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Estimates of weak solutions to nondiagonal
quasilinear parabolic systems

by Dmitry Portnyagin (Lviv)

Abstract. L∞-estimates of weak solutions are established for a quasilinear non-
diagonal parabolic system with a special structure whose leading terms are modelled
by p-Laplacians. A generalization of the weak maximum principle to systems of equations
is employed.

1. Introduction. In the present paper we study the boundedness of
weak solutions to a quasilinear nondiagonal parabolic system of equations
in divergence form under special assumptions imposed upon its structure.

It is well known that the De Giorgi–Nash–Moser estimates are no longer
valid for a general elliptic system, for any kind of ellipticity. Such a sys-
tem can be regarded as a special case of a parabolic system, when partial
temporal derivatives of unknowns are identically zero. An example of an un-
bounded solution to a linear elliptic system with bounded coefficients was
given by De Giorgi in [8]:

n∑

i=1

∂

∂xi

( n∑

j=1

n∑

α=1

Aαβij (x)
∂

∂xj
uβ

)
= 0, β = 1, . . . , n, n ≥ 3,

under the following hypotheses upon the matrix of coefficients:

Aαβij (x) = δαβδij +

[
(n− 2)δαi + n

xixα
|x|2

]
·
[
(n− 2)δβj + n

xjxβ
|x|2

]

δαβ =

{
1, α = β,

0, α 6= β;
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n∑

i=1

n∑

j=1

n∑

α=1

n∑

β=1

Aαβij (x)ξiαξ
j
β ≥ |ξ|2 for all ξ ∈ R2n, x ∈ Rn;

it is easy to check that the vector-valued function u(x) = x/|x|γ with γ =
(n/2)(1−[(2n−2)2 +1]−1/2) is an unbounded weak solution to the system in
the domain Ω = {x | |x| ≤ 1} ⊂ Rn, though its coefficients remain bounded,

Aαβij ∈ L∞(Ω).
There is yet another example due to J. Nečas and J. Souček of a nonlinear

elliptic system with sufficiently smooth coefficients, but with a weak solution
not belonging to W 2,2:

n∑

i=1

∂

∂xi

( n∑

j=1

n∑

α=1

Aαβij (x, u)
∂

∂xj
uβ

)
= 0, β = 1, . . . , n, n ≥ 5,

where

Aαβij (x, u) = δαβδij + c2

[
δαi + b

uiuα|x|2γ−2

1 + |u|2|x|2γ−2

]
·
[
δβj + b

ujuβ |x|2γ−2

1 + |u|2|x|2γ−2

]
,

b = 2n/(n− 2), c2 = γ(n− γ)(n− 2)2/[(n− 2γ)2(n− 1)2]

and, obviously, for all ξ ∈ R2n, x ∈ Rn, u ∈ Rn,
n∑

i=1

n∑

j=1

n∑

α=1

n∑

β=1

Aαβij (x, u)ξiαξ
j
β ≥ |ξ|2;

the vector-valued function u(x)=x/|x|γ ∈W 1,2(Ω) with γ∈ [(n−2)/2, n/2)
is a weak solution in Ω = {x | |x| ≤ 1} ⊂ Rn which, however, does not

even belong to W 2,2(Ω), although the coefficients Aαβij (x, u) are sufficiently
smooth.

These two examples, as well as many others, illustrate the fact that the
regularity problem for elliptic systems proves to be far more complicated
than for second order elliptic equations.

Until now a priori estimates of De Giorgi type have been extended only
to a special class of parabolic systems, the so-called weakly coupled systems.
A system is said to be weakly coupled if it is coupled only through the terms
which are not differentiated, each equation containing derivatives of just one
component.

There exists yet another approach to a priori estimates for a parabolic
system of second order differential equations [14]. It concerns not each com-
ponent separately, but the sum of the squares of the components of a solu-
tion. This applies to diagonal systems which on freezing the leading coeffi-
cients and discarding the right-hand sides and lower order terms reduce to
just one single equation rewritten several times for all the unknown func-
tions; see also [6, p. 27], [5, pp. 32–33], [4].
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An extensive study of the existence and regularity properties of solu-
tions to nonlinear strongly coupled systems of equations with coefficients
depending on spatial coordinates and unknowns was given by H. Amann
(see [1], [3], [2] and the vast bibliography therein). The technique used there
relates to semigroups and is not extendable to equations with coefficients
depending upon derivatives.

On the other hand, in the theory of scalar second order PDE’s the most
known and powerful tool for obtaining estimates is a special property of
solutions, called the maximum principle.

Our results here are based upon a certain property of the solution to
a system of two equations, which immediately yields bounds for the com-
ponents of the solution. Since this property enables us to obtain a priori
estimates of the solution of a system, just as the maximum principle does
for the case of a single equation, we propose to call it the maximum principle
for a system. The extension of the maximum principle property to a system
of two equations has been expounded in our previous paper [15].

The main idea we are utilizing has been employed earlier in [16] for semi-
linear systems (see also [10], [17] and [13]), and consists in switching to two
new functions of unknowns. For each such function an L∞ estimate is es-
tablished in the conventional way, and hence the final conclusion about each
component of the vector function solution is inferred. It turns out that this
technique allows for extension to nondiagonal systems with nonlinearities in
the spatial derivatives also.

In the present paper we further employ this method. Namely, restrict-
ing ourselves to systems of two second order equations in divergence form
possessing a special structure, we obtain ‖u‖L∞(Q) estimates for quasilin-
ear degenerate parabolic systems of equations in divergence form, in which
coupling occurs in the leading derivatives and whose leading coefficients de-
pend on spatial coordinates x, unknowns u, and their spatial derivatives ux.

2. Basic notations and hypotheses. We shall be considering a sys-
tem of two equations of the form

(2.1)





ut −
∂

∂xi
(A

(1)
i (x, u, v, ux, vx)) = B(1)(x, u, v, ux, vx),

vt −
∂

∂xi
(A

(2)
i (x, u, v, ux, vx)) = B(2)(x, u, v, ux, vx), x ∈ Q,

in a cylindrical domain Q, with the Dirichlet boundary conditions, which
are understood in the weak sense:

(2.2)

{
(u− g1, v − g2)(x, t) ∈W 1,p

0 (Ω) a.e. t ∈ (0, T ),

(u, v)(x, 0) = (u, v)0(x).



