ν−εk <∞,

which gives the normal convergence on K × GK . Moreover, B ⊂ ∂GK by
Proposition 3.2. Therefore, the previous argument also shows that the series
in (4.7) converges normally on K× (GK ∪B). Since the compact set K b D
and ε > 0 are arbitrary, the series in (4.7) converges uniformly on compact

subsets of X̂. Let f̂ be its sum. Then obviously f̂ ∈ C(X̂) ∩ O(X̂o). From
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(4.1), (4.4) and (4.7) it follows that

f̂ = f on D ×B.
Consequently, an application of Theorem 2.1 shows that f̂ = f on X. This
proves (1).

We now turn to (2) using the proof of (1). Observe that by (4.3) and
(i′)–(ii′), ĉk ∈ C(G ∪ B′) ∩ O(G). Next fix η ∈ B′ and z ∈ D. We use
hypothesis (iii′) to choose ε > 0 and a compact neighborhood K of z such

that K × (GK ∪ {η}) is a neighborhood of (z, η) in X̂ ∩ (D ×B′). The rest
of the proof goes essentially along the same lines as that of (1).

The last two results of this section give quantitative versions of the clas-
sical cross theorem (cf. Theorem 1).

Theorem 4.2. Let D ⊂ Cn and G ⊂ Cm be bounded domains and
let A ⊂ D and B ⊂ G be locally pluriregular sets. Assume that D is
pseudoconvex and A is of the form A =

⋃∞
k=1Ak with Ak compact. Let

X := X(A,B;D,G) and X̂ := X̂(A,B;D,G). Then for any f ∈ Os(X)

there is a unique f̂ ∈ O(X̂) such that f̂ = f on X. Moreover , if |f |X < ∞
then

(4.8) |f̂(z, w)| ≤ |f |1−ω(z,A,D)−ω(w,B,G)
A×B |f |ω(z,A,D)+ω(w,B,G)

X , (z, w) ∈ X̂.
Proof. We proceed in two steps.

Step 1: Proof of the equality |f̂ |
X̂

= |f |X .
Suppose that there is (z0, w0) ∈ X̂ such that |f̂(z0, w0)| > |f |X . Put

α := f̂(z0, w0) and consider the function

(4.9) g(z, w) :=
1

f(z, w)− α, (z, w) ∈ X.

Clearly, g ∈ Os(X). Hence by Theorem 3.5.1 of [6], there is exactly one

ĝ ∈ O(X̂) with ĝ = g on X. Therefore, by (4.9) we have g(f −α) ≡ 1 on X.

Thus ĝ(f̂ − α) ≡ 1 on X̂. In particular,

0 = ĝ(z0, w0)(f̂(z0, w0)− α) = 1,

which is a contradiction. Hence |f̂ |
X̂
≤ |f |X . The opposite inequality is

trivial since X ⊂ X̂ (see, for example, [6]).

Step 2: Proof of inequality (4.8).

Fix now (z0, w0) ∈ X̂. For every η ∈ B, we have

|f(ζ, η)| ≤ |f |A×B, ζ ∈ A, |f(z, η)| ≤ |f |X , z ∈ D.
Therefore, the Two-Constant Theorem (Theorem 2.2) implies that

(4.10) |f(z, η)| ≤ |f |1−ω(z,A,D)
A×B |f |ω(z,A,D)

X , z ∈ D, η ∈ B.
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Consider the function f̂(z0, ·) ∈ O(Gz0), where

Gz0 := {w ∈ G : ω(w,B,G) < 1− ω(z0, A,D)}.

Observe that |f̂(z0, ·)|Gz0 ≤ |f |X and

ω(w,B,Gz0) = ω(w,B,G)/(1− ω(z0, A,D)).

Consequently, using (4.10) and applying the Two-Constant Theorem to the

function f̂(z0, ·), we obtain (4.8) for (z0, w0).

Theorem 4.3. Let D ⊂ Cn and G ⊂ Cm be domains and let A (resp. B)
be an open subset of ∂D (resp. ∂G). Suppose in addition that D (resp. G)
is locally C2 smooth on A (resp. B) and D is pseudoconvex. Put X :=

X(A,B;D,G), X̂ := X̂(A,B;D,G) and X̂o := X̂o(A,B;D,G). Then for

any f ∈ C(X̂) ∩ O(X̂o),

(4.11) |f(z, w)| ≤ |f |1−ω(z,A,D)−ω(w,B,G)
A×B |f |ω(z,A,D)+ω(w,B,G)

X , (z, w) ∈ X̂.

Proof. Fix (z0, w0) ∈ X̂, ε > 0 and δ > 0. By Proposition 3.5 one may
find an open set Tδ ⊂ D such that

(4.12) ω(z,A,D)− δ ≤ ω(z, Tδ,D) ≤ ω(z,A,D), z ∈ D.
By Proposition 3.3 there is a (not necessarily pseudoconvex) bounded sub-
domain Gδ of G such that Gδ b G∪B, Gδ is locally C2 smooth on the open
subset ∂Gδ ∩B of B and

(4.13) 0 ≤ ω(w0, ∂Gδ ∩B,Gδ)− ω(w0, B,G) < δ.

Since f ∈ C(X̂), there is an open subset Aδ of Tδ such that A ∪ Aδ is an
open neighborhood of A in A ∪D and

(4.14) |f(z, w)| ≤ |f |X + ε, z ∈ Aδ, w ∈ Gδ.
It is also clear from (4.12) and the above properties of Aδ that

(4.15) ω(z,Aδ,D)− δ ≤ ω(z, Tδ,D) ≤ ω(z,Aδ,D), z ∈ D.
Let Dδ be a strongly pseudoconvex subdomain of D such that Dδ b D

and

(4.16) 0 ≤ ω(z0, Aδ ∩Dδ,Dδ)− ω(z0, Aδ,D) < δ.

Since Gδ is locally C2 smooth on the open subset ∂Gδ ∩ B of B and f ∈
C(X̂), one may find an open subset Bδ of Gδ such that B ∪ Bδ is an open
neighborhood of ∂Gδ ∩B in (∂Gδ ∩B) ∪Gδ and

(4.17) |f(z, w)| ≤ |f |X + ε, z ∈ Dδ, w ∈ Bδ.
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By taking the intersection of Bδ with the open level set given by Proposition
3.5 for the open set Gδ, one may assume that

ω(w, ∂Gδ ∩B,Gδ)− δ ≤ ω(w,Bδ, Gδ)(4.18)

≤ ω(w, ∂Gδ ∩B,Gδ), w ∈ Gδ.
Consider the crosses

Xδ := X(Aδ ∩Dδ, Bδ;Dδ, Gδ), X̂δ := X̂(Aδ ∩Dδ, Bδ;Dδ, Gδ).

