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On convex and *-concave multifunctions

by BOZENA PIATEK (Gliwice)

Abstract. A continuous multifunction F : [a,b] — clb(Y) is *-concave if and only if

the inclusion
t *

SF(az)da:C w

1
t—s

holds for every s,t € [a,b], s < t.

1. It is known that a real convex function f defined on [a, b] satisfies the
Hadamard inequality

b

(1) f<“+b)< 1 Sf(x)dmgw

2 “b—a 2

a
(cf. [5, pp. 196-197]). The inequality was first shown by Ch. Hermite in
Mathesis in 1883. Independently it was proved by J. Hadamard in 1893, so
it is usually called the Hermite-Hadamard inequality. This inequality can be
used to characterize real convex functions. More exactly, we have

THEOREM 0 (cf. e.g. [9, p. 15]). If f:[a,b] — R is continuous, then f is

convex if and only if
t

| f(a)de <

S

1
t—s

fls) + f(t)
2

forall a < s <t<b.

It is not clear who presented it first. More information on the subject
may be found in the paper of D. S. Mitrinovié¢ and I. B. Lackovié¢ [7].

Our main goal is to give a similar characterization of *-concave and con-
vex multifunctions, continuous with respect to the Hausdorff metric. In that
characterization the Riemann integral of multifunctions will be used. A mul-
tivalued counterpart of inequality (1) for convex multifunctions and the Au-
mann integral was studied by E. Sadowska [10, Theorem 1|. In the proof of
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the inclusion

! §F(m)dmc F(a;b>

b—aa

the integral Jensen inequality for convex multifunctions was applied. The last
result is due to J. Matkowski and K. Nikodem (see [6, p. 350, Theorem]).

2. Let (Y, || - ||) be a real Banach space. Denote by clb(Y') the set of all
nonempty convex closed bounded subsets of Y. For given A, B € clb(Y'), we
set A+ B={a+b:ae€ A be B}, \A={la:a¢€ A} for A > 0 and

A¥B= cl(A+ B) = cl(cl A+cl B), where cl A means the closure of A in Y.
It is easy to see that (cIb(Y), +,-) has the following properties:

AMALTB)=AIAB, A+ p)A=AAT pA, ANuAd)=(MA, 1-A=A
for any A,B € clb(Y) and A\, u > 0. If A, B,C € clb(Y), then the equality
A¥C=BICimplies A= B (see e.g. [2, Theorem II-17, p. 48]). Thus the

cancellation law holds in clb(Y") for the operation +.
The set clb(Y') is a metric space with the Hausdorff metric h defined by

h(A,B)=inf{t >0: AC B+1tS, BC A+1S},

where S denotes the closed unit ball in Y. The metric space (clb(Y),h)
is complete (see e.g. [2, Theorem II-3, p. 40]). Moreover, h is translation
invariant since

MA+C,BXC)=h(A+C,B+C)=h(A,B),
and positively homogeneous, i.e.,
h(AA,AB) = Ah(A, B)
for all A\ > 0 and A, B,C € cIb(Y) (cf. [1, Lemma 2.2]).
Let F' be a multifunction defined on an interval [a,b] with values in
clb(Y). It is said to be *-concave (resp. conver) if
FAz+ (1= Ny) CAF(z) + (1= N F(y)
(resp. AF(z) + (1= NF(y) C F(Ax + (1 — \)y))
for all 2,y € [a,b] and X € (0,1).

A set A= {xp,x1,...,2,}, where a = xg < 21 < -+ < x, = b, is said to
be a partition of [a,b]. For given partition A we put §(A) := max{z; —x;_1 :
i€{1,...,n}} and form the approximating sum

S(A,7) = (z1 — 20)F(11) + -+ (20 — 2n1)F (1),

where 7 is a system (7,...,7,) of intermediate points (7; € [zi_1,x4)).
If for every sequence (AY,7"), v € N, where AY are partitions of [a, b
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and 7" are systems of intermediate points, such that lim, . §(A”) = 0
the sequence (S(AY,7")) of approximating sums always tends to the same
limit I € clb(Y), then F' is said to be Riemann integrable over [a,b] and
SZF(:L“)d:r =T

The Riemann integral for multifunctions with compact convex values was
investigated by A. Dinghas [3] and M. Hukuhara [4]. In [8] the above integral
was introduced and its properties were studied for F': [a,b] — clb(Y"). Con-
tinuous multifunctions (with respect to the Hausdorff metric) are Riemann
integrable.