58 D. Portnyagin

A model is a system with the following structure:

(2.3)





ut −
∂

∂xi
(a1(u, v)|∇u|p−2uxi)−

∂

∂xi
(b1(u, v)|∇v|p−2vxi) = f1,

vt −
∂

∂xi
(a2(u, v)|∇u|p−2uxi)

− ∂

∂xi
(b2(u, v)|∇v|p−2vxi) = f2, x ∈ Q.

A solution to system (2.1) with Dirichlet data (2.2) is understood in the
weak sense, as in [9].

Definition 2.1. A measurable vector function (u1, u2) = (u, v) is called
a weak solution of problem (2.1)–(2.2) if

uj ∈ C(0, T ;L2(Ω)) ∩ Lp(0, T ;W 1,p(Ω))

and for all t ∈ (0, T ],
�

Ω

ujϕj(x, t) dx+
���

Ω×(0,t]

{−ujϕjt + A
(j)
i ϕjxi} dx dτ

=
�

Ω

uj0ϕj(x, 0) dx+
���

Ω×(0,t]

B(j)ϕj dx dτ

for all test functions

ϕ ∈ C(0, T ;L2(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω)), ϕ ≥ 0.

The boundary condition in (2.2) is meant in the weak sense.

This definition can also be reformulated in terms of the Steklov averages
(see e.g. [9]). We shall use the notations:

Definition 2.2. Let u ∈ C(0, T ;L2(Ω)) ∩ Lp(0, T ;W 1,p(Ω)) and ϕ+ =
max[ϕ, 0]. We define

sup
∂Q

u = inf{l | (u− l)+ ∈W 1,p
0 (Ω) for a.e. t ∈ (0, T ) and

(u− l)+ = 0 a.e. in {0} ×Ω};

sup
Q
u = inf{l | (u− l)+ = 0 a.e. in Q};

inf
∂Q

u = sup{l | (l − u)+ ∈W 1,p
0 (Ω) for a.e. t ∈ (0, T ) and

(l − u)+ = 0 a.e. in {0} ×Ω};

inf
Q
u = sup{l | (l − u)+ = 0 a.e. in Q}.

Let us also define the boundary norms of functions that will come in
useful in the following considerations.
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Definition 2.3. Let Ω be a domain in Rn and ∂Ω a portion of its
boundary; let H(Ω) be a Sobolev space. For a function u defined on ∂Ω we
set

‖u‖H(∂Ω) = inf
ψ
‖ψ‖H(Ω),

where the infimum is taken over all functions ψ ∈ H(Ω) such that ψ(x) =
u(x) a.e. on ∂Ω. We shall denote by H(∂Ω) the function space for which
the aforementioned norm is finite.

Let us describe the quantities and functions entering systems (2.1)–(2.3)
as well as those that will appear later on.

The coefficients a1,2 and b1,2 in the model system (2.3) are bounded
measurable R×R→ R functions of u and v to be determined more precisely
below; Q = (0, T ]×Ω; S = ∂Ω×(0, T ]; Ω is a bounded domain in Rn; x ∈ Ω;
T > 0; t ∈ (0, T ]; n > p ≥ 2; i = 1, . . . , n and the summation convention
over repeated indices is assumed; u, v ∈ C(0, T ;L2(Ω))∩Lp(0, T ;W 1,p(Ω));

f1,2 = f1,2(x); W 1,p
0 (Ω) is the space of functions in W 1,p(Ω) vanishing on

∂Ω in the sense of traces for a.e. t ∈ (0, T ]. Throughout the paper ∇ stands
for differentiation with respect to spatial variables.

By parabolicity of system (2.1) it is meant that the part without deriva-
tives with respect to time is elliptic. The notion of ellipticity for a system of
second order differential equations is understood in the following sense, as
introduced in [7]: there are λ > 0 and 0 < F ∈ Lp/(p−1)(Q) such that for all
sij ∈ R2n, rj ∈ R2, x ∈ Rn, j = 1, 2, i = 1, . . . , n,

(2.4) A
(j)
i (x, r, s)sij ≥ λ|s|p − F (j).

It should be emphasized that neither the Legendre nor the Legendre–
Hadamard condition is imposed. The Legendre condition stems from the
calculus of variations, the problem of minimization of a functional, as a suf-
ficient condition for the existence of an extremal. Since it is to be calculated
on the extremal it bears no relation to the set-up of the problem. Its usage as
an ellipticity condition in the theory of systems of differential equations is en-
tirely technically motivated, and it is applied mostly in the so-called indirect
methods and in the study of partial regularity to meet the requirements of
Caccioppoli’s inequality (see e.g. [11]). The Legendre–Hadamard condition,
which is a weakened version of the Legendre condition, has been regarded
by many authors as a more natural ellipticity condition for systems. When
the coefficients are continuous the Legendre–Hadamard condition suffices to
derive the full regularity, but it is not enough for systems with bounded
measurable coefficients or coefficients depending on the unknowns, because
the technique used relies heavily upon Caccioppoli’s inequality [12]. Our rea-
son to dispense with either condition is that they both produce an obstacle
from the technical point of view in the approach we take, and that is why
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we adopt the ellipticity condition (2.4) for quasilinear systems as the most
appropriate for our ends.

In what follows for brevity we shall use the notations:

ũ0 =

{
u0(x), x ∈ Ω, t = 0,

g1(x, t), x ∈ ∂Ω, t ∈ (0, T );

ṽ0 =

{
v0(x), x ∈ Ω, t = 0,

g2(x, t), x ∈ ∂Ω, t ∈ (0, T ).

Let us introduce in addition the following function space:

Definition 2.4.

