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A new necessary condition for analytic varieties satisfying

the local Phragmén–Lindelöf condition

by Tobias Heinrich (Düsseldorf)

Abstract. For an analytic variety V in C
n containing the origin which satisfies the

local Phragmén–Lindelöf condition PLloc(0) it is shown that for each real simple curve γ

and each d ≥ 1 the limit variety Tγ,dV satisfies the strong Phragmén–Lindelöf condition
(SPL).

1. Introduction. In their article [4] Braun, Meise, and Taylor derived
necessary geometric conditions for an analytic variety in C

n to satisfy the
local Phragmén–Lindelöf principle at its real points. They have shown that
these conditions are sufficient for analytic curves in C

2 and analytic surfaces
in C

3. For that purpose they develop the concept of limit varieties along a
simple curve which are approximations of a certain order to the variety
itself in conoids around the curve. In this context the question appears how
properties of the variety pass over to limit varieties.

According to [4, Proposition 3.5], it is necessary for an analytic variety V
in C

n satisfying PLloc(0) that for each real simple curve γ and each d ≥ 1
the limit variety Tγ,dV satisfies PLloc(ξ) at each of its real points ξ. A priori
it is not clear whether Tγ,dV has real points at all.

As we will see in Theorem 10 even more is true: If V satisfies PLloc(0),
then for each real simple curve γ and each d ≥ 1 the limit variety Tγ,dV
has to satisfy the strong Phragmén–Lindelöf condition (SPL). According to
Meise and Taylor [9, Proposition 4.4], this implies PLloc(ξ) at any real point
ξ ∈ Tγ,dV . Moreover it follows from another result of Braun, Meise, and
Taylor that Tγ,dV has real points if it is not empty.

In Section 2 we recall the required geometric notions, while the main
result is stated in Section 3. We conclude with an example.

The results of this article will be part of the author’s doctoral thesis.
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2. Preliminaries. Throughout this paper |·| will denote the Euclidean
norm on C

n. For a ∈ C
n and r > 0 let B(a, r) := {z ∈ C

n : |z − a| < r}. For
the geometric notions required below we refer to Chirka [7] and for example
to Braun, Meise, and Taylor [4].

An analytic variety V in C
n is defined to be an analytic subset of some

open set in C
n. Denote by Vreg (resp. Vsing) the set of regular (resp. singular)

points in V . If the dimension (see [7, 2.3 and 2.4]) at all points of V equals
k ∈ N, then V is said to be of pure dimension k.

Definition 1. A simple curve γ in C
n is a map γ : ]0, α[ → C

n which
for some α > 0 and some q ∈ N admits a convergent Puiseux series expan-
sion

γ(t) =

∞∑

j=q

ξjt
j/q with |ξq| = 1.

A real simple curve is a simple curve with range contained in R
n.

Definition 2. Let V be an analytic variety of pure dimension k ≥ 1
in C

n which contains the origin, let γ : ]0, α[ → C
n be a simple curve, and

let d ≥ 1. Then for t ∈ ]0, α[ we define

Vγ,d,t := {w ∈ C
n : γ(t) + tdw ∈ V } =

1

td
(V − γ(t)),

and we define the limit variety Tγ,dV of V along γ as the set

Tγ,dV :=

{
ζ ∈ C

n

∣∣∣∣∣
ζ = limj→∞ zj, where zj ∈ Vγ,tj ,d for j ∈ N,

and (tj)j∈N is a null-sequence in ]0, α[

}
.

If it is clear from the context we will just write Vt instead of Vγ,d,t.

Definition 3. Let V be an analytic variety in C
n and let Ω be an open

subset of V . A function u : Ω → [−∞,∞[ is called plurisubharmonic if it is
locally bounded above, plurisubharmonic in the usual sense on the regular
points of V in Ω, and satisfies

u(z) = lim sup
ζ∈Ωreg, ζ→z

u(ζ)

at the singular points z of V in Ω. We denote by PSH(Ω) the set of all
plurisubharmonic functions on Ω.

Our aim is to relate the following two Phragmén–Lindelöf principles:

Definition 4. For ξ ∈ R
n and r0 > 0 let V ⊂ B(ξ, r0) be an analytic

variety in C
n which contains ξ. We say that V satisfies the condition PLloc(ξ)

if there exist positive numbers A and r0 ≥ r1 ≥ r2 such that each u ∈
PSH(V ∩ B(ξ, r1)) satisfying
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(α) u(z) ≤ 1, z ∈ V ∩ B(ξ, r1),
(β) u(z) ≤ 0, z ∈ V ∩ R

n ∩ B(ξ, r1),

also satisfies

(γ) u(z) ≤ A|Im z|, z ∈ V ∩ B(ξ, r2).

