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Period function’s convexity for Hamiltonian centers
with separable variables

by M. Sabatini (Trento)

Abstract. A convexity theorem for the period function T of Hamiltonian systems
with separable variables is proved. We are interested in systems with non-monotone T .
This result is applied to proving the uniqueness of critical orbits for second order ODE’s.

1. Introduction. Let us consider a planar Hamiltonian system with
separated variables,

x′ = F ′(y), y′ = −G′(x),(1)

defined on an open connected set Ω ⊂ R2. If its Hamiltonian H(x, y) =
F (y) +G(x) has an isolated extremum at the origin O, then O has a punc-
tured neighbourhood covered with non-trivial cycles. We denote by NO the
largest connected punctured neighbourhood of O covered with non-trivial
cycles. We define the period function T : NO → R of (1) as the function
assigning to every point (x, y) ∈ NO the minimal period of the cycle passing
through (x, y). We say that the period function T is increasing if, for ev-
ery couple of cycles γ1, γ2, with γ1 enclosed by γ2, one has T (γ1) ≤ T (γ2).
When T is constant, we say that O is isochronous. Let δ(s), s ∈ (σ∗, σ∗),
be a curve of class C1 meeting transversally the cycles of NO. Assume that
lims→σ+

∗
δ(s) = O. We can consider the function T (s) ≡ T (δ(s)). Then T is

increasing if and only if T (s) is a one-variable increasing function. Let γs be
the unique cycle met by δ at the point δ(s). We say that T has an extremum
at γs if T (s) has an extremum at s = s. We say that γ is a critical cycle if[
d
dsT (s)

]
s=s

= 0. One can prove that this definition does not depend on the
particular transversal curve δ chosen.
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Studying the period function is essential in some stability, bifurcation,
and boundary value problems related to Hamiltonian systems, or to systems
reducible to Hamiltonian ones, as Lotka–Volterra systems. The period func-
tion’s monotonicity for systems of type (1) was studied by several authors
([1], [6]–[9], [11]–[15]); here we do not mention papers devoted to isochronic-
ity. In some cases the monotonicity was proved together with a convexity
property related to T ([14]), not implying T ’s convexity. Systems with a non-
monotone period function, hence with critical orbits, were studied in [2], [4],
[5], [17]. In [12] it was proved that a system of type (1), with F ′(y) = y,
can have at most a simple critical point for every central region, if G(x) is
a polynomial of degree four. In [3] it was proved that critical orbits of an
analytic center do not accumulate on a compact set.

The monotonicity ensures that a typical boundary value problem, x(0) =
x(T ), has a unique solution for T belonging to some interval. Similarly, when
F ′(y) = y, that is, when the system takes the form

x′ = y, y′ = −G′(x),

the uniqueness of Neumann-like problems, x′(0) = x′(T ), may be reduced
to the study of T ’s monotonicity, as in [1].

A different situation has to be taken into account when looking for mul-
tiple solutions of boundary value problems. If x(0) = x(T ) has more than a
single solution, then T (s) has different monotonicity properties in distinct
intervals. Such intervals, corresponding to distinct subsets of NO, are sep-
arated by values of s where T reaches a local extremum. The problem of
counting the exact number of solutions to x(0) = x(T ) is related to the
problem of counting such local extrema. The simplest way to estimate the
number of such extrema is to study the convexity of T (s), which ensures
the uniqueness of the extremum. If T (s) is convex, there exists an inter-
val (T1, T2) such that the BVP x(0) = x(T ) has exactly two solutions for
T ∈ (T1, T2).