W̃ (Q) = Lp
′
(W 1,p′(0, T );Ω) ∩ Lp(0, T ;W 1,p(Ω)), p′ =

p

p− 1
;

i.e. the function u belongs to W̃ (Q) if

T�

0

�

Ω

(|ut|p
′
+ |∇u|p + |u|p + |u|p′) <∞.

We shall assume that the functions g1,2(x, t) and (u, v)0(x) in the bound-
ary data (2.2) are such that

ũ0 ∈ W̃ (∂Q), ṽ0 ∈ W̃ (∂Q),

and in addition

g1,2(x, t) ∈ L∞(S), (u, v)0(x) ∈ L∞(Ω).

About the leading parts A
(1),(2)
i (x, r, s) it is assumed that they are mea-

surable Ω × R2 × R2n → R functions that satisfy the ellipticity condition
(2.4) and are subject to the following growth conditions: there exists λ > 0

such that for all sji ∈ R2n, rj ∈ R2, x ∈ Rn, j = 1, 2, i = 1, . . . , n,

(2.5) |A(1),(2)
i (x, r, s)| ≤ λ|s|p−1.

For the model system the leading coefficients A
(1)
i and A

(2)
i are

A
(1)
i (x, r, s) = a1(r)|~s (1)|p−2s

(1)
i + b1(r)|~s (2)|p−2s

(2)
i ,

A
(2)
i (x, r, s) = a2(r)|~s (1)|p−2s

(1)
i + b2(r)|~s (2)|p−2s

(2)
i .

Let us now outline more precisely the conditions satisfied by a1,2 and
b1,2. For one thing, there exist real numbers A1–A4 and B1–B4 such that
for all (u, v) ∈ R× R,

A1 ≤ a1(u, v) ≤ A2, A3 ≤ a2(u, v) ≤ A4;

B1 ≤ b1(u, v) ≤ B2, B3 ≤ b2(u, v) ≤ B4.
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and in addition there exists λ0 > 0 such that

(2.6a) min{inf
r

[a1(r)− (1/p)b1(r)− (1− (1/p))a2(r)],

inf
r

[b2(r)− (1/p)a2(r)− (1− (1/p))b1(r)]} ≥ λ0.

Next, the coefficients a1,2(u, v), b1,2(u, v) in the model system (2.3) and
the structure hypotheses (2.7a)–(2.7b) below are such that the following
conditions are satisfied:

(2.6b)

A =

(
a1

b1

)′

u

=

(
a1

b1

)′

v

,

B =

(
b2
b1

)2(a1

b2

)′

u

+

(
a2

b1

)′

u

=

(
b2
b1

)2(a1

b2

)′

v

+

(
a2

b1

)′

v

,

C =

(
b2
b1

)2(a2

b2

)′

u

=

(
b2
b1

)2(a2

b2

)′

v

,

(2.6c) D(r) =
√
B2 − 4AC > 0, k1,2 =

−B ±
√
B2 − 4AC

2A
,

(2.6d)
∀rj ∈ R2 : kp1,2 +

b2(r)

b1(r)
kp−1

1,2 −
a1(r)

b1(r)
k1,2 −

a2(r)

b1(r)
= 0,

Λ1,2(r) = b1(r)k1,2 + b2(r) > 0.

Finally, upon the leading parts of the system the following structure
conditions (2.7a)–(2.7b) are imposed.

There exist measurable functions a1,2(r), b1,2(r), satisfying assumptions
(2.6a)–(2.6d), and F1,2(x), along with real numbers ε1,2 such that

|ε1,2| ≤
δ∗min(λ0, Λ1, Λ2)

8 max(1, |k1|+ |k2|)
,

and for all s
(j)
i ∈ R2n, rj ∈ R2, x ∈ Rn, j = 1, 2, i = 1, . . . , n:

(2.7a) |A(1)
i (x, r, s)− (a1(r)|s(1)|p−2s

(1)
i + b1(r)|s(2)|p−2s

(2)
i )|

≤ θ(−ε1|k2| |k1s
(1) + s(2)| − ε2|k1| |k2s

(1) + s(2)|)(|s(1)|p−2 + |s(2)|p−2)

×max[ε1|k1s
(1) + s(2)|+ ε2|k2s

(1) + s(2)|, 0] + F1(x),

(2.7b) |A(2)
i (x, r, s)− (a2(r)|s(1)|p−2s

(1)
i + b2(r)|s(2)|p−2s

(2)
i )|

≤ θ(ε1|k1s
(1) + s(2)|+ ε2|k2s

(1) + s(2)|)(|s(1)|p−2 + |s(2)|p−2)

×max[−ε1|k2| |k1s
(1) + s(2)| − ε2|k1| |k2s

(1) + s(2)|, 0] + F2(x),

where we have set Λ1 = infr Λ1(r), Λ2 = infr Λ2(r); (k1, Λ1(r)) and
(k2, Λ2(r)) are from (2.6d) or, equivalently, are two distinct solutions to
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the system {
ka1(r) + b1(r) = Λ(r)|k|p−2k,

ka2(r) + b2(r) = Λ(r), Λ(r) > 0;

and λ0 is from (2.6a).

Remark 1. It is easy to check that under assumption (2.6a), the ellip-
ticity condition (2.4) holds for the model system with λ = λ0. One may also
see that the structure conditions (2.7a)–(2.7b) imply the ellipticity condition
(2.4) with λ = λ0(1− δ∗/2) and F ≡ |η|(|F1|+ |F2|), η a number.

About the right-hand sides B(1),(2)(x, r, s) it is assumed that they are
measurable Ω × R × R × Rn × Rn → R functions such that there exist
0 < ε < p2/(n+p) and Λ2 > 0 such that for all s

(j)
i ∈ R2n, rj ∈ R2, j = 1, 2,

i = 1, . . . , n,

(2.8) |B(1),(2)(x, r, s)| ≤ Λ2|s|ε + fj ,

where the functions fj are those from (2.3). On the functions fj in the
right-hand sides of (2.3) and Fj in the structure conditions (2.7a)–(2.7b)
the following conditions are imposed:

f1,2(x, t) ∈ Lτ (Q), τ > (p+ n)/p,(2.9)

F1,2(x) ∈ Lθ(Q), θ > (p+ n)/(p− 1).(2.10)

3. The homogeneous system. The main idea is as follows. Instead
of establishing estimates for each component uj of a solution separately we
introduce some linear combinations of uj (in the general case these would be
some functions Hj(t, x, u) of t, x, and unknowns uj), so that for each such
linear combination (or function H j(t, x, u)) the conventional maximum prin-
ciple holds. Applying the classical maximum principle to the latter enables
us to derive estimates for the components uj of the solution, in much the
same way as for scalar equations. As an illustration consider the model sys-
tem of two equations (2.3).