By Theorem 1, there is an fδ ∈ O(X̂δ) such that fδ = f on Xδ.
If one chooses δ such that 0 < 10δ < 1−ω(z0, A,D)−ω(w0, B,G), then

it follows from (4.12), (4.13), (4.15), (4.16) and (4.18) that

(z0, w0) ∈ {(z, w) ∈ Dδ ×Hδ :

ω(z,Aδ ∩Dδ,Dδ) + ω(w,Bδ,Hδ) < 1− 5δ} ⊂ X̂δ,

where Hδ is the connected component of Gδ containing w0.
We recall that fδ = f on Xδ. Therefore, f(z0, w0) = fδ(z0, w0). Conse-

quently, from Theorem 4.2, (4.14) and (4.17) we deduce that |f(z0, w0)| ≤
|f |X+ε. Since ε > 0 and (z0, w0) ∈ X̂ are arbitrary, it follows that |f |

X̂
≤ |f |.

The opposite inequality is trivial as X ⊂ X̂ by Proposition 3.6(3). Thus we
have shown that |f |X̂ = |f |.

Therefore, arguing as in Step 2 of Theorem 4.2 and applying the second
identity of Proposition 3.8(1), we obtain (4.11).

5. Proof of the Main Theorem for N = 2. In this section we simplify
the notation and rephrase the Main Theorem for the case N = 2 as follows.

Theorem 5.1. Let D ⊂ Cn and G ⊂ Cm be pseudoconvex domains
and let A (resp. B) be an open subset of ∂D (resp. ∂G). Suppose in ad-
dition that D (resp. G) is locally C2 smooth on A (resp. B). Put X :=

X(A,B;D,G), Xo := Xo(A,B;D,G), X̂ := X̂(A,B;D,G) and X̂o :=

X̂o(A,B;D,G). Then for any f ∈ C(X) ∩ Os(X
o), there is a unique f̂ ∈

C(X̂) ∩ O(X̂o) such that f̂ = f on X. Moreover ,

(5.1) |f̂(z, w)| ≤ |f |1−ω(z,A,D)−ω(w,B,G)
A×B |f |ω(z,A,D)+ω(w,B,G)

X , (z, w) ∈ X̂.
Proof. We proceed in several steps. First observe that by Theorem 2.1

and Proposition 3.6(3), the function f̂ is uniquely determined (if it exists).

Step 1: Reduction to the case where D and G are bounded pseudoconvex
domains.

Proof of Step 1. Fix any sequences (Dk)
∞
k=1 (resp. (Gk)

∞
k=1) of bounded

pseudoconvex subdomains of D (resp. G) such that (Dk)
∞
k=1 and (Ak)

∞
k=1

(resp. (Gk)
∞
k=1 and (Bk)

∞
k=1) satisfy (i)–(iii) of Proposition 3.3, where Ak :=
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A ∩ ∂Dk and Gk := B ∩ ∂Gk. Let

Xk := X(Ak, Bk;Dk, Gk) ⊂ X
and note that X̂k ↗ X̂ by Proposition 3.3.

Let f ∈ C(X)∩Os(X
o). Clearly, f ∈ C(Xk). Therefore, by the reduction

assumption, for each k there exists an f̂k ∈ C(X̂k) ∩ O(X̂o
k) with f̂k = f

on Xk. By Theorem 2.1 and Proposition 3.6, f̂k+1 = f̂k on X̂k. Therefore,

gluing the f̂k’s, we obtain an f̂ ∈ C(X̂) ∩ O(X̂o) with f̂ = f on X. To
reduce estimate (5.1) to the case where D and G are bounded pseudoconvex
domains, we proceed in the same way as above. This completes Step 1.

From now on we assume that the hypothesis of Step 1 is fulfilled.
We introduce a new terminology. A subset A of an open subset A of

∂D is said to be a ball in A with center ζ and radius r if A = B(ζ, r) ∩ A
for a point ζ ∈ A and a positive number r satisfying 2r < dist(ζ, ∂A).
Moreover, for a ball A in A and a number 0 < λ ≤ 2, λA denotes the open
set B(ζ, λr) ∩ ∂D.

Step 2: Keep the hypothesis of Theorem 5.1 and assume in addition
that G is a Jordan planar simply connected domain. Then the following
local version of Theorem 5.1 holds:

For any P ∈ A, there is a ball A in A with center P such that for any

f ∈ C(X) ∩ Os(X
o), there is a unique f̂ ∈ C(X̂A) ∩ O(X̂o

A) with f̂ = f on
XA, where

XA := X(A, B;D,G), X̂A := X̂(A, B;D,G), X̂o
A := X̂o(A, B;D,G).

Proof of Step 2. First, we apply Proposition 2.5 to the domain D which
is locally C2 smooth on an open neighborhood of P in ∂D. Consequently,
there is an open neighborhood U of P satisfying (2.2) such that Proposition
2.5 is applicable there. Below, U, U1, U3, π

C, π, V and VQ have the same
meaning as in Proposition 2.5. Now we can fix a ball A of A,

(5.2) A := A ∩B(P, r),

where the radius r is so small that 2A b A, 2A b ∂(U ∩D) ∩ ∂V, 2A b U3

and πC(2A) b U1.
For any δ small enough, by Proposition 3.5 we may find an open subset

Tδ of U ∩D such that

ω(z,A,D)− δ ≤ ω(z, Tδ,D) ≤ ω(z,A,D), z ∈ D,
sup
Tδ

dist(·,A) < δ, πC(Tδ) b U1.
(5.3)

A geometric argument based on Proposition 2.5 and definition (5.2) shows
that one may find δ0 > 0 small enough such that for any z ∈ D ∪ A with
dist(z, 2A) < δ0, we have z ∈ U3 and there is a unique Qz ∈ U1 such that
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z ∈ VQz . Moreover, by Proposition 2.5(4) we have