In this paper we give sufficient conditions for the existence of a transver-
sal curve δ(s) such that T (δ(s)) is convex on some interval. The main tool
applied is a theorem proved in [9], where T was studied by means of a
suitable auxiliary system,

x′ =
G(x)

G′(x)
, y′ =

F (y)

F ′(y)
.(2)

Such a system is a normalizer of (1), that is, its local flow takes orbits of
(1) into orbits of (1). If we denote by V (x, y) the vector field of (1), and by
W (x, y) the vector field of (2), this is equivalent to saying that there exists
a function µ : NO → R such that

[V,W ] = µV.
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If δ(s) is a solution to (2), then, as proved in [9],

T ′(s) =
d

ds
T (δ(s)) =

T (s)�

0

µ(γs(t)) dt.(3)

In the case of the couple of systems (1) and (2), one has

µ(x, y) =

(
G(x)

G′(x)

)′
+

(
F (y)

F ′(y)

)′
− 1.

Hence, proving the convexity of T (s) reduces to proving that the integral in
(3) has larger values on outer cycles. This can be done, on a suitable subset
A of NO, by adapting a technique used to study the uniqueness of limit
cycles in Liénard systems (see [10], [16], [18]).

In Theorem 1 we show that under suitable assumptions on the sign of
some functions depending on F , G and their derivatives up to the third
order, T ′(s) is increasing on A, hence T (s) is convex on A. As a conse-
quence, (1) has at most one critical orbit in A. Conditions for the existence
and uniqueness of critical orbits are given for some classes of second or-
der conservative ODE’s. It is maybe worth noticing that the function N(x)
introduced in [1],

N(x) = 6G(x)G′′2(x)− 3G′(x)2G′′(x)− 2G(x)G′(x)G′′′(x),

plays a role also in the study of convexity. On the other hand, we find an
example of degenerate planar center with T strictly decreasing at the origin,
such that N(x) ≥ 0 in a neighbourhood of O. This shows that Theorem A
in [1] cannot be extended to degenerate centers.

2. Results. Let G ∈ C3(I,R), F ∈ C3(J,R), I, J open intervals con-
taining 0, possibly unbounded. We consider the system (1), assuming F and
G to have isolated minima at the origin. We do not assume the minima to
be non-degenerate, because the results proved in [9] hold under the only as-
sumption that H(x, y) = G(x)+F (y) has a minimum at O. Also, we assume
xG′(x) > 0 on I \ {0}, and yF ′(y) > 0 on J \ {0}.

We say that (1) satisfies the conditions (L) if there exist α ∈ C0(I,R),
β ∈ C0(J,R) and a, b ∈ I, a ≤ 0 ≤ b, c, d ∈ J , c ≤ 0 ≤ d, such that:

(L1) α(x) + β(y) =

(
G(x)

G′(x)

)′
+

(
F (y)

F ′(y)

)′
− 1,

(L2) α(x) ≥ 0 for x 6∈ [a, b], α(x)F ′′(y) ≤ 0 for x ∈ [a, b], y 6∈ [c, d];
(L3) β(y) ≥ 0 for y 6∈ [c, d], G′′(x)β(y) ≤ 0 for x 6∈ [a, b], y ∈ [c, d];

(L4)

(
α(x)

G′(x)

)′
≥ 0 for x 6∈ [a, b],
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(L5)

(
β(y)

F ′(y)

)′
≥ 0 for y 6∈ [c, d].

The above conditions are considered even in the case of intervals reducing
to a single point, as it occurs when a = 0 = b.

We denote by Oeabcd the family of cycles contained in NO and enclosing
the rectangle [a, b] × [c, d], and by Oiabcd the family of cycles contained in
NO ∩ [a, b]× [c, d]. In general, NO 6= Oiabcd ∪ Oeabcd. If c = 0 = d, a < 0 < b,
we denote by Oeab00 the family of cycles meeting both the lines x = a and

x = b, and by Oiab00 the family of cycles contained in the strip a < x < b.
Similarly for a = 0 = b, c < 0 < d.

Convexity is not assumed to be necessarily strict. Since there is one-
to-one correspondence between the parameters s and the orbits γs, we say
equivalently that T is (strictly) convex at s or at γs. Similarly, we say that T
is (strictly) convex on Oeabcd, or on Oiabcd.

The main result of this paper is the following theorem.

Theorem 1. Assume that (1) satisfies the conditions (L). Then the
function T is convex on Oeabcd.