Let H(u, v) be a twice continuously differentiable function to be deter-
mined later. Multiply the first equation by Hu = ∂

∂uH and add to the second

one multiplied by Hv = ∂
∂vH. This yields

(3.1) Huut +Hvvt =
d

dt
H

= Hu div(a1|∇u|p−2∇u) +Hu div(b1|∇v|p−2∇v)

+Hv div(a2|∇u|p−2∇u) +Hv div(b2|∇v|p−2∇v) + f1Hu + f2Hv.

To outline the basic idea we restrict ourselves to the case of a homogeneous
system. For this case we shall obtain estimates of the solution (u, v) by its
values on the parabolic boundary ∂Q, i.e. the maximum principle. Suppose
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that supQH is attained somewhere within Q. Multiply (3.1) by the test
function ϕ = (H − l)+, l being the maximum value of H(u, v) on the para-
bolic boundary ∂Q, and integrate with respect to x over Ω, and with respect
to t from 0 to T . This results in

(3.2)
1

2

�

A(T )

dx (H − l)2

= −
T�

0

dt
�

A(t)

dx [a1|∇u|p−2∇u · (H2
uu∇u+H2

uv∇v)

+ b1|∇v|p−2∇v · (H2
uu∇u+H2

uv∇v)

+ a2|∇u|p−2∇u · (H2
uv∇u+H2

vv∇v)

+ b2|∇v|p−2∇v · (H2
uv∇u+H2

vv∇v)],

where A(t) ≡ {H ≥ l}. For convenience we shall write H̃ for H − l. Let us

now impose the following conditions on the derivatives of H̃(u, v):

(3.3)





a1H̃
2
uu + a2H̃

2
uv = Λkp,

a1H̃
2
uv + a2H̃

2
vv = Λkp−1,

b1H̃
2
uu + b2H̃

2
uv = Λk,

b1H̃
2
uv + b2H̃

2
vv = Λ,

with Λ = Λ(u, v) ≥ 0, k = k(u, v); here and below, as usual it is understood
that kp = |k|p, kp−1 = |k|p−2k. First, multiply the first equation of (3.3) by
b1 and subtract the third multiplied by a1 to get

(a2b1 − a1b2)H̃2
uv = Λ[b1k

p − a1k].

Multiplying the second equation of (3.3) by b2 and subtracting the fourth
multiplied by a2 we obtain

−(a2b1 − a1b2)H̃2
uv = Λ[b2k

p−1 − a2].

Hence we conclude that k(u, v) is a solution to the equation

(3.4) kp +
b2
b1
kp−1 − a1

b1
k − a2

b1
= 0.

Now, subtracting from the first equation of (3.3) the second multiplied by k,
and from the third one the fourth multiplied by k we come to the system

{
a1(H̃2

uu − kH̃2
uv) + a2(H̃2

uv − kH̃2
vv) = 0,

b1(H̃2
uu − kH̃2

uv) + b2(H̃2
uv − kH̃2

vv) = 0.

From the ellipticity condition it follows that a2b1 − a1b2 6≡ 0 and thus

H̃2
uu − kH̃2

uv = 0, H̃2
uv − kH̃2

vv = 0.
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Returning to our original notation we can rewrite this as

(3.5)
(H − l){Huu − kHuv}+ {(Hu)2 − kHuHv} = 0,

(H − l){Huv − kHvv}+ {HuHv − k(Hv)
2} = 0.

Since neither k (as is seen from (3.4)) nor H depend upon l, differentiating
the first equation of (3.5) with respect to l we obtain

(3.6) Huu − kHuv = 0, Hu − kHv = 0.

Differentiating the second equation of (3.6) with respect to u yields

Huu − kHuv − kuHv = 0, so kuHv ≡ 0,

and hence either ku ≡ 0 or Hv ≡ 0. The choice Hv ≡ 0 would result in
Hu ≡ 0 and H = const, so we discard this possibility.

Differentiating the second equation of (3.5) with respect to l yields

(3.7) Huv − kHvv = 0, Hu − kHv = 0.

Differentiating the second equation of (3.7) with respect to v we have

Huv − kHvv − kvHv = 0, so kv ≡ 0,

and hence we conclude that

k = const.

Solving the equation Hu−kHv = 0 we obtain H = F (uk+v); F is any func-
tion. The simplest choice is F (x) ≡ x. Thus we are left with the following
choice of H:

(3.8) H = uk + v.

In general (3.4) may have four roots; let us now determine conditions for at
least two of them to be constant. From (3.4) we deduce that

(
k
a1

b1
+
a2

b1

)/(
k +

b2
b1

)
= kp−1.

Differentiating this with respect to u and v, since k = const, we arrive
at

k2

(
a1

b1

)′

u

+ k

[(
b2
b1

)2(a1

b2

)′

u

+

(
a2

b1

)′

u

]
+

(
b2
b1

)2(a2

b2

)′

u

= 0,(3.9a)

k2

(
a1

b1

)′

v

+ k

[(
b2
b1

)2(a1

b2

)′

v

+

(
a2

b1

)′

v

]
+

(
b2
b1

)2(a2

b2

)′

v

= 0.(3.9b)
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Set

A =

(
a1

b1

)′

u

=

(
a1

b1

)′

v

,

B =

(
b2
b1

)2(a1

b2

)′

u

+

(
a2

b1

)′

u

=

(
b2
b1

)2(a1

b2

)′

v

+

(
a2

b1

)′

v

,

C =

(
b2
b1

)2(a2

b2

)′

u

=

(
b2
b1

)2(a2

b2

)′

v

,

D =
√
B2 − 4AC, k1,2 =

−B ±
√
B2 − 4AC

2A
.