(5.4) dist

(
z, ∂VQz ∩

3

2
A
)
≤ C1 dist(z,A)

for any z ∈ D ∪ A with dist(z,A) < δ0. On the other hand, combining
Corollary 2.4 and Propositions 2.5 and 3.1, we get

(5.5) ω(z, ∂VQz ∩ 2A, VQz) ≤ C2 dist

(
z, ∂VQz ∩

3

2
A
)
,

where C1, C2 are constants independent of z ∈ D ∪A with dist(z,A) < δ0.
For each Q ∈ πC(2A), we apply Gonchar’s Theorem (Theorem 2) to

f ∈ C(X(∂VQ ∩ 2A, B;VQ, G))∩Os(Xo(∂VQ ∩ 2A, B;VQ, G)) to obtain f̃Q ∈
C(X̂(∂VQ∩2A, B;VQ, G))∩O(X̂o(∂VQ∩2A, B;VQ, G)) such that f̃Q = f on
X(∂VQ ∩ 2A, B;VQ, G).

Gluing the family (f̃Q)Q∈πC(2A), we obtain an extension function f̃ de-
fined on the set

(5.6) X̃A := {(z, w) ∈ (D ∪ 2A)× (G ∪B) : ∃Q ∈ πC(2A), z ∈ VQ
and ω(z, ∂VQz ∩ 2A, VQz) + ω(w,B,G) < 1},

which is not necessarily open; moreover

(5.7) f̃ = f on X(A, B;Tδ0 , G).

By (5.3)–(5.5) we obtain a δ0 small enough such that for 0 < δ < δ0,

(5.8) ω(z, ∂VQz ∩ 2A, VQz) ≤ C1C2 dist(z,A) < C1C2δ < 1, z ∈ Tδ.
Therefore, by (5.6), (5.8) and Theorem 2 for 0 < δ < δ1 := min{δ0, 1/2C1C2}
and z ∈ Tδ, f̃(z, ·) is holomorphic on the open set

(5.9) Gδ := {w ∈ G : ω(w,B,G) < 1− 2C1C2δ}.
We need the following

Lemma 5.2. For any (ζ0, w0) ∈ A × (G ∪ B), there are an open neigh-
borhood U of ζ0 in D ∪A and an open neighborhood V of w0 in G ∪B such

that U × V ⊂ X̃A and |f̃ |U×V <∞.

Proof of Lemma 5.2. Fix (ζ0, w0) ∈ A× (G ∪B). Let

(5.10) ε :=
1− ω(w0, B,G)

3

and choose an open neighborhood V of w0 in G ∪B such that

(5.11) ω(w,B,G) < ω(w0, B,G) + ε, w ∈ V.
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Moreover, by (5.4) and (5.5) choose an open neighborhood U of ζ0 in D∪A
such that

(5.12) ω(z, ∂VQz ∩ 2A, VQz) < ε, z ∈ U .
Next, by Proposition 3.3, we may find a subdomain Gε of G such that

w0 ∈ Gε, Gε ⊂ G ∪ B and Gε is locally C2 smooth on the open subset
Bε := ∂G ∩ ∂Gε of B, Bε b B and

(5.13) ω(w0, B,G) ≤ ω(w0, Bε, G
ε) < ω(w0, B,G) + ε.

By shrinking V if necessary, we may assume that

(5.14) ω(w,Bε, G
ε) < ω(w0, Bε, G

ε) + ε, w ∈ V.
Since f ∈ C(X) and 2A b A, by shrinking U if necessary, we may find a
constant M such that

(5.15) |f̃ |2A×Gε < M, |f̃ |U×Bε < M.

Consequently, for each Q ∈ πC(2A) we can apply Gonchar’s Theorem (The-
orem 2) to f ∈ C(X(∂VQ ∩ 2A, Bε;VQ, Gε)) ∩Os(Xo(∂VQ ∩ 2A, Bε;VQ, Gε))
to obtain the inequality |f̃ | < M on

X̃ε
A := {(z, w) ∈ (D ∪ 2A)× (Gε ∪Bε) : ∃Q ∈ πC(2A), z ∈ VQ

and ω(z, ∂VQz ∩ 2A, VQz) + ω(w,Bε, G
ε) < 1},

On the other hand, using (5.6) and (5.11)–(5.14), we see that

U × V ⊂ X̃ε
A ⊂ X̃A.

Hence |f̃ |U×V < M, which completes the proof of the lemma.

Now for any 0 < δ < δ1, we can apply Theorem 4.1 to the function

f̃ ∈ Cs(X(Tδ, B;D,Gδ)) ∩ Os(Xo(Tδ, B;D,Gδ))

to obtain f̂δ ∈ C(X̂(Tδ, B;D,Gδ)) ∩ O(X̂o(Tδ, B;D,Gδ)) such that

(5.16) f̂δ = f̃ on X(Tδ, B;D,Gδ).

We are now in a position to define the desired extension function f̂ .

Indeed, one glues (f̂δ)0<δ<δ1 together to obtain f̂ in the following way:

(5.17) f̂ := lim
δ→0

f̂δ on X̂(A, B;D,G) \ (A× (G ∪B)).

One now checks that the limit (5.17) exists and has all the required proper-
ties. This is an immediate consequence of

Lemma 5.3. For any (z, w) ∈ X̂(A, B;D,G) \ (A× (G ∪B)) let δz,w be
the unique positive number δ which satisfies
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(5.18) δ +
2C1C2δ

1− δ = 1− ω(z,A,D)− ω(w,B,G).

Then f(z, w) = f̂δ(z, w) for all 0 < δ < δz,w.

Proof of Lemma 5.3. Fix (z0, w0) ∈ X̂(A, B;D,G)\ (A× (G∪B)). Then
by (5.3), (5.18) and the second identity of Proposition 3.8(1), for all 0 <
δ < δz0,w0 ,

(z0, w0) ∈ X̂(Tδ, B;D,Gδ).

Therefore, for any 0 < δ′ < δ < δz0,w0 , (z0, w0) is in the set

(5.19) X̂(Tδ′ , B;D,Gδ′) ∩ X̂(Tδ, B;D,Gδ).