Proof. It is sufficient to prove that T ′(s) is increasing on Oeabcd. By
Lemma 7 in [9], the derivative of T (s) is given by (3), where

µ(x, y) =

(
G(x)

G′(x)

)′
+

(
F (y)

F ′(y)

)′
− 1 = α(x) + β(y).

Consider two cycles, γs1 , γs2 , with s1 < s2. The cycle γs1 is contained in
the bounded region having γs2 as boundary. In order to prove that T ′(s1) ≤
T ′(s2), we have to show that

T (s1)�

0

µ(γs1(t)) dt ≤
T (s2)�

0

µ(γs2(t)) dt.

The orbits will be decomposed into arcs over which the integration will be
performed with respect to x or y.

Let us first compare the terms � T (s1)
0 α(γs1(t)) dt and � T (s2)

0 α(γs2(t)) dt.

Since γ1 encloses the rectangle [a, b] × [c, d], it meets the line x = b at
points (b, c′), (b, d′), with c′ ≤ 0 ≤ d′. Also, it meets the line x = a at points
(a, c′′), (a, d′′), with c′′ ≤ 0 ≤ d′′.

The curve γ1 is the union of four arcs:

γ1
1 ⊂ {a ≤ x ≤ b, y > 0}, γ2

1 ⊂ {x ≥ b},
γ3

1 ⊂ {a ≤ x ≤ b, y < 0}, γ4
1 ⊂ {x ≤ a}.
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The curve γ2 is the union of eight arcs:

γ1
2 ⊂ {a ≤ x ≤ b, y > 0}, γ2

2 ⊂ {x ≥ b, c′ ≤ y ≤ d′},
γ3

2 ⊂ {a ≤ x ≤ b, y < 0}, γ4
2 ⊂ {x ≤ a, c′′ ≤ y ≤ d′′};

γI
2 ⊂ {x ≥ b, y ≥ d′}, γII

2 ⊂ {x ≥ b, y ≤ c′},
γIII

2 ⊂ {x ≤ a, y ≤ c′′}, γIV
2 ⊂ {x ≤ a, y ≥ d′′}

(see Figure 1).

Since α ≥ 0 off [a, b], one has
�

γI
2

α ≥ 0,
�

γII
2

α ≥ 0,
�

γIII
2

α ≥ 0,
�

γIV
2

α ≥ 0.

In order to prove that � T (s1)
0 α(γs1(t)) dt ≤ � T (s2)

0 α(γs2(t)) dt, it is sufficient
to prove that �

γj1

α ≤
�

γj2

α, j = 1, . . . , 4.

We give the details only for the arcs γ1
1 , γ2

1 , γ1
2 , γ2

2 , since the other
four arcs can be treated in a similar way. Since for a ≤ x ≤ b one has
dx/dt = F ′(y) > 0, along γ1

1(t) one can express t as a function of x and
integrate with respect to x. Writing F (y) for F (y(t(x))), one has

�

γ1
1

α(γs1(t)) dt =

[ b�

a

α(x) dx

F ′(y)

]

γ1
1

.
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Since α(x)F ′′(y) ≤ 0 for x ∈ [a, b], y 6∈ [c, d], one has

∂

∂y

α(x)

F ′(y)
= −α(x)F ′′(y)

F ′(y)2
≥ 0,

so that α(x)/F ′(y) is an increasing function of y. As γ2 is external with
respect to γ1, it follows that

�

γ1
1

α(γs1(t)) dt =

[ b�

a

α(x) dx

F ′(y)

]

γ1
1

≤
[ b�

a

α(x) dx

F ′(y)

]

γ1
2

=
�

γ1
2

α(γs2(t)) dt.

Now consider the arcs γ2
1 , γ2

2 , along which one has dy/dt = −G′(x) < 0,
so that one can express t as a function of y, and integrate with respect to y,

�

γ2
1

α(γs1(t)) dt =

[ c′�

d′

α(x) dy

−G′(x)

]

γ2
1

=

[ d′�

c′

α(x) dy

G′(x)

]

γ2
1

.