Remark. In 1973 Hörmander [8] used the local Phragmén–Lindelöf
principle to characterize the surjectivity of linear partial differential opera-
tors with constant coefficients on the space of real analytic functions on R

n.
The condition PLloc is considered for example in Braun, Meise, and Tay-
lor [4], where necessary conditions in any dimension which are sufficient in
dimension two and three are derived.

Definition 5. Let V be an algebraic variety in C
n. We say that V

satisfies the condition (SPL) if there exists A ≥ 1 such that each u ∈ PSH(V )
satisfying

(α) u(z) ≤ |z| + o(|z|), z ∈ V ,
(β) u(z) ≤ 0, z ∈ V ∩ R

n,

also satisfies

(γ) u(z) ≤ A|Im z|, z ∈ V .

Remark. For equivalent characterizations of (SPL) we refer to Braun,
Meise, and Taylor [1]. Its meaning for linear partial differential operators is
explained in Meise and Taylor [9] and Braun, Meise, and Taylor [2].

3. (SPL) on limit varieties as a necessary condition for a variety

to satisfy PLloc(0). Braun, Meise, and Taylor have shown in [3] that the
condition (SPL) can be characterized by estimates for extremal functions
which are defined as follows:

Definition 6. (a) For D a domain in C
n, h a continuous plurisubhar-

monic function on D, V an analytic variety in C
n which is contained in an

open set containing D, and E a subset of D, the extremal function of E
relative to V, h, D is defined as

UE(z; h, V, D) := sup

{
u(z)

∣∣∣∣∣
u ∈ PSH(V ∩ D),

u ≤ h on V ∩ D and u ≤ 0 on V ∩ E

}
.

(b) For an analytic variety V in C
n and B, ̺ > 0 we set

U̺(z, V, B) := sup

{
ϕ(z)

∣∣∣∣∣
ϕ ∈ PSH(V ),

ϕ(w) ≤ min(|w| + B, ̺|Imw|) for all w ∈ V

}
.

We introduce some notations which will be used in the following:
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Notation 7. (a) For R, ε, B > 0 define

K(R, ε, B) := {z ∈ C
n : |Im z| ≤ ε(|z| + B), |z| ≤ R/2}.

(b) For z ∈ C
n we set h(z) := |z| + B.

We recall [10, Lemma 2.9]:

Lemma 8. The function H : C
n → R, H(z) := 1

2(|Im z|2 − |Re z|2), is

plurisubharmonic and has the following properties:

(a) H(z) ≤ |Im z|, |z| ≤ 1, (c) H(x) ≤ 0, x ∈ R
n,

(b) H(z) ≤ |Im z| − 1
2 , |z| = 1, (d) H(iy) ≥ 0, y ∈ R

n.

As a first step the next lemma provides estimates for local extremal
functions.

Lemma 9. For r0 > 0 let V ⊂ B(0, r0) be an analytic variety of pure

dimension k ≥ 1 in C
n which contains the origin. Suppose V satisfies

PLloc(0) with positive numbers A and r0 ≥ r1 ≥ r2 as in Definition 4. Let

γ : ]0, α[ → R
n be a real simple curve and d ≥ 1. Then for all R, ε, B > 0

with R ≥ 2B there exists 0 < t0 ≤ α such that for each 0 < t < t0,

(1) UK(R,ε,B)(w; h, Vt, B(0, R)) ≤ 8A|Imw|, w ∈ Vt ∩ B(0, R/8).

Proof. We may assume 0 < r2 ≤ r1 < 1. Then we can find 0 < t0 ≤ α
such that tdR/8 + r1 ≤ 1 and γ(t) + td(Vt ∩ B(0, R)) ⊂ V ∩ B(0, r2) for all
0 < t < t0. Let u ∈ PSH(Vt∩B(0, R)) satisfy u ≤ h on Vt∩B(0, R) and u ≤ 0
on Vt∩K(R, ε, B). Note that any function appearing in the supremum on the
left hand side of (1) has these properties. For z ∈ γ(t) + td(Vt ∩ B(0, R)) =
V ∩ B(γ(t), tdR) we define

v(z) = v(γ(t) + tdw) := u(w) = u

(
1

td
(z − γ(t))

)
.

If z ∈ γ(t) + td(Vt ∩ B(0, R/2)) = V ∩ B(γ(t), tdR/2) then v(z) can be
estimated as follows:

v(z) = u(w) ≤ |w| + B ≤
R

2
+

R

2
= R.