Let Hδ be the connected component of Gδ containing w0. Let Bδ be the
largest open subset of B such that Hδ is locally C2 smooth on Bδ. By Propo-
sition 3.8(2), Bδ is nonempty and ω(w,Bδ,Hδ) = ω(w,B,Gδ) for w ∈ Hδ.
On the other hand, using (5.3) and the inclusion Gδ ⊂ Gδ′ , we see that the
set (5.19) contains

(5.20) {(z, w) ∈ D ×Hδ : ω(z, Tδ,D) + ω(w,Bδ,Hδ) < 1− δ}.
By Proposition 3.7 this last open set is connected. Moreover, it contains
(z0, w0). In addition by (5.7) and (5.16), one gets

f̂δ′ = f̂δ = f̃ = f on Tδ ×Bδ.
Applying Theorem 2.1, we deduce that f̂δ′ = f̂δ on the domain given by

(5.20). In particular f̂δ′(z0, w0) = f̂δ(z0, w0). This completes the proof.

Another consequence of Lemma 5.3 is that f̂ ∈ O(X̂o(A, B;D,G)). Now
we define by

(5.21) f̂ := f on A× (G ∪B).

Thus f̂ is well defined on the whole X̂(A, B;D,G).

To complete Step 2, it remains to show that f̂ ∈ C(X̂(A, B;D,G)) and

f̂ = f on X(A, B;D,G).

First we prove that f̂ is continuous on D×B. For this let (z0, η0) ∈ D×B.
By Proposition 3.2 there are an open neighborhood U of z0 in D and an
open neighborhood V of ζ0 in G ∪B such that

λ := sup
z∈U , w∈V

(ω(z,A,D) + ω(w,B,G)) < 1.

Now let δ > 0 satisfy δ + 2C1C2δ/(1− δ) < 1− λ. Then Lemma 5.3 implies

that f = f̂δ on U×V. Since from Theorem 4.1 we know that f̂δ is continuous

on D×B, so is f̂ and moreover f̂ = f on D×B. This, combined with (5.21),

implies that f̂ = f on X(A, B;D,G).
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Finally, it remains to check the continuity of f̂ on A × (G ∪ B). Fix
(ζ0, w0) ∈ A × (G ∪ B) and 0 < ε < 1. As f ∈ C(X), by Lemma 5.2 there
are an open connected neighborhood U of ζ0 in D ∪ A, an open connected
neighborhood V of w0 in G ∪B and a constant M such that

|f(ζ0, w0)− f(ζ, w)| < ε2, ζ ∈ A ∩ U , w ∈ V,
|f̃ |U×V < M/2.

(5.22)

Moreover, by shrinking U and V if necessary, and applying Proposition 3.2,
we may suppose that

sup
U×V

(ω(z,A,D) + ω(w,B,G)) < 1.

Therefore, U×V ⊂ X̂(A, B;D,G).Moreover, by Lemma 5.3 and (5.17), there

is a δ > 0 such that f̂ = f̂δ = f̃ on the nonempty open set (Tδ ∩ U) × V.
Thus

(5.23) f̂ = f̃ on U × V.
By shrinking U if necessary, we may suppose that for all z ∈ U , there is
exactly one ζz ∈ A such that π(ζz) = π(z). By Proposition 2.5(4) we have

z ∈ VQz , ζz ∈ A ∩ ∂VQz , dist(z, ζz) ≈ dist(z, ∂VQz).

Therefore, we can apply the Two-Constant Theorem to the function f̃(·, w)−
f̃(ζz, w) ∈ C((∂VQz∩U)∪(VQz∩U))∩O(VQz∩U), which is, by (5.22), bounded
by M for any z ∈ U , w ∈ V.

Consequently, taking (5.22) and (5.23) into account, we deduce that

|f̂(z, w)− f̂(ζz, w)| < ε2(1−ω(z,∂VQz∩U ,VQz∩U))Mω(z,∂VQz∩U ,VQz∩U)

for all (z, w) ∈ U ×V. Thus for (z, w) ∈ (D ∪A)× (G∪B) sufficiently close
to (ζ0, w0), by Proposition 3.2 and (5.22) we have

|f̂(z, w)− f̂(ζ0, w0)| ≤ |f̂(z, w)− f̂(ζz, w)|+ |f̂(ζz, w)− f̂(ζ0, w0)|
< ε/2 + ε/2 = ε,

which proves the continuity of f̂ at (ζ0, w0).
Hence Step 2 is finished.

Step 3: The case where G is a Jordan planar simply connected domain.

Proof of Step 3. Fix a sequence (Ak)
∞
k=1 of open subsets of A such that

Ak b Ak+1 and Ak ↗ A as k ↗ ∞. By Proposition 3.4, X̂(Ak, B;D,G) ↗
X̂(A,B;D,G). Using a routine uniqueness argument (Theorem 2.1 and Pro-
position 3.6) and the gluing procedure, we are reduced to proving that for

any k, there is an f̂k ∈ C(X̂(Ak, B;D,G)) ∩ O(X̂o(Ak, B;D,G)) satisfying

f̂k = f on X(Ak, B;D,G).
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Now fix k ∈ N. First we show that one may find a δ0 > 0 with the
following properties:

For any 0 < δ < δ0, there are a finite number of open balls (Aj)Nj=1 of A

with radius δ (N depending on δ) such that

(i) Ak ⊂
⋃N
j=1Aj ;

(ii)
⋃N
j=1 2Aj ⊂ Ak+1, where 2Aj is the ball with the same center as Aj

but with double radius;
(iii) for each 1 ≤ j ≤ N, Step 2 applies to the open ball 2Aj ; more

precisely, Step 2 provides f̂j ∈ C(X̂2Aj)∩O(X̂o
2Aj) satisfying f̂j = f

on X2Aj ;
(iv) for any 0 < δ < δ0 there is an open subset Tδ of D such that

ω(z,Ak,D)− δ ≤ ω(z, Tδ,D) ≤ ω(z,Ak,D), z ∈ D,
sup
Tδ

dist(·, Ak) < r,

for some 0 < r := rδ < δ;
(v) for any 0 < δ < δ0 and z ∈ Tδ there is a unique ζz ∈

⋃N
j=1Aj

such that dist(z, ζz) = dist(z, ∂D) and for any 1 ≤ j ≤ N such that
ζz ∈ Aj we have

sup
t∈[z,ζz ]

ω(t, 2Aj,D) < δ,

where [z, ζz] denotes the real segment connecting z to ζz.