By (L4), one has
∂

∂x

(
α(x)

G′(x)

)
≥ 0,

hence α(x)/G′(x) is an increasing function, and as above

�

γ2
1

α(γs1(t)) dt =

[ c′�

d′

α(x) dy

−G′(x)

]

γ2
1

≤
[[ c′�

d′

α(x) dy

−G′(x)

]

γ2
1

]

γ2
2

=
�

γ2
2

α(γs2(t)) dt.

The same argument works as well for the arcs γ3
1 , γ4

1 , γ3
2 , γ4

2 . Summing up,
one has

T (s1)�

0

α(γs1(t)) dt ≤
T (s2)�

0

α(γs2(t)) dt.

Now consider the integrals involving β. We can work as we did for α,
with the lines y = c, y = d playing the role of x = a, x = b. Computations
are similar, and lead to a similar conclusion,

T (s1)�

0

β(γs1(t)) dt ≤
T (s2)�

0

β(γs2(t)) dt.

The term −1 appearing in µ can be absorbed in different ways by α
and β. In general, for a given κ ∈ R, we may write

µ(x, y) =

[(
G(x)

G′(x)

)′
+ κ

]
+

[(
F (y)

F ′(y)

)′
− 1− κ

]
= α(x) + β(y).

Denote by (−Lj), j = 2, . . . , 5, the conditions obtained from (Lj), j =
2, . . . , 5, by reversing the inequalities. We have the following analogue of
Theorem 1 for the concavity of the period function.
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Theorem 2. Assume that (1) satisfies the conditions (L1), (−Lj), j =
2, . . . , 5. Then the function T is concave on Oeabcd.

Proof. As in Theorem 1, reversing the integral inequalities.

The next four corollaries are concerned with the strict convexity onOeabcd.
This property implies the uniqueness of critical orbits on Oeabcd, if they exist.

Corollary 1. Assume that the hypotheses of Theorem 1 hold. Let the
cycle γ pass through a point (x, y) such that at least one of the inequalities in
(Lj), j = 2, . . . , 5, is strict. Then T is strictly convex in a neighbourhood of γ.

Proof. At least one of the integral inequalities of the proof of Theorem 1
is strict at (x, y). By continuity, this holds in a neighbourhood of (x, y),
hence T ′(s) is strictly increasing in a neighbourhood of γ.

For instance, if there exists x > b such that α(x) > 0, then T is strictly
convex at every orbit intersecting the line x = x. As a consequence, one has
at most one critical orbit intersecting the line x = x. A similar statement
can be proved about strict concavity.

Corollary 2. Under the hypotheses of Theorem 1, assume that one of
the following holds:

(i) there exist xn > b with limn→∞ xn = b such that α(xn) > 0 (xn < a
with limn→∞ xn = a such that α(xn) > 0);

(ii) there exist yn > d with limn→∞ yn = d such that β(yn) > 0 (yn < c
with limn→∞ yn = c such that β(yn) > 0).

Then the function T is strictly convex on Oeabcd.

Proof. This is an immediate consequence of Corollary 1, since every cycle
in Oeabcd has to meet at least one of the lines x = xn (y = yn).

Corollary 3. Under the hypotheses of Theorem 1, assume that one of
the following holds:

(i) there exists x ∈ [a, b] such that α(x) < 0 and F ′′(y) > 0 for y > d
(F ′′(y) > 0 for y < c);

(ii) there exists y ∈ [c, d] such that β(y) < 0 and G′′(x) > 0 for x > b
(G′′(x) > 0 for x < a).

Then the function T is strictly convex on Oeabcd.

Proof. (i) is an immediate consequence of Corollary 1, since every cycle
in Oeabcd has to meet the half-line x = x, y > d (x = x, y < c). Item (ii) can
be proved similarly.