One can see that though (3.4) in general may have four roots, since (3.9a)
has at most two roots, the equation (3.4) with variable coefficients possesses
at most two roots which are constants, and hence we get two choices of H:
H1 = uk1 + v and H2 = uk2 + v. We come to the following conditions upon
the coefficients a1, a2, b1, b2:

(2.6d)

D(u, v) > 0, k1,2 = const,

kp1,2 +
b2(u, v)

b1(u, v)
kp−1

1,2 −
a1(u, v)

b1(u, v)
k1,2 −

a2(u, v)

b1(u, v)
= 0,

b1(u, v)k1,2 + b2(u, v) > 0, ∀(u, v) ∈ R× R.
Let k1 and k2 stand for the two different solutions of (3.4). We may assume
that k1 > k2. Now, with H = H1 from (3.2) we have

T�

0

dt
�

A(t)

dxH1t(H1 − l) =
1

2

�

A(T )

dx (H1 − l)2

= −Λ
T�

0

dt
�

A(t)

dx 〈|∇k1u|p−2∇k1u+ |∇v|p−2∇v,∇(k1u+ v)〉,

or

(3.10)
1

2

�

A(T )

dx(H1 − l)2

+ Λ

T�

0

dt
�

A(t)

dx 〈|H1u∇u|p−2∇u+ |H1v∇v|p−2∇v,H1u∇u+H1v∇v〉 = 0.

We shall make use of the following

Lemma 3.1. Let p ≥ 2. Then for any ~a,~b ∈ Rn,

〈|~a|p−2~a+ |~b|p−2~b,~a+~b〉 ≥ 1

2
[|~a|p−2 + |~b|p−2]|~a+~b|2 ≥ 1

2p−1
|~a+~b|p,

where the constant 1/2p−1 is sharp.
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For the proof of this lemma see e.g. [9, Lemma 4.4, p. 13].
Hence, it follows from (3.10) that

T�

0

dt
�

A(t)

dx |∇(H1)|p ≤ 0,

and by the embedding theorem we get

C

T�

0

dt
�

A(t)

dx |(H1 − l)|p ≤
T�

0

dt
�

A(t)

dx |∇(H1 − l)|p ≡
T�

0

dt
�

A(t)

dx |∇H1|p ≤ 0,

where C is constant. Thus we conclude that

sup
Q
H1 ≤ sup

∂Q
H1.

Similarly, testing (3.1) on the function ϕ = (l −H1)+, where l now stands
for the infimum of H1(u, v) on the parabolic boundary ∂Q, we obtain

inf
Q
H1 ≥ inf

∂Q
H1.

Analogously, with H = H2 from (3.1) and (3.2) we arrive at the conclusion

sup
Q
H2 ≤ sup

∂Q
H2, inf

Q
H2 ≥ inf

∂Q
H2.

Finally, we get the estimates

inf
∂Q

H1 ≤ H1 = k1u+ v ≤ sup
∂Q

H1,

inf
∂Q

H2 ≤ H2 = k2u+ v ≤ sup
∂Q

H2,

for a.e. (x, t) ∈ Q. This yields estimates for the unknowns themselves:

[inf
∂Q

H1 − sup
∂Q

H2] · (k1 − k2)−1 ≤ u ≤ [sup
∂Q

H1 − inf
∂Q

H2] · (k1 − k2)−1,

[k1 inf
∂Q

H2 − k2 sup
∂Q

H1] · (k1 − k2)−1 ≤ v

≤ [k1 sup
∂Q

H2 − k2 inf
∂Q

H1] · (k1 − k2)−1

for a.e. (x, t) ∈ Q. Hence we immediately obtain estimates for |u| and |v|
like

|u| ≤ 1

|k1 − k2|
max{|inf

∂Q
H1 − sup

∂Q
H2|, |sup

∂Q
H1 − inf

∂Q
H2|}

or

|u| ≤ 2

|k1 − k2|
max{|sup

∂Q
H1|, |sup

∂Q
H2|, |inf

∂Q
H1|, |inf

∂Q
H2|},
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and

|v| ≤ 1

|k1 − k2|
max{|k1 inf

∂Q
H2 − k2 sup

∂Q
H1|, |k1 sup

∂Q
H2 − k2 inf

∂Q
H1|}

or

|v| ≤ 2

|k1 − k2|
max{|k2| |sup

∂Q
H1|, |k1| |inf

∂Q
H2|, |k2| |inf

∂Q
H1|, |k1| |sup

∂Q
H2|}

for a.e. (x, t) ∈ Q. The latter can be rewritten in a concise form like

|v|, |u| ≤ C(inf H1,2, supH1,2, k1,2)

for a.e. (x, t) ∈ Q.

4. Energy estimate of the solution. For the ongoing considerations
we shall need an energy estimate for a solution of problem (2.1)–(2.2). Our
goal in this section is to prove the following statement.

Theorem 4.1. Let (u, v) be a solution to problem (2.1)–(2.2). Then

ess sup
0<t<T

�

Ω

|u− ũ0|2 +ess sup
0<t<T

�

Ω

|v − ṽ0|2 +

T�

0

�

Ω

(|∇(u− ũ0)|p+ |∇(v− ṽ0)|p) ≤ C

and
T�

0

�

Ω

(|∇u|p + |∇v|p) ≤ C

with some constant C depending only on ‖f1,2‖q′,Q, ‖ũ0‖W̃ (∂Q)
, ‖ṽ0‖W̃ (∂Q)

,

p, n, λ, ε, mesQ, and independent of u and v.

Remark 2. In the formulation of the theorem and its proof, by ũ0 and

ṽ0 are meant any functions from W̃ (Q) coinciding with ũ0 or ṽ0 on the
parabolic boundary. Therefore the final statement remains valid with the
boundary norms.