Indeed, by Step 2 and a compactness argument we see that one may find
δ0 > 0 such that (i)–(iii) are satisfied.

On the other hand, using Proposition 3.2 we see that there is an r := rδ
such that

(5.24) ω(z, 2Aj,D) < δ

for all 1 ≤ j ≤ N and z ∈ D with dist(z,Aj) < r.
By examining carefully the proof of Proposition 3.5, we may arrange Tδ

in such a way that (iv) holds with the r given above. It is also clear that
when r is sufficiently small, the first assertion of (v) is satisfied, and the
second is an immediate consequence of (5.24).

Thus we have verified properties (i)–(v).
Next fix 0 < δ < δ0 and put

(5.25) Gδ := {w ∈ G : ω(w,B,G) < 1− 2δ}.
We define a new function f̃ on (Tδ ∪ Ak) × Gδ as follows. For any (z, w) ∈
(Tδ ∪ Ak)×Gδ let

(5.26) f̃(z, w) := f̂j(z, w)

for any 1 ≤ j ≤ N such that ζz ∈ Aj (see (v) above).
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First one checks that f̃ is well defined. Indeed, in view of (iv)–(v) and
(5.25), for any (z, w) ∈ (Tδ∪Ak)×Gδ there is j such that ζz ∈ Aj and (t, w) ∈
X̂2Aj for t ∈ [z, ζz]. Suppose that also ζz ∈ Al. Observe that f̂j = f̂l = f

on (Aj ∩Al)×G. Therefore, Theorem 2.1 and Proposition 3.6 yield f̂j = f̂l
on the connected component of X̂2Aj ∩ X̂2Al which is locally C2 smooth on
(Aj ∩Al)×Gδ. However, we have already shown in the previous paragraph

that (t, w) ∈ X̂2Aj ∩ X̂2Al for t ∈ [z, ζz], and clearly (ζz, w) ∈ (Aj ∩Al)×G.
Consequently, the above mentioned connected component contains (z, w).

Thus f̂j(z, w) = f̂l(z, w), and hence f̃ is well defined.
In view of (5.26), it is also clear that

f̃ ∈ C((Tδ ∪ Ak)×Gδ) ∩ O(Tδ ×Gδ).
Let f̃δ be the trace of f̃ on X(Tδ, B;D,Gδ). Applying Theorem 4.1 to f̃δ ∈
C(X(Tδ, B;D,Gδ)) ∩ O(Xo(Tδ, B;D,Gδ)), we obtain

f̂δ ∈ C(X̂(Tδ, B;D,Gδ)) ∩ O(X̂o(Tδ, B;D,Gδ))

satisfying f̂δ = f on D ×B.
Finally, one proceeds as at the end of Step 2. Observe that Lemma 5.3

is still valid in the present context. As in formula (5.17), one may glue

(f̂δ)0<δ<δ0 to obtain an extension function f̂ := limδ→0 f̂δ which is holomor-

phic on X̂o and continuous on D ×B.
Since f̃ ∈ C((Tδ ∪ Ak)× Gδ)) for 0 < δ < δ0, Lemma 5.3 in the present

context also shows that f̂ ∈ C(X̂(A,B;D,G)).
Hence Step 3 is complete.

Step 4: Under the hypothesis of Theorem 5.1, the following local version
of that theorem holds:

For any P ∈ B, there is a ball B in B with center P such that for any

f ∈ C(X)∩Os(X
o), there is a unique f̂ ∈ C(X̂B)∩O(X̂o

B) with f̂ = f on XB,
where

XB := X(A,B;D,G), X̂B := X̂(A,B;D,G), X̂o
B := X̂o(A,B;D,G).

Proof of Step 4. Using Step 3, we proceed in exactly the same way as
we did in Step 2 using Theorem 2. Therefore we only briefly outline the
proof.

First we apply Proposition 2.5 to the domain G which is locally C2

smooth on an open neighborhood of P ∈ ∂G. Consequently, there is an open
neighborhood U of P satisfying (2.2) such that Proposition 2.5 is applicable
there. Below, U, U1, π

C, V and VQ have the same meaning as in Proposition
2.5. Now we can fix a ball B := B ∩ B(P, r), with r so small that 2B b B
etc.
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Arguing as in (5.2)–(5.3) we can choose δ0 > 0 such that for any 0 <
δ < δ0 there is an open subset Sδ of G satisfying

ω(w,B, G)− δ ≤ ω(w,Sδ, G) ≤ ω(w,B, G), w ∈ G,
sup
Sδ

dist(·,B) < δ.(5.27)

Arguing as in (5.4)–(5.8), there is a constant C3 such that

(5.28) ω(w, ∂VQw ∩ 2B, VQw) ≤ C3 dist(w,B) ≤ C3δ

for 0 < δ < δ0, w ∈ Sδ and Qw := πC(w).
Lemma 5.2 is still valid in the present context, with obvious changes in

notation. There is only one important difference between Step 2 and the
present step. In Step 2 we applied Gonchar’s Theorem to (5.15), while now
we appeal to Theorem 4.3.

Lemma 5.3 is also valid in the present context, with obvious changes in
notation.

For each Q ∈ πC(2B), we apply the result of Step 3 to f ∈ C(X(A, ∂VQ∩
2B;D,VQ)) ∩ Os(Xo(A, ∂VQ ∩ 2B;D,VQ)) to obtain f̂Q ∈ C(X̂(A, ∂VQ ∩
2B;D,VQ)) ∩ O(X̂o(A, ∂VQ ∩ 2B;D,VQ)) such that f̂Q = f on X(A, ∂VQ ∩
2B;D,VQ).

Gluing the family (f̂Q)Q∈πC(2B), we obtain an extension function f̃ de-
fined on

(5.29) {(z, w) ∈ D ×G : ∃Q ∈ πC(2B), w ∈ VQ and

ω(z,A,D) + ω(w, ∂VQ ∩ 2B, VQ) < 1}.
For 0 < δ < δ0 put

(5.30) Dδ := {ω(z,A,D) < 1− 2C3δ}.
As in Step 2, taking (5.27)–(5.30) into account we see that

f̃ ∈ Cs(X(A,Sδ;Dδ, G)) ∩ Os(Xo(A,Sδ;Dδ, G)).

