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Kamenev type oscillation criteria for second
order matrix differential systems with damping

by Qi-gui Yang (Guangzhou) and Sui Sun Cheng (Hsinchu)

Abstract. By using monotone functionals and positive linear functionals on a suit-
able matrix space, new oscillation criteria for second order self-adjoint matrix differential
systems with damping are given. The results are extensions of the Kamenev type oscil-
lation criteria obtained by Wong for second order self-adjoint matrix differential systems
with damping. These extensions also include an earlier result of Erbe et al.

1. Introduction. Oscillations of mechanical systems with damping are
often described by second order matrix differential equations of the form

(1) (P (t)Y ′(t))′ + r(t)P (t)Y ′(t) +Q(t)Y (t) = 0, t ≥ t0,
where r(t) is a real continuous function on [t0,∞) and Y (t), P (t), Q(t) ∈
Rn×n are real symmetric continuous matrix functions for t ∈ [t0,∞) with
P (t) positive definite. A solution Y (t) of the system (1) is said to be nontriv-
ial if detY (t) 6= 0 for at least one t ∈ [t0,∞), and prepared or self-conjugate if

Y ∗(t)P (t)Y ′(t)− [Y ∗(t)]′P (t)Y (t) = 0, t ≥ t0,
where A∗ denotes the transpose ofA. A prepared solution Y (t) of (1) is called
oscillatory on [t0,∞) if its determinant vanishes at some point of [T,∞) for
each T ≥ t0. Otherwise, it is called nonoscillatory . The system (1) is called
oscillatory on [t0,∞) if every nontrivial prepared solution is oscillatory.

Oscillation criteria for (1) have been given by a number of authors. In
particular, Erbe et al. in [1] obtains Kamenev type oscillation condition for
(1) with r(t) ≡ 0.

On the other hand, when n = 1 and P (t) ≡ I, the system (1) reduces to
a scalar differential equation of the form

y′′ + r(t)y′ + q(t)y = 0, t ≥ t0,
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investigated by Wong in [3] where nontrivial extensions of the earlier results
for the scalar equation are given. However, no further generalizations have
been given by Wong for the matrix system (1).

In this paper, by employing the ideas of Wong and by using monotone
functionals as well as positive linear functionals, we will obtain three oscilla-
tion theorems providing nontrivial extensions of some of the earlier results.

Let D = {(t, s) : t0 ≤ s ≤ t} ⊂ R2 and D0 = {(t, s) : t0 ≤ s < t}, and
let H(t, s) be a kernel function continuous and sufficiently smooth on D, so
that the following conditions are satisfied:

(H1) H(t, s) ≥ 0 and H(t, t) = 0 for t0 ≤ s ≤ t;
(H2) For each s ≥ t0, limt→∞H(t, s) = ∞, and there exist positive con-

stants k0,K0 such that 0<k0≤ limt→∞H(t, s)H−1(t, t0)≤K0 <∞
for s ≥ t0;

(H3) 0≤−∂H(t, s)/∂s=λ(t, s)H(t, s), and ∂λ(t, s)/∂s≤0 for (t, s)∈D0.

Furthermore, let % ∈ C1([t0,∞), (0,∞)) and let K = C1([t0,∞),Rn×n).
The operator A%τ : K→ K (see [3]) is defined as

(2) A%τ (g)(t) =

t�

τ

H(t, s)g(s)%(s) ds, t ≥ τ ≥ t0,

where g ∈ C[t0,∞). As shown in [3], the integral operator A%τ is linear and
positive (see def. below) and has the following properties:

(P1) lim
t→∞

1

H(t, t0)

t�

t0

H(t, s)g(s) ds = 0 if g ∈ C[t0,∞) and g ∈ L1[t0,∞);

(P2) lim
t→∞

1

H(t, t0)

t�

t0

H(t, s)g(s) ds = 0 if g ∈ C[t0,∞) and

lim
t→∞

t�

t0

g(s) ds =∞;

(P3)
1

H(t, t0)

t�

t0

H(t, s)g(s) ds is nondecreasing in t if g ∈ C[t0,∞) and

g(s) ≥ 0 on [t0,∞);

(P4) A%τ (g′)(t) = −H(t, τ)g(τ)%(τ)+A%τ([λ−%−1%′]g)(t) for g ∈ C1[t0,∞).