Proof. A standard procedure is applied. Multiplying the first equation
of (2.1) by u − ũ0 and the second one by v − ṽ0, adding the results and
integrating over Ω × (0, t) we get

(4.1)
�

Ω(t)

1

2
(u− ũ0)2 +

�

Ω(t)

1

2
(v − ṽ0)2

+

t�

0

�

Ω

~A(1)∇(u− ũ0) +

t�

0

�

Ω

~A(2)∇(v − ṽ0)
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≤
t�

0

�

Ω

|B(1)| |u− ũ0|+
t�

0

�

Ω

|B(2)| |v − ṽ0|

+

t�

0

�

Ω

(|f1|+ |ũ0t|)|u− ũ0|+
t�

0

�

Ω

(|f2|+ |ṽ0t|)|v − ṽ0|,

where integration by parts with respect to the time variable was performed
in the first two terms and the initial conditions were taken into account. By
the ellipticity condition (2.4) and the growth (2.5) conditions on A(1),(2), the
other two terms on the left can be bounded below as follows:

t�

0

�

Ω

( ~A(1)∇(u− ũ0) + ~A(2)∇(v − ṽ0))

=

t�

0

�

Ω

( ~A(1)∇u+ ~A(2)∇v − ~A(1)∇ũ0 − ~A(2)∇ṽ0)

≥
t�

0

�

Ω

λ(|∇u|p + |∇v|p)−
t�

0

�

Ω

λ(|∇u|p−1 + |∇v|p−1)(|∇u0|+ |∇v0|)

≥
t�

0

�

Ω

1

2
λ(|∇u|p + |∇v|p)−

t�

0

�

Ω

C(p, λ)(|∇u0|p + |∇v0|p)

≥
t�

0

�

Ω

1

2
λ(|∇(u− ũ0)|p + |∇(v − ṽ0)|p)−

t�

0

�

Ω

C̃(p, λ)(|∇u0|p + |∇v0|p),

with λ = λ0(1 − δ∗/2). Here use has also been made of Young’s inequality
and the inequality

(4.2) |a+ b|p ≤ C(p)(|a|p + |b|p), ∀a, b ∈ R.

The first two terms on the right of (4.1), by virtue of the Young inequality,
the Sobolev inequality and the growth condition (2.8), can be estimated as
follows:

t�

0

�

Ω

|B(1)| |u− ũ0|+
t�

0

�

Ω

|B(2)| |v − ṽ0|

≤ C
t�

0

�

Ω

(|∇u|+ |∇v|)ε(|u− ũ0|+ |v − ṽ0|)

≤ δ1C1(ε, p)

t�

0

�

Ω

(|∇(u− ũ0)|+ |∇(v − ṽ0)|)p
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+ δ2C2(p)

t�

0

�

Ω

(|u− ũ0|+ |v − ṽ0|)p + C(C1,2, δ1,2, ũ0, ṽ0,mesQ)

≤ δ3

t�

0

�

Ω

(|∇(u− ũ0)|+ |∇(v − ṽ0)|)p + C3.

Here it has been taken into account that ε/p+1/p < 1/2+1/p ≤ 1. In much
the same way, taking into account our hypotheses, we can estimate the last
two integrals on the left-hand side of (4.1):

t�

0

�

Ω

(|f1|+ |ũ0t|)|u− ũ0|+
t�

0

�

Ω

(|f2|+ |ṽ0t|)|v − ṽ0|

≤
t�

0

�

Ω

(|f1|+ |f2|+ |ũ0t|+ |ṽ0t|)(|u− ũ0|+ |v − ṽ0|)

≤ ‖ |f1|+ |f2|+ |ũ0t|+ |ṽ0t| ‖p′,Q
( t�

0

�

Ω

(|u− ũ0|+ |v − ṽ0|)p
)1/p

≤ δ4

t�

0

�

Ω

(|∇(u− ũ0)|+ |∇(v − ṽ0)|)p + C4(mesQ, f1,2, δ4, ũ0, ṽ0).

Collecting the above estimates, from (4.1) we get

(4.3)
�

Ω(t)

1

2
[(u− ũ0)2 + (v − ṽ0)2] +

t�

0

�

Ω

1

2
λ(|∇(u− ũ0)|p + |∇(v − ṽ0)|p)

≤ δ5

t�

0

�

Ω

(|∇(u− ũ0)|p + |∇(v − ṽ0)|p) + C4(mesQ, f1,2, δ5, ũ0, ṽ0).

Choosing δ5 = 1
4λ yields

(4.4)
�

Ω(t)

1

2
[(u− ũ0)2 + (v − ṽ0)2] +

t�

0

�

Ω

1

4
λ(|∇(u− ũ0)|p + |∇(v − ṽ0)|p)

≤ C4(f1,2, δ5, ũ0, ṽ0).

Now we take the supremum over t on the right-hand side of (4.4) to obtain

ess sup
0<t<T

�

Ω

|u− ũ0|2 + ess sup
0<t<T

�

Ω

|v − ṽ0|2

+

T�

0

�

Ω

(|∇(u− ũ0)|p + |∇(v − ṽ0)|p) ≤ C5
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with a constant C5 depending on n, p, ε, λ, ‖f1,2‖p′,Q, mesQ and, by Re-
mark 2, the boundary norms ‖ũ0‖W̃ (∂Q)

and ‖ṽ0‖W̃ (∂Q)
of the functions in

the boundary conditions only. Hence the second statement of the theorem
is self-evident.

5. The main result. Let us now turn our attention to the general
nonhomogeneous system whose coefficients satisfy the structure hypotheses
(2.7a)–(2.7b). Our main result is

Theorem 5.1. Let (u, v) be a solution to problem (2.1)–(2.2). If hy-
potheses (2.7a)–(2.7b) along with assumptions (2.6a)–(2.6d) are fulfilled , i.e.
there exist two different numbers k1, k2 satisfying equation (3.4) with Λ1 > 0
and Λ2 > 0 so that (2.7a)–(2.7b) hold with precisely those k, then for the
two linearly independent functions H1 and H2 defined by (3.8) we have the
estimates

‖H1‖L∞(Q) ≤ C1, ‖H2‖L∞(Q) ≤ C2.