Therefore, we can apply Theorem 4.1 to obtain an extension function

f̂δ ∈ C(X̂(A,Sδ;Dδ, G)) ∩ O(X̂o(A,Sδ;Dδ, G)).

Using (5.17) we may glue (f̂δ)0<δ<δ0 together to obtain the desired f̂ . The
rest of the proof follows Step 2, making use of the Two-Constant Theorem
and Lemmas 5.2 and 5.3. This finishes Step 4.

Step 5: The general case.

The argument used to go from Step 2 to Step 3 also enables us to go

from Step 4 to Step 5. Consequently, there is an f̂ ∈ C(X̂) ∩ Os(X̂
o) such

that f̂ = f on X. It is also clear that f̂ is uniquely determined. Finally,
estimate (5.1) follows immediately from Theorem 4.3.

This completes the last step of the proof.
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6. Proof of the Main Theorem and concluding remarks. In order
to prove the Main Theorem, we proceed by induction (I) on N ≥ 2. Suppose
the Main Theorem is true for N −1 ≥ 2, and consider an N -fold cross X :=
X(A1, . . . , AN ;D1, . . . ,DN), where D1, . . . ,DN are pseudoconvex domains
and A1, . . . , AN are open subsets of ∂D1, . . . , ∂DN such that Dj is locally C2

smooth on Aj (1 ≤ j ≤ N). Fix f ∈ C(X) ∩ Os(X
o).

We next proceed by induction (II) on the positive integer j (1 ≤ j ≤ N)
such that Dj , . . . ,DN are Jordan planar domains.

For j = 1, we are reduced to Theorem 2.
Suppose the Main Theorem is true if Dj−1, . . . ,DN are Jordan planar

domains (j ≥ 2), and consider the case where Dj , . . . ,DN are Jordan planar
domains. The proof given below follows essentially the schema of that of
Theorem 5.1. It is divided into three steps.

Step 1: Reduction to the case where D1, . . . ,Dj−1 are bounded pseudo-
convex domains.

Proof of Step 1. We proceed exactly as in Step 1 of Theorem 5.1.

From now on we assume that the hypothesis of Step 1 is fulfilled.

Step 2: The following local version of the Main Theorem holds:
For any P ∈ A1, there is a ball A in A1 with center P such that for

any f ∈ C(X) ∩ Os(X
o), there is a unique f̂ ∈ C(X̂A) ∩ O(X̂o

A) with f̂ = f
on XA, where

XA := X(A, A2, . . . , AN ;D1, . . . ,DN ),

X̂A := X̂(A, A2, . . . , AN ;D1, . . . ,DN ),

X̂o
A := X̂o(A, A2, . . . , AN ;D1, . . . ,DN ).

Proof of Step 2. As in Step 2 of the proof of Theorem 5.1 we first apply
Proposition 2.5 to the domain D1 which is locally C2 smooth on an open
neighborhood of P in ∂D1. Consequently, there is an open neighborhood U
of P satisfying (2.2) such that Proposition 2.5 is applicable there. Again, U,
U1, π

C, V and VQ have the same meaning as in Proposition 2.5. Now we fix
a ball A := A1 ∩B(P, r) with r so small that 2A b A1 etc.

Arguing as in (5.2)–(5.3) and (5.4)–(5.8), we can choose a δ0 > 0 and
a constant C such that for any 0 < δ < δ0 there is an open subset T 1

δ of D1

satisfying

ω(z1,A,D1)− δ ≤ ω(z1, T
1
δ ,D1) ≤ ω(z1,A,D1), z1 ∈ D1,

sup
T 1
δ

dist(·,A) < δ/C, T 1
δ ⊂

⋃

Q∈πC(2A)

VQ,(6.1)

and
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(6.2) ω(z1, ∂VQz1 ∩ 2A, VQz1 ) ≤ C dist(z1,A) ≤ δ

for 0 < δ < δ0, z1 ∈ T 1
δ and Qz1 := πC(z1).

Similarly, for each 2 ≤ k ≤ N there is an open subset T kδ of Dk satisfying

(6.3) ω(zk, Ak,Dk)− δ ≤ ω(zk, T
k
δ ,Dk) ≤ ω(zk, Ak,Dk), zk ∈ Dk.

For each Q ∈ πC(2A), we apply the induction assumption (II) to

f ∈ C(X(2A∩ ∂VQ, A2, . . . , AN ;VQ,D2, . . . ,DN))

∩ Os(Xo(2A ∩ ∂VQ, A2, . . . , AN ;VQ,D2, . . . ,DN ))

to obtain

(6.4) f̂Q ∈ C(X̂(2A ∩ ∂VQ, A2, . . . , AN ;VQ,D2, . . . ,DN ))

∩ O(X̂o(2A ∩ ∂VQ, A2, . . . , AN ;VQ,D2, . . . ,DN ))

such that

(6.5) f̂Q = f on X(A ∩ ∂VQ, A2, . . . , AN ;VQ,D2, . . . ,DN ).

Gluing the family (f̂Q)Q∈πC(2A), we obtain an extension function f̃ defined
on

(6.6)
{

(z1, . . . , zN ) ∈ D1 × · · · ×DN : ∃Q ∈ πC(2A), z1 ∈ VQ and

ω(z1, 2A ∩ ∂VQ, VQ) +

N∑

k=2

ω(zk, Ak,Dk) < 1
}

which satisfies

(6.7) f̃ = f on X(A, A2, . . . , AN ;T 1
δ0 ,D2, . . . ,DN ).

For 0 ≤ δ < δ0 put

(6.8) D′δ := {(z2, . . . , zN ) ∈ D2×· · ·×DN : ω(z2, A2,D2)+ω(z2, T
3
δ ,D3)

+ · · ·+ ω(zN , T
N
δ ,DN ) < 1−Nδ}

and

(6.9) Dk
δ := {zk ∈ Dk : ω(zk, Ak,Dk) < 1−Nδ}, 1 ≤ k ≤ N.

Consequently, in view of (6.1)–(6.4) and (6.6) for any fixed z1 ∈ T 1
δ and

0 < δ < δ0, the restriction f̃(z1, · · · ) is holomorphic on D′δ.
On the other hand, for any a2 ∈ A2, by the induction assumption (I) for

an (N − 1)-fold cross, we obtain an extension f̂a2 such that

(6.10) f̂a2 ∈ C(X̂(A1, A3, . . . , AN ;D1, . . . ,DN ))

∩ O(X̂o(A1, A3, . . . , AN ;D1, . . . ,DN))
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and

(6.11) f̂a2(z1, z3, . . . , zN ) = f(z1, a2, z3, . . . , zN ),

(z1, z3, . . . , zN ) ∈ X(A1, A3, . . . , AN ;D1,D3, . . . ,DN).

