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Enclosing solutions of second order equations

by Gerd Herzog and Roland Lemmert (Karlsruhe)

Abstract. We apply Max Müller’s Theorem to second order equations u′′ = f(t, u, u′)
to obtain solutions between given functions v,w.

1. Introduction. Let I ⊆ R be an interval, and let v, w ∈ C2(I,R)
with v(t) ≤ w(t) (t ∈ I). Let

S := {(t, x) : t ∈ I, v(t) ≤ x ≤ w(t)},
and let f : S × R→ R be continuous. Consider the second order equation

(1) u′′(t) = f(t, u(t), u′(t)).

We are interested in the existence of a solution u : I → R of (1). Then in
particular graphu ⊆ S, that is, v(t) ≤ u(t) ≤ w(t) on I.

Let k, l : I → R be continuous and such that the equation

(2) h′′(t) + k(t)|h′(t)|+ l(t)h(t) = 0

has a positive solution h : I → (0,∞). Under these assumptions we prove

Theorem 1. If

(i) |f(t, x, p)− f(t, x, q)| ≤ k(t)|p− q| ((t, x) ∈ S, p, q ∈ R),
(ii) v′′(t) + l(t)v(t) ≤ f(t, x, v′(t)) + l(t)x ((t, x) ∈ S),
(iii) w′′(t) + l(t)w(t) ≥ f(t, x, w′(t)) + l(t)x ((t, x) ∈ S),

then (1) has a solution u : I → R.

Remarks. If f(t, x, p) = f(t, x) and k(t) = 0, conditions (i)–(iii) reduce
to

v′′(t) + l(t)v(t) ≤ f(t, x) + l(t)x ≤ w′′(t) + l(t)w(t) ((t, x) ∈ S),

which are satisfied for example if f(t, x)+l(t)x is increasing in x ∈ [v(t), w(t)]
for each t ∈ I and if

v′′(t) ≤ f(t, v(t)), w′′(t) ≥ f(t, w(t)) (t ∈ I).

This case is covered by the result in [2].
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Schrader [6] proved the existence of a solution u of (1) between v and w
under the assumptions that

v′′(t) ≤ f(t, v(t), v′(t)), w′′(t) ≥ f(t, w(t), w′(t)) (t ∈ I),

that f is continuous on I × R2, that all solutions of initial value problems
for equation (1) exist on I, and that Dirichlet boundary value problems for
(1) on compact subintervals of I have at most one solution.

Moreover, as described in [2] the differential inequalities above should not
be mixed up with upper and lower solutions of boundary value problems in
the sense of Nagumo [4], where the inequalities are in opposite direction. The
following trivial example (f = 0) shows most clearly the difference from the
method of upper and lower solutions for boundary value problems:

For I = [a, b] there is an affine function between v ≤ w if v′′ ≤ 0 and
w′′ ≥ 0, but in general it is not possible to prescribe boundary values between
v(a) ≤ w(a) and v(b) ≤ w(b).

On the other hand, Rach̊unková [5] proves the existence of solutions of (1)
satisfying various boundary conditions, which satisfy v(tu) ≤ u(tu) ≤ w(tu)
for some tu ∈ I.

2. Max Müller’s Theorem. Let R2 be ordered by the natural cone
K = {(x, y) : x ≥ 0, y ≥ 0}. To prove Theorem 1 we make use of the
following two-dimensional version of Max Müller’s Theorem [3] (see also
[7]):

Let ξ = (ξ1, ξ2), η = (η1, η2) ∈ C1([a, b],R2) with ξ(t) ≤ η(t) on [a, b],
and let

D := {(t, x, y) ∈ [a, b]× R2 : ξ(t) ≤ (x, y) ≤ η(t)}.
Let F = (F1, F2) : D → R2 be continuous such that for (t, x, y) ∈ D,

ξ′1(t) ≤ F1(t, ξ1(t), y), ξ′2(t) ≤ F2(t, x, ξ2(t)),

η′1(t) ≥ F1(t, η1(t), y), η′2(t) ≥ F2(t, x, η2(t)),

and let ξ(a) ≤ (x0, y0) ≤ η(a). Then the initial value problem

(x, y)′(t) = F (t, x(t), y(t)), (x(a), y(a)) = (x0, y0)

has a solution (x, y) : [a, b] → R2; in particular graph(x, y) ⊆ D, that is,
ξ(t) ≤ (x(t), y(t)) ≤ η(t) on [a, b].

3. Proof of Theorem 1. First, we prove the assertion for any compact
interval [a, b] ⊆ I. Let h : [a, b]→ R be a positive solution of (2), and let

v := v/h, w := w/h.

Fix t0 ∈ [a, b] such that

w(t0)− v(t0) = min{w(t)− v(t) : t ∈ [a, b]},
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and note that
t0 = a ⇒ v′(t0) ≤ w′(t0),

t0 ∈ (a, b) ⇒ v′(t0) = w′(t0),

t0 = b ⇒ v′(t0) ≥ w′(t0).

We first consider the case t0 ∈ [a, b), and prove

v′(t) ≤ w′(t) (t ∈ [t0, b]).