Hence the same estimates hold for the components of the solution:

‖u‖L∞(Q) ≤ C1, ‖v‖L∞(Q) ≤ C2,

where the constants C1,2 depend only on p, n, f1,2, F1,2, a1,2(s), b1,2(s),
|g1,2|∞,(S), |u0, v0|∞,(Ω), ‖ũ0‖W̃ (∂Q)

, ‖ṽ0‖W̃ (∂Q)
, the domain Q, and constants

in embedding theorems, and are independent of u and v.

To prove the theorem we need Stampacchia’s well known lemma:

Lemma 5.2. Let ψ(y) be a nonnegative nondecreasing function defined
on [l0,∞) which satisfies

ψ(m) ≤ C

(m− l)ϑ {ψ(l)}δ for m > l ≥ l0,

with ϑ > 0 and δ > 1. Then

ψ(l0 + d) = 0,

where d = C1/ϑ{ψ(k0)}(δ−1)/ϑ2δ/(δ−1).

For the proof see [7, Lemma 4.1, p. 8]. We also make use of the following
lemma (see [9, Prop. 3.1, p. 7]):

Lemma 5.3. If u ∈ L∞(0, T ;L2(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω)) then

T�

0

�

Ω

uq ≤ C
(T�

0

�

Ω

|∇u|p
)(

ess sup
0<t<T

�

Ω

|u|2
)p/n

with q = p(n+ 2)/n and the constant C depending only on p and n.

Proof of Theorem 5.1. Let k1 be a solution to (3.4). Multiply the first
equation of (2.1) by k1, add to the second, and choose w ≡ signH1(|H1|−l)+
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as a test function with l ≥ l0 = max[‖k1g1 + g2‖L∞(S), ‖k1u0 + v0‖L∞(Ω)].
After integrating in t from 0 to t, t ≤ T , and in x over Ω, this results in

1

2

�

Ω(t)

w2 +

t�

0

�

Ω

〈k1
~A(1)(x, u, v, ux, vx) + ~A(2)(x, u, v, ux, vx),∇w〉

=

t�

0

�

Ω

(k1B
(1)(x, u, v, ux, vx) +B(2)(x, u, v, ux, vx))w +

t�

0

�

Ω

(f1k1 + f2)w.

From this identity, by the hypotheses on the leading part (2.7a)–(2.7b), and
the growth assumptions (2.8) on the right-hand sides, we have

1

2

�

Ω(t)

w2 + Λ1

t�

0

�

Ω

〈|k1|p−2k1|∇u|p−2∇u− |∇v|p−2∇v,∇w〉

≤ ε1k1

(
1− |k2|
|k1|

) t�

0

�

Ω

(|∇u|p−2 + |∇v|p−2)|∇w|2

+

t�

0

�

Ω

|F1‖∇w|+ C

t�

0

�

Ω

(|∇u|+ |∇v|)εw +

t�

0

�

Ω

fw,

where f = f1k1 + f2, C = C(λ, k1, p) is a constant. Since t ∈ (0, T ] is
arbitrary, taking the supremum over t and applying Lemma 3.1 to the second
term on the left, we get

sup
0<t<T

�

Ω

w2 +
Λ1

2

T�

0

�

Ω

(|∇u|p−2 + |∇v|p−2)|∇w|2

≤ ε1k1

(
1− |k2|
|k1|

) T�

0

�

Ω

(|∇u|p−2 + |∇v|p−2)|∇w|2

+

T�

0

�

Ω

|F1| |∇w|+ C

T�

0

�

Ω

(|∇u|+ |∇v|)εw +

T�

0

�

Ω

fw;

hence, taking into account the conditions on ε1,2 in hypotheses (2.7a)–(2.7b),
we infer that

sup
0<t<T

�

Ω

w2 +

T�

0

�

Ω

|∇w|p ≤ C1

T�

0

�

Ω

|F1‖∇w|+ C2

T�

0

�

Ω

(|∇u|+ |∇v|)ε +

T�

0

�

Ω

fw,

where C1 and C1 are some constants depending on ε1, k1,2, Λ1, p and n.
Applying the generalized Hölder inequality to the three terms on the right
yields
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(5.1) sup
0<t<T

�

Ω

w2 +

T�

0

�

Ω

|∇w|p

≤ C1‖∇w‖p,Q‖F1‖θ,Q
( T�

0

�

Ω

χA(l)

)1−1/p−1/θ

+ C2‖w‖q,Q‖f‖r,Q
( T�

0

�

Ω

χA(l)

)1−1/q−1/r

+ C3‖w‖q,Q‖ |∇u|ε + |∇v|ε‖p/ε,Q
( T�

0

�

Ω

χA(l)

)1−1/q−ε/p
,

where χA(l) is the characteristic function of the set A(l), and r has been
selected such that τ > r > (p+ n)/p. From Lemma 5.3 it follows that

(5.2) ‖w‖q,Q ≤
(

sup
0<t<T

�

Ω

w2 +

T�

0

�

Ω

|∇w|p
)(p+n)/qn

.

From (5.1) and this inequality we obtain

(5.3) sup
0<t<T

�

Ω

w2 +

T�

0

�

Ω

|∇w|p

≤ C1‖F1‖θ,Q
(

sup
0<t<T

�

Ω

w2 +

T�

0

�

Ω

|∇w|p
)1/p
{ψ(l)}1−1/p−1/θ

+ C2

(
sup

0<t<T

�

Ω

w2 +

T�

0

�

Ω

|∇w|p
)(n+p)/nq

‖f‖r,Q{ψ(l)}1−1/q−1/r

+ C3

(
sup

0<t<T

�

Ω

w2 +

T�

0

�

Ω

|∇w|p
)(n+p)/nq

× ‖ |∇u|ε + |∇v|ε‖p/ε,Q{ψ(l)}1−1/q−ε/p,

where we have set for brevity

ψ(l) =

T�

0

mesA{w ≥ l}(l, t) dt.