Observe that by (6.1)–(6.3), (6.6), and (6.9)–(6.10), for 0 < δ < δ0

and δ0 sufficiently small, the domain of definition of f̂a2 (a2 ∈ A2) contains

D1
δ × T 3

δ × · · · × TNδ and that of f̃ contains T 1
δ ×A2 × T 3

δ × · · · × TNδ . Next
we prove that for 0 < δ < δ0 with δ sufficiently small, and a2 ∈ A2,

(6.12) f̃(z1, a2, z3, . . . , zN) = f̂a2(z1, z3, . . . , zN ),

(z1, z3, . . . , zN ) ∈ T 1
δ × T 3

δ × · · · × TNδ .
Indeed, by (6.5) and (6.11) and by applying the induction assumption (I) to

f̂a2 and the induction assumption (II) to f̂Q for any Q ∈ πC(2A) we know
that

f̃(z1, a2, z3, . . . , zN ) = f̂Q(z1, a2, z3, . . . , zN ) = f(z1, a2, z3, . . . , zN )

= f̂a2(z1, z3, . . . , zN ),

z1 ∈ A ∩ ∂VQ, a2 ∈ A2, (z3, . . . , zN ) ∈ X(A3, . . . , AN ;D3, . . . ,DN).

This proves (6.12). Consequently, we can define a new function f̃δ on X(T 1
δ ,

A2 × T 3
δ × · · · × TNδ ;D1

δ ,D
′
δ) as follows:

(6.13) f̃δ :=

{
f̃ on T 1

δ ×D′δ,
f̂a2 on T 1

δ × {a2} × T 3
δ × · · · × TNδ , a2 ∈ A2.

We need the following lemmas:

Lemma 6.1.

(1) f̃δ is locally bounded on X(T 1
δ , A2 × T 3

δ × · · · × TNδ ;D1
δ ,D

′
δ);

(2) f̃δ is locally bounded on T 1
δ ×(D′δ∪(D′δ∩X(A2, . . . , AN ;D2, . . . ,DN )))

and f̃δ(z1, · · ·) ∈ C(D′δ ∪ (D′δ ∩X(A2, . . . , AN ;D2, . . . ,DN ))) for any
z1 ∈ T 1

δ .

Proof of Lemma 6.1. It follows the lines of that of Lemma 5.2. There-
fore, we only indicate a crucial difference: in Lemma 5.2 we appeal to Gon-
char’s Theorem, while in the present lemma we apply the induction hypoth-
esis (II).

Lemma 6.2. Let D2 be a bounded open set and let A2 be an open subset
of ∂D2 such that D2 is locally C2 smooth on A2. Let T k ⊂ Dk b Cnk , Dk a
domain and T k locally pluriregular , k = 3, . . . , N, N ≥ 3. Put
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D′ :=
{
z′ = (z2, . . . , zN ) ∈ D2 × · · · ×DN :

ω(z2, A2,D2) +
N∑

k=3

ω(zk, T
k,Dk) < 1

}

Then

ω(z′, A2 × T 3 × · · · × TN ,D′) = ω(z2, A2,D2) +

N∑

k=3

ω(zk, T
k,Dk).

Proof of Lemma 6.2. We argue as in the proof of Lemma 3(b) in [7]
making use of Proposition 3.8(1).

We now come back to the proof of the Main Theorem. Applying Lemma
6.2 and Proposition 3.8(1), we see that

(6.14) ω(z′, A2 × T 3
δ × · · · × TNδ ,D′δ)

=
1

1−Nδ
(
ω(z2, A2,D2) +

N∑

k=3

ω(zk, T
k
δ ,Dk)

)

for any z′ ∈ D′δ.
To summarize what has been done so far: for any 0 < δ < δ0 sufficiently

small, we obtain, by Lemma 6.1(1), a function f̃δ defined on a mixed cross,

f̃δ ∈ Cs(X(T 1
δ , A2 × T 3

δ × · · · × TNδ ;D1
δ ,D

′
δ))

∩ Os(Xo(T 1
δ , A2 × T 3

δ × · · · × TNδ ;D1
δ ,D

′
δ)).

Applying Theorem 4.1 to f̃δ we obtain an extension function
˜̃
f δ of f̃δ such

that

(6.15)
˜̃
f δ ∈ C(X̂(T 1

δ , A2 × T 3
δ × · · · × TNδ ;D1

δ ,D
′
δ))

∩ O(X̂o(T 1
δ , A2 × T 3

δ × · · · × TNδ ;D1
δ ,D

′
δ)).

In view of (6.4)–(6.9) and (6.13)–(6.15) and by Lemma 6.1(2), we can

apply Theorem 4.1(2) to conclude that
˜̃
f δ can be continuously extended to

(6.16) f̂δ ∈ C(X̂δ),

where

(6.17) X̂δ := X̂(T 1
δ , A2 × T 3

δ × · · · × TNδ ;D1
δ ,D

′
δ)

∪ (X̂(T 1
δ , A2×T 3

δ ×· · ·×TNδ ;D1
δ ,D

′
δ)∩ (D1

δ ×X(A2, . . . , AN ;D2, . . . ,DN ))).

We are now in a position to define the desired extension function f̂ .

Indeed, one glues (f̂δ)0<δ<δ0 together to obtain f̂ in the following way:

(6.18) f̂ := lim
δ→0

f̂δ on X̂A \ (A× X(A2, . . . , AN ;D2, . . . ,DN )).
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One has to check that the limit exists and has all the required properties.
This is an immediate consequence of

Lemma 6.3. For any

z = (z1, . . . , zN ) ∈ X̂A \ (A× X(A2, . . . , AN ;D2, . . . ,DN ))

let δz be the unique positive number δ which satisfies

(6.19) δ +
2Nδ

1−Nδ = 1− ω(z1,A,D1)−
N∑

k=2

ω(zk, Ak,Dk).

Then f(z) = f̂δ(z) for all 0 < δ < δz.