3. Let Y* denote the space of all continuous linear functionals on Y. For

A € clb(Y) we define AS by
AS = sup{&(a) : a € A}.

Of course the number A% can be defined for any bounded set A C Y and it
is easily seen that A = (cl A)S.
We note that

(2) (AA)E = AAS,
(3) (A B)t = Af + B¢

for every A > 0, A, B € clb(Y) and ¢ € Y*. The first equality is clear. To
obtain the second one we observe that

(AT B)* = (A+ B)f = sup &(a+b) = sup&(a) + sup£(b) = AS + B,

a€A a€cA beB
beB
For given A, B € clb(Y') we have
(4) ACB ifandonlyif A%< B forall £ € Y*.

To prove the “if” part assume that a € A\ B. Then by the Separation
Theorem, there is a functional £ € Y* and a real number ¢ such that

B® =sup&(b) < ¢ < £(a) < A,
beB
The “only if” part is obvious.

For any multifunction F' : [a,b] — clb(Y) and £ € Y*, a real function
F¢ :]a,b] — R is defined by

Fé(z) = F(z)¢, x€la,b).
The first lemma below is an immediate consequence of (2)—(4).

LEMMA 1. A multifunction F : [a,b] — cIb(Y") is concave (resp. convez)
if and only if F& :[a,b] — R is convex (resp. concave) for every £ € Y*.
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LEMMA 2. If F : [a,b] — cIb(Y) is continuous, then so is x — F&(x)

and
b b

(5) (SF(SC)dCE)éZSFg(SC)dSC forall £ € Y™,

Proof. First we note that the function
(6) cb(Y)> A A5 e R

is a Lipschitzian functional. Indeed, fix A,B € clb(Y), t > h(A4, B) and
£ eY*. Then
ACB+tS and BC A+tS.

According to (2)—(4) we get
A< BS+t]l¢]| and B < AS+tl¢],
where ||£|| is the norm of the functional £. Hence
A% — B[ < tll¢]l.
Letting ¢t — h(A, B) we obtain
A — B[ < [[¢]|n(A, B).

Consequently, (6) is continuous and the function x +— F¢(z) is also continu-
ous, being the composition of F' and (6).

To show (5) we fix n € N and take the partition A = {zg,...,x,} of
[a,b] with x; = a+ (i/n)(b—a), i € {0,1,...,n}. Let 7 = (z1,...,2,). The
continuity of (6), F, F'¢ and (2)-(4) yield

b
(VF@)dr)* = (lim (o1 20)F) T T (@0 — 20 Fl)

n—oo
*

= lim [(.’L‘l —x0)F(x1) —T— st (T — :L‘nfl)F(ajn)]5

b
= 1im [(x1 — 20)FS(x1) + - + (20 — 2n1)F (2)] = | F*(2) da.

n—oo
a

This completes the proof.

Theorem 0, Lemmas 1, 2 and relations (2)—(4) allow us to formulate two
theorems.

THEOREM 1. Let F : [a,b] — clb(Y) be a continuous multifunction.
Then F is x-concave if and only if for any s,t € [a,b] with s < t we have
the inclusion

t

(M) t 1 [ F(x)dr % [F(s) £ F(2)].
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THEOREM 2. Let F : [a,b] — clb(Y) be a continuous multifunction.
Then F' is convez if and only if for any s,t € [a,b] with s <t we have the
inclusion

© S 1F(s) TR

The proofs of both go in the same way. We prove the second one.

Proof of Theorem 2. By Lemma 1, F is convex if and only if F¢ is concave
for all £ € Y*. Next

F¢ is concave < —F¢ is convex <

t

1 F¢ Fe(t
S F&(z)dx > Fo(s) + B2 (1)

t—s 2

The last equivalence follows from Theorem 0. By (2)-(5), the validity of (9)

for every £ € Y™ is equivalent to (8). The proof of Theorem 2 is complete.

foralla <s<t<b.

(9)

REMARK. It may be proved that x-concave (resp. convex) multifunc-
tions F' : [a,b] — clb(Y') are continuous in the open interval (a,b). But the
continuity assumption is essential in the proof of *-concavity.

EXAMPLE. Let F' be defined as follows:

({0}, zel0,1/2)U(1/2,1],
Flz) '_{[o, 1, z=1/2.

Clearly Si F(z)dx = {0} for any 0 < s < ¢t <1 and inclusion (7) holds true.
Nevertheless F' is not *-concave since

1 1 *
011=F(5) # 51O F F0)] = 0,
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