Applying the Young inequality to the right-hand side of (5.3) gives

(5.4) sup
0<t<T

�

Ω

w2 +

T�

0

�

Ω

|∇w|p ≤ C1{ψ(l)}(1−1/p−1/θ)( p
p−1

)

+ C2‖f‖(p+n)/p,Q{ψ(l)}(1−1/q−1/r)( nq
n+p

)#

+ C3‖ |∇u|ε + |∇v|ε‖p/ε,Q{ψ(l)}(1−1/q−ε/p)( nq
n+p

)#

.
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By the second statement of Theorem 4.1 we can estimate

‖ |∇u|ε + |∇v|ε‖p/ε,Q ≤ C̃
( T�

0

�

Ω

|∇u|p +

T�

0

�

Ω

|∇v|p
)ε/p

≤ C(u0, v0, g1,2),

which applied to (5.4) results in

sup
0<t<T

�

Ω

w2 +

T�

0

�

Ω

|∇w|p ≤ C1{ψ(l)}(1−1/p−1/θ)( p
p−1

)

+ C2{ψ(l)}(1−1/q−1/r)( nq
n+p

)#

+ C3{ψ(l)}(1−1/q−ε/p)( nq
n+p

)#

with C1 = C(F1,2, p, θ, λ1), C2 = C(p, n, λ1, f1,2) and C3 = C(p, n, λ1, u0, v0,
g1,2). Resorting again to (5.2) we obtain

(5.5) (‖w‖q,Q)nq/(n+p) ≤ C1{ψ(l)}(1−1/p−1/θ)( p
p−1

)

+ C2{ψ(l)}(1−1/q−1/r)( nq
n+p

)#

+ C3{ψ(l)}(1−1/q−ε/p)( nq
n+p

)#

.

Let us estimate

(m− l){ψ(m)}1/q = (m− l)
(T�

0

�

Ω

χA(m)

)1/q
<
(T�

0

�

Ω

wqχA(m)

)1/q
< ‖w‖q,Q,

where m > l ≥ l0. Substituting this into (5.5) we come to

(m− l)qψ(m) ≤ C1{ψ(l)}(1−1/q−1/r)( nq
n+p

)#(n+p
n

)

+ C2{ψ(l)}(1−1/p−1/θ)(
p(n+p)
n(p−1)

)

+ C3{ψ(l)}(1−1/q−ε/p)( nq
n+p

)#(n+p
n

)

or, succinctly,

(5.6) ψ(m) ≤ C1

(m− l)q {ψ(l)}δ1 +
C2

(m− l)q {ψ(l)}δ2 +
C3

(m− l)q {ψ(l)}δ3

with

δ1 =

(
1− n

p(n+ 2)
− 1

r

)/(
n

n+ p
− n

p(n+ 2)

)
,

δ2 =

(
p− 1

p
− 1

θ

)
p(n+ p)

n(p− 1)
,

δ3 =

(
1− n

p(n+ 2)
− ε

p

)/(
n

n+ p
− n

p(n+ 2)

)
.

Since we assume that

(2.9) f1,2 ∈ Lτ (Q), τ > p/(p− 1),

it is not difficult to check that

1− n

p(n+ 2)
− 1

r
>

n

n+ p
− n

p(n+ 2)
, and hence δ1 > 1.
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In much the same way, from the hypothesis

(2.10) F1,2 ∈ Lθ(Q), θ > (p+ n)/(p− 1),

it follows that

p− 1

p
− 1

θ
>
n(p− 1)

p(n+ p)
, thus δ2 > 1;

and, since we assume ε < p2/(n+ p),

1− n

p(n+ 2)
− ε

p
>

n

n+ p
− n

p(n+ 2)
, and hence δ3 > 1.

Without loss of generality we may assume that ψ(l) < 1. In fact, from the
first statement of Theorem 4.1 and (5.2) it follows that

(l − l0){ψ(l)}1/q = (l − l0)
(T�

0

�

Ω

χA(l)

)1/q
<
(T�

0

�

Ω

(H1 − l0)qχA(l)

)1/q

< ‖H1 − l0‖q,Q ≤
(

sup
0<t<T

�

Ω

(H1 − l0)2 +

T�

0

�

Ω

|∇(H1 − l0)|p
) p+n

qn ≤ C̃,

with l ≥ l0, and hence

ψ(l) ≤ C̃q/(l − l0)q;

and it is easy to see that ψ(l) < 1 whenever l is chosen such that l > C̃+ l0.
Since ψ(l) is a nonincreasing function, ψ(l) < 1 remains true for all numbers

l > C̃ + l0.
Due to this fact, inequality (5.6) yields

(5.7) ψ(m) ≤ C

(m− l)q {ψ(l)}δ

with δ = min[δ1, δ2, δ3] and C = max[C1, C2, C3]. By Lemma 5.2 from (5.7)
we conclude that

ψ(l0 + d) = 0

for some d sufficiently large, but finite, depending only on p, n, η1, f1,2, F1,2,
u0, v0, g1,2, ai, bi, the domain Q, and constants in embedding theorems, and
independent of u and v. Analogously we proceed for H2 = k2u + v, where
k2 stands for another solution to (3.4).

It is not difficult to see from the previous considerations that the same
estimates hold for the components (u, v) of the solution. In fact,

‖u‖∞ = ‖k1u− k2u‖∞/|k1 − k2| = ‖(k1u+ v)− (k2u+ v)‖∞/|k1 − k2|
= ‖H1 −H2‖∞/|k1 − k2| ≤ (C1 + C2)/|k1 − k2|,

‖v‖∞ = ‖v + k1u− k1u‖∞ ≤ ‖k1u‖∞ + ‖k1u+ v‖∞ = k1‖u‖∞ + ‖H1‖∞,
and hence the statement follows.
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[10] L. Dung, Hölder regularity for certain strongly coupled parabolic systems, J. Differ-

ential Equations 151 (1999), 313–344.
[11] M. Giaquinta, Introduction to the Theory of Nonlinear Elliptic Systems, Birkhäuser,
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