Since B(0, R/2) ∩ R
n ⊂ K(R, ε, B) we see that for

z ∈ γ(t) + td(Vt ∩ R
n ∩ B(0, R/2))

= R
n ∩ [γ(t) + td(Vt ∩ B(0, R/2))] = V ∩ R

n ∩ B(γ(t), tdR/2)

we have v(z) = u(w) ≤ 0.
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Fix w0 ∈ Vt ∩B(0, R/8) and set z0 := γ(t) + tdw0 ∈ V ∩B(γ(t), tdR/8).
Let r := tdR/4. Then each z ∈ V with |z − Re z0| < r satisfies

|z − γ(t)| ≤ |z − Re z0| + |Im z0| + |z0 − γ(t)|

= |z − Re z0| + |Im(z0 − γ(t))| + |z0 − γ(t)|

≤ |z − Re z0| + 2|z0 − γ(t)|

< r + 2td
R

8
= td

R

4
+ td

R

4
= td

R

2
,

hence z ∈ B(γ(t), tdR/2). Let H be the function from Lemma 8. We define

ṽ(z) := max

{
r

2R

(
v(z) + 2RH

(
z − Re z0

r

))
, |Im z|

}

for z ∈ V with |z − Re z0| < r, and ṽ(z) := |Im z| for z ∈ V ∩ B(0, r1) with
|z − Re z0| ≥ r. For z ∈ V with |z − Re z0| = r we obtain from Lemma 8(b)

r

2R

(
v(z) + 2RH

(
z − Re z0

r

))

≤
r

2R

(
R + 2R

(∣∣∣∣ Im
z − Re z0

r

∣∣∣∣−
1

2

))
= |Im z|,

hence ṽ ∈ PSH(V ∩B(0, r1)). For z ∈ V with |z −Re z0| < r it follows from
Lemma 8(a) that

r

2R

(
v(z) + 2RH

(
z − Re z0

r

))
≤

r

2R

(
R + 2R

∣∣∣∣ Im
z − Re z0

r

∣∣∣∣
)

=
r

2
+ |Im z| ≤ td

R

8
+ r1 ≤ 1

for t < t0. The hypothesis on u and Lemma 8(c) imply that ṽ(z) ≤ 0 on
V ∩ R

n ∩ B(0, r1), so ṽ satisfies the conditions (α) and (β) in the defini-
tion of PLloc(0). Hence ṽ(z) ≤ A|Im z| for z ∈ V ∩ B(0, r2). According to
Lemma 8(d) we can write

r

2R
u(w0) =

r

2R
v(z0) ≤ ṽ(z0) ≤ A|Im z0|,

which implies

u(w0) ≤
2R

r
A|Im z0| =

2R

tdR/4
A|Im(γ(t) + tdw0)| = 8A|Imw0|,

so estimate (1) holds for any w0 ∈ Vt ∩ B(0, R/8).

The proof of the following theorem is based on the proof of Braun, Meise,
and Taylor [3, Theorem 3.12].

Theorem 10. For r > 0 let V ⊂ B(0, r) be an analytic variety of pure

dimension k ≥ 1 in C
n which contains the origin. If V satisfies PLloc(0),

then Tγ,dV satisfies (SPL) for each real simple curve γ and each d ≥ 1.
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Proof. According to [3, Lemma 3.2(b) and Lemma 3.5], Tγ,dV has the
property (SPL) if and only if there exists A′ ≥ 1 such that for each ̺ > 0
and each B > 0 the following condition holds:

(2) U̺(z, Tγ,dV, B) ≤ A′|Im z|, z ∈ (Tγ,dV )reg.

Fix B, ̺ > 0. Let u ∈ PSH(Tγ,dV ) satisfy u(z) ≤ min(|z|+B, ̺|Im z|) for z ∈
Tγ,dV . Let ε > 0. If z ∈ K(R, ε, B) then ̺|Im z| ≤ ̺ε(|z|+B) ≤ ̺ε(B+R/2),
hence u − ̺ε(B + R/2) ≤ 0 on Tγ,dV ∩ K(R, ε, B). For h(z) = |z| + B and
w ∈ Tγ,dV ∩ B(0, R) it follows that

(3) U̺(w, Tγ,dV, B) ≤ UK(R,ε,B)(w; h, Tγ,dV, B(0, R)) + ̺ε(B + R/2).

Fix w ∈ (Tγ,dV )reg and choose sequences (tj)j∈N in [0,∞[ with limj→∞ tj = 0
and (wj)j∈N satisfying wj ∈ Vtj for each j ∈ N and limj→∞ wj = w. Choose
R > max(8|w|, 2B); then (V ∩ B(0, R))j∈N converges to Tγ,dV ∩ B(0, R) in
the sense of [12, Definition 4.3], according to [4, Theorem 2.7(d)]. Note that
the following estimates are valid for any ε > 0. Hence [12, Theorem 4.4] (see
also [3, Theorem 3.8]) implies

(4) UK(R,ε,B)(w; h, Tγ,dV, B(0, R)) ≤ lim inf
j→∞

UK(R,ε,B)(wj ; h, Vtj , B(0, R)).