By using (2) we have

v′′ =
v′′

h
+ lv + k

|h′|
h
v − 2h′

h
v′,

and by (ii) with x = v(t),

v′′ ≤ 1

h
f(t, v, v′) + lv + k

|h′|
h
v − 2h′

h
v′

=
1

h
f(t, v, h′v + hv′) + lv + k

|h′|
h
v − 2h′

h
v′.

Analogously, from

w′′ =
w′′

h
+ lw + k

|h′|
h
w − 2h′

h
w′

we get by (iii) and again for x = v(t),

w′′ ≥ 1

h
f(t, v, w′) + lv + k

|h′|
h
w − 2h′

h
w′

=
1

h
f(t, v, h′w + hw′) + lv + k

|h′|
h
w − 2h′

h
w′.

Let G : [a, b]× R2 → R2 be defined by

G(t, x, y) =

(
y

1
h(t)f(t, v(t), h′(t)x+ h(t)y) + l(t)v(t) + k(t) |h

′(t)|
h(t) x−

2h′(t)
h(t) y

)
.

By (i), the functions

p 7→ f(t, z, p) + k(t)p, p 7→ f(t, z,−p) + k(t)p

are increasing on R, so the second coordinate of G is increasing in x, and the
first coordinate is increasing in y. Hence G is quasimonotone increasing in
(x, y) with respect to the cone K = {(x, y) : x ≥ 0, y ≥ 0} (cf. [8]). Moreover
G is continuous and Lipschitz continuous in (x, y). From the estimates for
v′′, w′′ above we obtain

(
v

v′

)′
−G(t, v(t), v′(t)) ≤

(
0

0

)
≤
(
w

w′

)′
−G(t, w(t), w′(t))
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for t ∈ [t0, b]. Together with (v(t0), v′(t0)) ≤ (w(t0), w′(t0)), a classical result
on differential inequalities (see [8, Satz 2]) implies

(v(t), v′(t)) ≤ (w(t), w′(t)) (t ∈ [t0, b]).

Next, consider equation (1). The transformation u := u/h leads to

u′′ =
u′′

h
− h′′

h
u− 2h′

h
u′

=
1

h
f(t, u, u′) +

(
l + k

|h′|
h

)
u− 2h′

h
u′

=
1

h
f(t, hu, h′u+ hu′) +

(
l + k

|h′|
h

)
u− 2h′

h
u′.

We fix c0 ∈ [v(t0), w(t0)] and c1 ∈ [v′(t0), w′(t0)], and consider the initial
value problem

(3) (x′(t), y′(t)) = F (t, x(t), y(t)), (x(t0), y(t0)) = (c0, c1),

with

D := {(t, x, y) : t ∈ [t0, b], (v(t), v′(t)) ≤ (x, y) ≤ (w(t), w′(t))},
and F = (F1, F2) : D → R2 defined by

F (t, x, y) =

(
y

1
h(t)f(t, h(t)x, h′(t)x+ h(t)y) +

(
l(t) + k(t) |h

′(t)|
h(t)

)
x− 2h′(t)

h(t) y

)
.

Note that if (x, y) : [t0, b] → R2 is a solution of (3), then u(t) = h(t)x(t) is
a solution of (1) on [t0, b].

For (t, x, y) ∈ D we obviously have

v′(t) ≤ F1(t, v(t), y) = y,

and

(v′)′(t) ≤ F2(t, x, v′(t))

follows from the following inequalities (note that (t, h(t)x) ∈ S): From (i)
we obtain

f(t, hx, h′v + hv′)− f(t, hx, h′x+ hv′) ≤ k|h′|(x− v).

Hence

F2(t, x, v′) =
1

h
f(t, hx, h′x+ hv′) +

(
l + k

|h′|
h

)
x− 2h′

h
v′

≥ 1

h
f(t, hx, h′v + hv′)− k |h

′|
h

(x− v) +

(
l + k

|h′|
h

)
x− 2h′

h
v′
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=
1

h
f(t, hx, v′) + lx+ k

|h′|
h
v − 2h′

h
v′

=
1

h
f(t, hx, v′) +

l

h
(hx) + k

|h′|
h
v − 2h′

h
v′,

which by (ii) is

≥ v′′

h
+ lv + k

|h′|
h
v − 2h′

h
v′ = v′′.

Analogously

w′(t) ≥ F1(t, w(t), y) = y,

and

(w′)′(t) ≥ F2(t, x, w′(t)).