Strict convexity (concavity) can also be proved for analytic systems. We
recall that monotonicity is not assumed to be strict, so that a constant
period function is monotone.
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Corollary 4. Assume that the hypotheses of Theorem 1 hold. If F and
G are analytic functions, and T is not monotone on Oeabcd, then T is strictly
convex on Oeabcd.

Proof. T (s) = T (δ(s)) is an analytic function. By Theorem 1, T is convex
on Oeabcd, hence T ′′(s) ≥ 0. Moreover, T ′′(s) is not identically zero: otherwise
there would exist κ1, κ2 ∈ R such that T (s) = κ1s+ κ2, which would imply
monotonicity. By analyticity, the zeroes of T ′′(s) are isolated, so T ′(s) is
strictly increasing, which gives the strict convexity of T .

Example 1. Setting

G(x) =
|x|11/2

x4 + 1
,

consider the Hamiltonian

H(x, y) = G(x) +G(y) =
|x|11/2

x4 + 1
+
|y|11/2

y4 + 1
.

Since G(x) is an even function, one may consider only its derivatives for
x > 0, which simplifies the computations. One has, for x > 0,

G′(x) = x9/2 3x4 + 11

2(x4 + 1)2
, G′′(x) = x7/2 3x8 − 26x4 + 99

4(x4 + 1)3
,

hence the origin is a global center, with convex Hamiltonian. Moreover,
setting

α(x) =
3x8 + 118x4 − 77

2(3x4 + 11)2
,

one has

µ(x, y) = α(x) + α(y) =
3x8 + 118x4 − 77

2(3x4 + 11)2
+

3y8 + 118y4 − 77

2(3y4 + 11)2
.

The function α(x) vanishes for x0 =
(
−59

3 + 8
3

√
58
)1/4

, which is approxi-
mately 0.9. One has α(x) < 0 for x ∈ (−x0, x0), and α(x) > 0 for x 6∈
[−x0, x0]. The period function of the Hamiltonian system is decreasing on
the orbits contained in the square Q = [−x0, x0]× [−x0, x0], and is strictly
convex on the orbits enclosing Q.

The next corollary is concerned with conservative second order differen-
tial equations,

x′′ +G′(x) = 0.(4)

As in [1], we set

N(x) = 6G(x)G′′2(x)− 3G′(x)2G′′(x)− 2G(x)G′(x)G′′′(x).

In what follows, we choose c = 0 = d.
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Corollary 5. Let G ∈ C3(I,R) with xG′(x) > 0 for x 6= 0. If there
exist a, b ∈ I, a ≤ 0 ≤ b, such that

(i) G′(x)2−2G(x)G′′(x) ≤ 0 for x ∈ [a, b], and G′(x)2−2G(x)G′′(x) ≥ 0
for x 6∈ [a, b],

(ii) N(x) ≥ 0 for x 6∈ [a, b],

then the period function T (s) is convex on Oeab00.

Reversing the above inequalities implies the concavity of T (s) on Oeab00.

Proof. The equation (4) is a special case of (1), with F (y) = y2/2,
c = 0 = d, β(y) = 0. Then α = (G′2 − 2GG′′)/2G′2, and

(
α

G′

)′
=

6GG′′2 − 3G′2G′′ − 2GG′G′′′

2G′4
=

N

2G′4
.

Conditions (i)–(ii) ensure that the hypotheses of Theorem 1 hold.

A simple additional condition allows us to prove the uniqueness of critical
orbits of (4) on all of NO. In the situation considered in the next corollary,
one has NO = Oiab00 ∪ Oeab00.

Corollary 6. Suppose that (4) is a non-linear equation. Under the
hypotheses of Corollary 5, assume additionally that G(a) = G(b). If the
hypotheses of one of the corollaries 2 or 4 hold , then (4) has at most one
critical orbit in NO, contained in the set G(x) + y2/2 > G(a).