For w ∈ B(0, R/8) we may assume wj ∈ B(0, R/8) for almost all j ∈ N.
Denote by A the constant from Definition 4. Then we can apply (1) to the
right hand side of (4) and obtain

UK(R,ε,B)(w; h, Tγ,dV, B(0, R)) ≤ 8A|Imw|.

Together with (3) this yields

U̺(w, Tγ,dV, B) ≤ 8A|Im w| + ̺ε(B + R/2).

Since this holds for any ε > 0, the claim is proved with A′ = 8A.

Remark 11. It follows from Theorem 10 and the proof of [3, Corol-
lary 3.15] that for each variety V satisfying PLloc(0), each real simple curve γ,
and each d ≥ 1 for which Tγ,dV is not empty, the intersection Tγ,dV ∩R

n is
not empty.

Using arguments of Meise, Taylor, and Vogt (see [11, proof of Theo-
rem 2.3]) one can show that Hörmander’s characterization of the surjec-
tivity of a linear partial differential operator with constant coefficients on
all real analytic functions (see [8, following Theorem 1.3]) implies the local
Phragmén–Lindelöf principle. Hence we obtain as a necessary condition:

Corollary 12. Let P (D) : A(Rn) → A(Rn) be a linear partial differ-

ential operator with constant coefficients acting on the space A(Rn) of all

real analytic functions on R
n. Assume that P (D) is surjective. Then for

the zero set V (Pm) of the principal part of P the following holds: For each

ξ ∈ V (Pm) ∩ R
n with |ξ| = 1, each real simple curve γ in R

n, and each
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d ≥ 1 the limit variety Tγ,d(V (Pm) − ξ) satisfies (SPL), provided that it is

not empty.

The following example shows that the result of Theorem 10 is an im-
provement of the one obtained by Braun, Meise, and Taylor in [4], where
PLloc(ξ) at any real point ξ ∈ Tγ,dV is shown to be necessary (as one part
of hyperbolicity in conoids) for V to satisfy PLloc(0).

Example 13. Define f(x, y, z) ∈ C[x, y, z] as

f(x, y, z) := (y2 − x2)(y2 − 2x2)2 + xy2z6 + z12

and let V := V (f). We claim that V does not satisfy PLloc(0). To show
this, fix ξ := (0, 0, 1) and the real simple curve γ(t) := tξ, t > 0. We use [5,
Proposition 4.3] to obtain the following limit varieties:

Tγ,dV = T0V = {(x,y,z) ∈ C
3 : (y2 −x2)(y2 − 2x2)2 = 0}, d ∈ [1,2[,

Tγ,2V = {(x,y,z) ∈ C
3 : g(x,y) := y6 − 5x2y4 +(8x4 +x)y2 − 4x6 +1 = 0},

Tγ,dV = ∅, d > 2.

We show that Tγ,2V does not satisfy (SPL); then it follows from Theorem 10
that V cannot satisfy PLloc(0). Let gm denote the principal part of g. Ac-
cording to [6, Proposition 15], the zero set V (g) ⊂ C

2 of g satisfies (SPL) if
and only if the following two conditions hold:

(a) V (g) satisfies PLloc(ξ) at each ξ ∈ V (g) ∩ R
2.

(b) For each η, ζ ∈ S1 satisfying gm(ζ) 6= 0 and spanR(η, ζ) = R
2 there

exists R > 0 such that for each t ∈ R with |t| ≥ R, the polynomial
λ 7→ g(tη + λξ) has only real zeros.

Note that g(x, y) = h(x, y2) for h(x, y) = y3 − 5x2y2 + (8x4 + x)y − 4x6 + 1,
and that for fixed x ∈ R each zero of g(x, y) is real if and only if each
zero of h(x, y) is real and non-negative. Since deg h(x, ·) = 3 it suffices to
calculate the discriminant to decide where h(x, ·) has three real zeros. To

normalize h(x, ·) substitute y = z + 5x2/3 to obtain h̃(x, z) = z3 + 3pz + 2q
with 3p = −x4/3+x and 2q = 2x6/27+5x3/3+1. Then the discriminant is
defined as D := q2+p3 = 2x9/27+25x6/26+47x3/54+1/4. From D > 0 for
x > 0 it follows that h(x, ·) has only one real zero, which implies that g(x, ·)
has non-real zeros. Hence V (g) fails (b), so V (g) does not satisfy (SPL).
This implies the claim for Tγ,2V = V (g) × C.

However, we can show that condition (a) is satisfied: Each point of Tγ,2V
is regular, since the gradient of g,

grad g(x, y) =

(
−10xy4 + (32x3 + 1)y2 − 24x5

2y(3y4 − 10x2y2 + 8x4 + x)

)
,
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has no zeros in common with g. This implies that Tγ,2V satisfies PLloc(ξ)
at any real point ξ ∈ Tγ,2V .
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