According to Max Müller’s Theorem we have a solution of (3), hence a
solution u : [t0, b]→ R of the initial value problem

(4) u′′(t) = f(t, u(t), u′(t)), u(t0) = h(t0)c0, u
′(t0) = h′(t0)c0+h(t0)c1,

on [t0, b].
In case t0 ∈ (a, b] we consider the initial value problem (4) to the left,

i.e., for any ϕ : [a, b]→ R we set

ϕ−(t) = ϕ(a+ b− t) (t ∈ [a, b]),

and define S− and f− : S− × R→ R by

S− = {(t, x) : t ∈ [a, b], v−(t) ≤ x ≤ w−(t)}
and

f−(t, x, p) = f(a+ b− t, x,−p).
Now, (2) and (i)–(iii) hold for h, k, l, v, w, and S, f replaced by h−, k−, l−,
v−, w−, and S−, f−, respectively. Since also

v′(t0) ≥ w′(t0) ⇒ (v−)′(a+ b− t0) ≤ (w−)′(a+ b− t0),

the first part of our proof, where t0 is replaced by a+ b− t0, gives a solution
u− : [a+ b− t0, b]→ R of

(u−)′′(t) = f−(t, u−(t), (u−)′(t)),

u−(a+ b− t0) = h(t0)c0, (u−)′(a+ b− t0) = −h′(t0)c0 − h(t0)c1,

and u = (u−)− solves (4) on [a, t0].
If, in case t0 ∈ (a, b), we choose c0 ∈ [v(t0), w(t0)], c1 = v′(t0) = w′(t0),

we may put together the solutions obtained by the above procedure to get
a solution of (4) on [a, b], which a fortiori satisfies v ≤ u ≤ w on [a, b].

To prove the theorem on the given interval I, which we may assume to be
noncompact, we choose an increasing sequence (In)∞n=1 of compact intervals
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such that

I =
∞⋃

n=1

In.

If I contains one of its boundary points, it belongs to some In0 , and we
assume n0 = 1 without loss of generality. Next, for each n we choose a
solution un : In → R of (1) such that

v(t) ≤ un(t) ≤ w(t) (t ∈ In).

We fix n ∈ N and consider um, m ≥ n. Then

|u′′m(t)| ≤ max{|f(τ, x, 0)| : τ ∈ In, v(τ) ≤ x ≤ w(τ)}+ k(t)|u′m(t)| (t ∈ In),

from which we get (by [1, Chapter XII, Lemma 5.1]) a constant Ln ≥ 0 such
that

|u′m(t)| ≤ Ln (m ≥ n, t ∈ In).

By a standard diagonal procedure and Ascoli–Arzelà’s Theorem we get a
subsequence (unk) which (together with the first and second derivatives) is
locally uniformly convergent on I. Its limit is then a solution u : I → R of
(1) such that v(t) ≤ u(t) ≤ w(t) on I.

4. Examples. Let g : [0,∞) × R2 → R be continuous and bounded
(α ≤ g ≤ β), and Lipschitz continuous in its third variable. Let ‖ · ‖ denote
Euclid’s norm on Rn, n ≥ 2. The classical Ansatz for rotationally symmetric
solutions of

(5) ∆z(ξ) = g(‖ξ‖, z(ξ), ‖(grad z)(ξ)‖) (ξ ∈ Rn)

is the transformation u(‖ξ‖) = z(ξ), leading to the singular problem

(6) u′′(t) = g(t, u(t), |u′(t)|)− n− 1

t
u′(t) (t ∈ (0,∞)).

We may choose l(t) = 0 and k(t) = k0 + (n − 1)/t with k0 any Lipschitz
constant of p 7→ g(t, x, p). Then h(t) = 1 solves (2). Fix c ∈ R and consider

v(t) =
α

2n
t2 + c, w(t) =

β

2n
t2 + c.

Then

v′′(t) =
α

n
= α− α

n
(n− 1)

≤ g(t, x, v′(t))− n− 1

t
v′(t) (x ∈ R, t ∈ (0,∞)),

and

w′′(t) =
β

n
= β − β

n
(n− 1)

≥ g(t, x, w′(t))− n− 1

t
w′(t) (x ∈ R, t ∈ (0,∞)).
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By Theorem 1 there is a solution u : (0,∞) → R of (6) with v(t) ≤ u(t) ≤
w(t) (t ∈ (0,∞)). In particular the extension u(0) = c leads to u′(0) = 0.
By elementary calculus, u ∈ C2([0,∞),R). Therefore z(ξ) := u(‖ξ‖) is in
C2(Rn,R), and is a symmetric solution of equation (5) such that

α

n
‖ξ‖2 + c ≤ z(ξ) ≤ β

n
‖ξ‖2 + c (ξ ∈ Rn).

Remark. In general there is no harmonic function between v ≤ w if v
is superharmonic and w is subharmonic [2].

In our second example we consider the case f(t, x, p) = f(t, x), k(t) = 0,
and constant functions v(t) = m, w(t) = M (t ∈ I). Then conditions (i)–(iii)
reduce to

l(t)m ≤ f(t, x) + l(t)x ≤ l(t)M (t ∈ I, m ≤ x ≤M).

If f is of the form f(t, x) = l(t)g(t, x) and l(t) ≥ 0 these inequalities hold if

m ≤ g(t, x) + x ≤M (t ∈ I, m ≤ x ≤M).

Consider for example I = (0, 1),

h(t) = t(1− t), l(t) =
2

t(1− t) ,

for which (2) holds, and g(t, x) = cos(tx) − x. By Theorem 1 there is a
solution u : (0, 1)→ R of

u′′(t) =
2(cos(tu(t))− u(t))

t(1− t)
with −1 ≤ u(t) ≤ 1 (t ∈ (0, 1)).
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Reçu par la Rédaction le 7.10.2004
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