2. Oscillation in terms of nonlinear functionals. Hereafter tr(A)
will denote the trace of A ∈ Rn×n and In or I the n × n identity matrix.
Let S denote the linear space of all n× n real symmetric matrices. For any
A,B ∈ S, we write A ≥ B or A− B ≥ 0 if A− B is positive semi-definite,
and A > B or A − B > 0 if A − B is positive definite. We will use some
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properties of this ordering, viz. A ≥ B implies that CAC ≥ CBC for C ∈ S
and trA ≥ trB, and A ≥ B and B ≥ 0 imply that A ≥ 0.

Definition 2.1. A functional p : S → R is said to be subhomogeneous
if p(λK) ≤ λp(K) whenever K ∈ S and λ ≥ 0. Such a functional is said
to be monotone (or nondecreasing) if J − K ≥ 0 implies p(J) ≥ p(K) for
J,K ∈ S.

The first part of Definition 2.1 is found in Hartman [2, p. 328]. Note that
the functionals p(K) = λmax(K), λmax(K + P ), tr(K + P ), where P ∈ S is
positive definite, are monotone and subhomogeneous on S.

Definition 2.2 ([2]). A linear functional L : S → R satisfying L(K+J)
L(K) + L(J), L(λK) = λL(K) for K,J ∈ S, λ ∈ R, is said to be positive if
L(K) > 0 whenever K ∈ S and K > 0.

Lemma 2.1. Let A,B ∈ Rn×n be real symmetric matrices. Then

tr[(A+B)2] ≤ 2(trA2 + trB2).

Lemma 2.1 follows from the monontonicity of the operator tr and the
inequality (A+B)∗P (A+B) ≤ 2(A∗PA+B∗PB) for P ∗ = P > 0.

In all the following theorems, we will assume that r, P,Q satisfy the
assumptions stated right after (1), that the function H(t, s) satisfies (H1)–
(H3) and that A%τ is defined by (2) for some % ∈ C1([t0,∞), (0,∞)) and
τ ≥ t0.

Theorem 2.1. Suppose there exists a monotone subhomogeneous func-
tional p on S such that r(t), P (t) and Q(t) satisfy

(3) lim sup
t→∞

H−1(t, t0)p[A%t0(Q− {r + λ− %′%−1}2P/4)] =∞.

Then the system (1) is oscillatory.

Proof. Suppose to the contrary that there exists a nonoscillatory pre-
pared solution Y (t) of (1). Without loss of generality, we may assume that
detY (t) 6= 0 for t ≥ t0. Hence the matrix function

(4) W (t) = [P (t)Y ′(t)]Y −1(t)

exists on [t0,∞). It is easy to see that W ∗(t) = W (t) and W (t) satisfies the
Riccati equation

(5) W ′(t) = −Q(t)− r(t)W (t)−W (t)P−1(t)W (t)

for t ∈ [t0,∞). By (P4) and (H3),

A%τ (W ′) = −H(τ, t)W (τ)%(τ) + A%τ ([λ− %−1%′]W ),

and by (5), W ′ = −Q− rW −WP−1W . From the formulae above we get

−HW% = A%τ (WP−1W + 2αW +Q), where α =
1

2
(λ+ r − %−1%′).
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Applying to the last formula the identity

WP−1W + 2αW +Q = (P−1W + αI)∗P (P−1W + αI) +Q− α2P

one obtains

(6) H(t, τ)%(τ)W (τ)

= A%τ ((P−1W + αI)∗P (P−1W + αI)) + A%τ (Q− α2P ),

from which, since P > 0, it follows that

(7) A%τ (Q− α2P ) ≤ H(t, τ)%(τ)W (τ)

and, as a consequence,

(8) p[A%τ{Q− {r + λ− %′%−1}2P/4}] ≤ H(t, τ)%(τ)p[W (τ)].

Set τ = t0 in (8) and divide the resulting inequality by H(t, t0) to obtain

(9) [H(t, t0)]−1p[A%t0{Q− {r + λ− %′%−1}2P/4}] ≤ %(t0)p[W (t0)],

a contradiction with (3). This completes the proof.