Proof of Lemma 6.3. Fix z0 = (z0
1, . . . , z

0
N) ∈ X̂A \ (A× X(A2, . . . , AN ;

D2, . . . ,DN)). Then by (6.1)–(6.3) and (6.14)–(6.18) and the second identity

of Proposition 3.8(1), for all 0 < δ < δz0, we have z0 ∈ X̂δ. In particular,⋃
0<δ<δ0

X̂δ = X̂A \ (A× X(A2, . . . , AN ;D2, . . . ,DN )).

Therefore, for any 0 < δ′ < δ < δz0, z0 is in the set

X̂δ ∩ X̂δ′ .

Let Hδ be the connected component of D′δ containing (z0
2, . . . , z

0
n). Let Bδ

be the largest open subset of B such that Hδ is locally C2 smooth on Bδ.
By (6.1)–(6.3) and (6.19) and arguing as in the proof of Lemma 5.3, we see
that the above intersection contains

(6.20) {z = (z1, z
′) ∈ D1

δ ×Hδ : ω(z1, T
1
δ ,D

1
δ) + ω(z′, Bδ,Hδ) < 1− δ}.

By Proposition 3.7 this open set is connected. Moreover, it contains z0. In
addition we deduce from (6.17) that

f̂δ′ = f̂δ = f̃ = f on T 1
δ′ ×Bδ′ .

Theorem 2.1 shows that f̂δ′ = f̂δ on the domain given by (6.20). In particular

f̂δ′(z
0) = f̂δ(z

0). This completes the proof.

An immediate consequence of Lemma 6.3 is that f̂ ∈ O(X̂o
A). Now we

define f̂ to be f on A× X(A2, . . . , AN ;D2, . . . ,DN ). Thus f̂ is well defined

on the whole X̂A and

(6.21) f̂ ∈ C(D1 × X(A2, . . . , AN ;D2, . . . ,DN)).

To complete Step 2, it remains to show that f̂ ∈ C(X̂A) and f̂ = f on XA.
For this purpose we do the following trick.

We replace D1 by Dj (j = 2, . . . , N) and proceed as above. For example,

if we replace D1 by D2, then we obtain a new extension function ̂̂f such
that by (6.21),

(6.22) ̂̂f ∈ C(D2 × X(A1, A3 . . . , AN ;D1,D3, . . . ,DN )).
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Next, using identities (6.12), (6.13), (6.16) and (6.18) and applying Theo-

rem 2, we see that the values of f̂ and ̂̂f can be uniquely determined on
T 1
δ × T 2

δ × · · · × TNδ from the value of f on A × A2 × · · · × AN for any
sufficiently small δ > 0. Thus

̂̂f = f̂ on T 1
δ × T 2

δ × · · · × TNδ .
Hence ̂̂f = f̂ on X̂A since X̂A is a domain by Proposition 3.6. There-
fore, in view of (6.21), (6.22) and similar conclusions with D1 replaced by
D3, . . . ,DN , we conclude that

f̂ ∈ C(X̂A \ (A×A2 × · · · × AN )).

Therefore, Step 2 will be finished if we can prove that f̂ is continuous on
A×A2 × · · · × AN .

To do this fix a = (a1, . . . , aN ) ∈ A × A2 × · · · × AN and ε > 0. Next,
we apply Proposition 2.5 to each domain Dj which is locally C2 smooth on
an open neighborhood of aj , j = 1, . . . , N. Consequently, there is an open
neighborhood U j of aj satisfying (2.2) such that Proposition 2.5 is applicable

there. Below, U j , U j1 , π
C,j, V j and V j

Q have the same meaning for aj as have

U, U1, π
C, V and VQ for P in Proposition 2.5.

Since f ∈ C(X), by shrinking U j if necessary, we may assume without
loss of generality that

(6.23) |f(ζ)− f(η)| < ε/2,

ζ, η ∈ X(A ∩ U1, A2 ∩ U2, . . . , AN ∩ UN ;D1 ∩ U1, . . . ,DN ∩ UN ).

Let z = (z1, . . . , zN ) ∈ U1 × · · · × UN and put Qj := πC,j(zj). Then, by
the hypothesis on f, we may apply Theorem 2 to

f ∈ C(X(A ∩ ∂V 1
Q1
, A2 ∩ ∂V 2

Q2
, . . . , AN ∩ ∂V N

QN
;V 1

Q1
, . . . , V N

QN
))

∩ O(Xo(A ∩ ∂V 1
Q1
, A2 ∩ ∂V 2

Q2
, . . . , AN ∩ ∂V N

QN
;V 1

Q1
, . . . , V N

QN
)).

Consequently, taking into account (6.23) and the above construction of f̂ ,
we deduce that

|f̂(z)− f(ζ)| < ε/2,

ζ ∈ X(A ∩ ∂V 1
Q1
, A2 ∩ ∂V 2

Q2
, . . . , AN ∩ ∂V N

QN
;V 1

Q1
, . . . , V N

QN
).

Hence, fixing any ζ as above and applying (6.23) again, we get

|f̂(z)− f(a)| ≤ |f̂(z)− f(ζ)|+ |f(ζ)− f(a)| < ε/2 + ε/2 < ε,

which proves the continuity of f̂ at a. Hence the remaining assertion of
Step 2 is proved.

Thus the inductive proofs (I) and (II) are complete in this second step.

Step 3: The general case.
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The argument used to go from Step 2 to Step 3 in the proof of Theo-
rem 5 also enables us to go from Step 2 to Step 3 in the present context.

Consequently, there is an f̂ ∈ C(X̂) ∩ Os(X̂
o) such that f̂ = f on X. It

is also clear that f̂ is uniquely determined. Finally, it remains to establish
estimate (1.3). We have already proved the existence and uniqueness of the
Main Theorem. Using this result we argue as in the proof of Theorem 4.2
to obtain (1.3). This completes the last step of the proof.

Hence the Main Theorem is proved.

We conclude this paper with a remark and an open question.

1. It seems to be of interest to establish the Main Theorem under weaker
assumptions than the continuity of f, the smoothness of Dj on Aj , the
regularity of the set Aj , j = 1, . . . , N, etc. We postpone this issue to an
ongoing work.

2. Does the Main Theorem still hold if we only assume that Aj is of
positive (2nj − 1)-Hausdorff measure, j = 1, . . . , N?
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