Proof. The cycles are contained in level sets of the first integral G(x) +
y2/2. If G(a) = G(b), then there exists a cycle γab passing through (a, 0)
and (b, 0). All the other cycles either meet both the lines x = a and x = b,
or are contained in the strip a < x < b, hence NO = Oiab00 ∪Oeab00. One has
T ′(s) ≤ 0 for every cycle γs ∈ Oiab00, because α(x) ≤ 0 on [a, b]. We claim
that actually T ′(s) < 0 on Oiab00. In fact, assume that α ≡ 0 on [a, b]. Then
G′2 − 2GG′′ ≡ 0 on [a, b], so that, on the interval (0, b), where both G and
G′ are positive, one has

G′

G
= 2

G′′

G′
.

Integrating gives lnG = 2 lnG′ + κ0, κ0 ∈ R, hence G = κ1G
′2, κ1 > 0.

Integrating the equation G = κ1G
′2 gives G(x) = (κ2x + κ3)2. Since G(x)

vanishes at 0, one has κ3 = 0, so that G(x) = (κ2x)2, contradicting the
non-linearity of (4). This proves that α(x) vanishes identically on no inter-
val [0, b1) ⊂ [0, b). As a consequence, T ′ is strictly negative on Oiab00. In
particular, T ′ is strictly negative on the orbit γab, and, by continuity, on
a neighbourhood of γab. Hence a critical orbit cannot be contained in the
sublevel set G(x) + y2/2 ≤ G(a), but, if it exists, it has to belong to Oeab00,
where T is strictly convex, by Corollary 2 or 4. This gives the uniqueness.
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Example 2. The potential G(x) = x2 + x4 − x6 generates the system

x′ = y, y′ = −2x− 4x3 + 6x5.(5)

We take I = [−1, 1] and J = R. The system (5) has a center at the origin,
with central region contained in the rectangle [−1, 1]× [−

√
2,
√

2].

One has

G′2 − 2GG′′ = −4x4(3− 8x2 − 9x4 + 6x6),

N = −24x4(1− 18x2 + 34x4 − 52x6 − 59x8 + 30x10).

Applying the Sturm procedure, one can show that in the interval [−1, 1],
G′2−2GG′′ has exactly two zeroes −x1 < 0 < x1, as does N , which vanishes
at −x2 < 0 < x2. One has −x1 < −x2 < 0 < x2 < x1, so that if we take
a = −x1, b = x1, the system (5) satisfies all the hypotheses of Corollary 6.
Its period function is strictly decreasing in a neighbourhood of the origin,
it is strictly convex on O−x1x100, it tends to +∞ approaching the boundary
∂NO, and there exists exactly one critical orbit. A numerical approximation
shows that x1 is approximately 0.544, while x2 is approximately 0.249.

Example 3. The potential G(x) = x4

x4+1
generates the system

x′ = y, y′ = − 4x3

(x4 + 1)2
.(6)

We take I = R, J = (−
√

2,
√

2). The system (6) has a center at the origin,
with central region contained in the strip I × J . One has

G′2 − 2GG′′ =
8x6(5x4 − 1)

(x4 + 1)4
.

The right hand side is negative for x ∈ (−1/51/4, 1/51/4), and positive for
x 6∈ [−1/51/4, 1/51/4]. Moreover, one has

N = 96x8(15x8 + 1)/(x4 + 1)7,

which is positive for x 6= 0. Also in this example T ′(s) < 0 on the cycles
contained in the strip x ∈ [−1/51/4, 1/51/4], and T is strictly convex on the
cycles meeting both the lines x = ±1/51/4. As a consequence, the system
(6) has exactly one critical cycle, meeting both the lines x = ±1/51/4.

Remark 1. The above example shows that Theorem A in [1] cannot be
extended to non-degenerate centers. In fact, the function N(x) is positive
everywhere but at 0 while T is strictly decreasing in a neighbourhood of the
origin. The proof of Theorem A in [1] does not apply because the center of
(6) is degenerate, and the change of variables on which the proof is based
cannot be defined.
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Università di Trento
I-38050 Povo (TN), Italy
E-mail: marco.sabatini@unitn.it
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Révisé le 10.2.2005 (1550)