Note that the result of Erbe et al. stated in the first section does not
require H(t, s) to satisfy conditions (H2) and (H3). But they considered a
special case of (1): r(t) ≡ 0.

Theorem 2.2. Suppose that % ∈ C1([t0,∞), (0,∞)), H(t, s) and λ(t, s)
are continuous on D = {(t, s) | t ≥ s ≥ t0} such that strict inequality holds
in (H1). Suppose further that ∂H(t, s)/∂s is nonpositive and continuous for
t ≥ s ≥ t0, and

(10) 0 ≤ −∂H(t, s)/∂s = λ(t, s)H1/2(t, s), (t, s) ∈ D.
If there exists a monotone subhomogeneous functional p on S such that

(11) lim sup
t→∞

H−1(t, t0)p[A%t0(Q− {r + λH−1/2 − %′%−1}2P/4)] =∞,

then the system (1) is oscillatory.

Indeed, since H(t, s) > 0, condition (10) is equivalent to (H3) with
λ1(t, s) = −λ(t, s)/H(t, s). Theorem 2.2 is thus a corollary of Theorem 2.1.

Remark 2.1. Theorems 2.1 and 2.2 remain valid if a monotone subho-
mogeneous functional p : S → R is replaced by a linear positive functional
L : S → R. In fact, it is easy to see that if L is linear and positive, then it
is monotone subhomogeneous.

3. Oscillation in terms of positive linear functionals. Let %(s) =
exp{ � st0 r(τ) dτ} and P (t) = I in (3). Then Theorem 2.1 and Remark 2.1
yield
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Corollary 3.1. Let α > 1. Suppose that r and Q satisfy

lim sup
t→∞

1

tα
L
[ t�

t0

(t− s)αQ(s) exp
( s�

t0

r(τ) dτ
)
ds
]

=∞

and

lim
t→∞

1

tα

t�

t0

(t− s)α−2 exp
( s�

t0

r(τ) dτ
)
ds <∞.

Then the system (1) with P (t) ≡ I is oscillatory.

In particular, if we choose L[K] = tr[K], we get the following theorem.

Theorem 3.1. Assume that P−1(t) ≥ In. Suppose there are continuous
functions φ1, φ2 on [t0,∞) such that

lim sup
t→∞

H−1(t, t0) tr[A%τ (Q)] ≥ φ2(τ), τ ≥ t0,(12)

lim
t→∞

H−1(t, t0) tr(A%τ{[r + λ− %′%−1]2P}) ≤ φ1(τ), τ ≥ t0,(13)

and

(14) lim
t→∞

H−1(t, t0)A%τ{%−2[φ2 − φ1/4]2+} =∞, τ ≥ t0,

where φ+(t) = max{φ(t), 0}. Then the system (1) is oscillatory.

Proof. Suppose to the contrary that there exists a nonoscillatory pre-
pared solution Y (t) of (1). Without loss of generality, we may assume that
detY (t) 6= 0 for t ≥ t0. Define W (t) by (4). As in the proof of Theorem 2.1,
we deduce that (7) implies

(H(t, τ)/H(t, s))%(τ)W (τ) ≤ (1/H(t, s))A%τ (Q− α2P ).

Hence by (H2), (12) and (13) we get K0%(τ) tr[W (τ)] ≤ φ2(τ)− (1/4)φ1(τ)
and, consequently, taking traces of both sides and passing with t to infinity,

(15) lim
t→∞

1

H(t, t0)
tr[A%t0(W 2(t))] =∞.

Setting in (6) τ = t0 and defining G = (P−1W + αI)∗P (P−1W + αI),
we obtain W (t0)%(t0) ≤ (1/H(t, t0))A%τ

(
G+ (Q− α2P )

)
. By (12) and (13),

lim
t→∞

(1/H(t, t0))A%t0(G) = W (t0)%(t0)− lim
t→∞

(1/H(t, t0))A%t0(Q− α2P )(16)

≤W (t0)%(t0) + φ2(t0)− φ1(t0) <∞.
Now W 2 ≤W ∗P−1W because P−1 ≥ I. But

W ∗P−1W = (W + αP − αP )∗P−1(W + αP − αP )

= (P−1W + αP )∗P−1(P−1W + αP ).

By Lemma 1.1, we conclude that W 2 ≤ 2(G+ α2P ), so

tr[A%t0(W 2)] ≤ 2 tr[A%t0(G)] + 2 tr[A%t0(α2P )],
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which by (16) and assumption (13) implies that

lim
t→∞

1

H(t, t0)
tr[A%t0(W 2(t))] <∞,

contradicting (15). The proof is complete.

In case L[A] = tr[A], we obtain some interesting results. By arguments
similar to those presented in Wong [3], we may show the following corollaries:

Corollary 3.2. Let α > 1. Suppose that r ∈ C1[t0,∞) and Q(t) satisfy

(17) lim sup
t→∞

1

tα
tr

( t�

t0

(t− s)α
{
Q− r2

4
In −

r′

2
In

}
ds

)
=∞.

Then the system (1) with P (t) ≡ I is oscillatory.

Corollary 3.3. Let α > 1. Suppose that % ∈ C1[t0,∞), %(t) > 0,

(18)

∞�

t0

%′(s)2

%(s)
ds = M0 <∞, lim

t→∞

t�

t0

r2(s)%(s) ds <∞,

and

(19) lim
t→∞

1

tα
tr
( t�

t0

(t− s)αQ(s)%(s) ds
)

=∞.

Then the system (1) with P (t) ≡ I is oscillatory.

In case %(s) = exp{ � st0 r(τ) dτ} in (3), Theorem 2.1 and Remark 2.1 yield

Corollary 3.4. Let α > 1. Suppose that r and Q satisfy

lim sup
t→∞

1

tα
tr
( t�

t0

(t− s)αQ(s) exp
( s�

t0

r(τ) dτ
)
ds
)

=∞,

lim
t→∞

1

tα

t�

t0

(t− s)α−2 exp
( s�

t0

r(τ) dτ
)
ds <∞.

Then the system (1) with P (t) ≡ I is oscillatory.

Example 3.1. Consider the system (1) where

(20) P (t) = I2, r(t) = cos t, Q(t) = diag[sin t,− sin t], t ≥ 0.

Note that both r and Q are oscillatory, that is, they take on alternating
signs for large values of t. Let us apply Corollary 3.1 to our equation by
defining L[R] = r11 where R = (rij). It is easy to see
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(21)
1

tα
L
[ t�

t0

(t− s)αQ(s) exp
( s�

t0

r(τ) dτ
)
ds
]

=
1

tα

t�

t0

(t− s)α(sin s) exp
( s�

t0

cos τ dτ
)
ds.

Note further that

(22) lim
t→∞

t−α
t�

0

(t− s)α−2 exp(sin s) ds = 0.

By arguments similar to those presented in Wong [3], the integral in (21)
diverges as t→∞. By Corollary 3.1, we see that every prepared solution of
our system (1) defined by (20) is oscillatory.

However, if we choose L[R] = trR, then trQ(t) = 0. In this case, our
system is still oscillatory. Note that our system can be written as a pair of
scalar equations:

x′′ + (cos t)x′ + (sin t)x = 0,(23)

y′′ + (cos t)y′ − (sin t)y = 0.(24)

From the above discussion, it is easy to see (23) is oscillatory. But the system
(24) has a nonoscillatory solution x(t) = exp{− sin t}. Hence, Theorems
2.1, 2.2 and Theorem 3.2 cannot be applied to our system, neither can the
oscillation criteria in [1–4].

Example 3.2. Consider the n-dimensional system (1) where

(25) P (t) = In, r(t) = cos t, Q(t) = In sin t, t ≥ 0.

Again, both r and Q are allowed to be oscillatory. By arguments similar to
those above, we can obtain (22) and

lim sup
t→∞

t−α tr
( t�

t0

(t− s)αQ(s) exp
( s�

t0

r(τ) dτ
)
ds
)

=∞.(26)

But (22) and (26) imply conditions in Corollary 3.4, proving that system (1)
defined by (25) is oscillatory. However, the oscillation of our system cannot
be demonstrated by the criteria in [1–4].
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Révisé le 22.2.2005 (1539)


