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The Siciak–Zahariuta extremal function

as the envelope of disc functionals

by Finnur Lárusson (London, ON) and
Ragnar Sigurdsson (Reykjav́ık)

Abstract. We establish disc formulas for the Siciak–Zahariuta extremal function of
an arbitrary open subset of complex affine space. This function is also known as the
pluricomplex Green function with logarithmic growth or a logarithmic pole at infinity. We
extend Lempert’s formula for this function from the convex case to the connected case.

Introduction. The Siciak–Zahariuta extremal function VX of a sub-
set X of complex affine space C

n is defined as the supremum of all entire
plurisubharmonic functions u of minimal growth with u|X ≤ 0. It is also
called the pluricomplex Green function of X with logarithmic growth or with

a logarithmic pole at infinity (although this is a bit of a misnomer if X is
not bounded). A plurisubharmonic function u on C

n is said to have mini-

mal growth (and belong to the class L) if u − log+ ‖ · ‖ is bounded above
on C

n. If X is open and nonempty, then VX ∈ L. More generally, if X is not
pluripolar, then the upper semicontinuous regularization V ∗

X of VX is in L,
and if X is pluripolar, then V ∗

X = ∞. Siciak–Zahariuta extremal functions
play a fundamental role in pluripotential theory and have found important
applications in approximation theory, complex dynamics, and elsewhere. For
a detailed account of the basic theory, see [K, Chapter 5]. For an overview
of some recent developments, see [Pl].

The extremal functions of pluripotential theory are usually defined as
suprema of classes of plurisubharmonic functions with appropriate proper-
ties. The theory of disc functionals, initiated by Poletsky in the late 1980s
[P1, PS], offers a different approach to extremal functions, realizing them
as envelopes of disc functionals. A disc functional on a complex manifold Y
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is a map H into R = [−∞,∞] from the set of analytic discs in Y , that is,
holomorphic maps from the open unit disc D into Y . We usually restrict
ourselves to analytic discs that extend holomorphically to a neighbourhood
of the closed unit disc. The envelope EH of H is the map Y → R that
takes a point x ∈ Y to the infimum of the values H(f) for all analytic discs
f in Y with f(0) = x. Disc formulas have been proved for such extremal
functions as largest plurisubharmonic minorants, including relative extremal
functions, and pluricomplex Green functions of various sorts, and used to
establish properties of these functions that had proved difficult to handle via
the supremum definition. Some of this work has been devoted to extending
to arbitrary complex manifolds results that were first proved for domains
in C

n. See for instance [BS, E, EP, LLS, LS1, LS2, P2, P3, R, RS].

In the convex case, there is a disc formula for the Siciak–Zahariuta ex-
tremal function due to Lempert [M, Appendix]. The main motivation for the
present work was to generalize Lempert’s formula. Because of the growth
condition in the definition of the Siciak–Zahariuta extremal function, we
did not see how to fit it into the theory of disc functionals until we re-
alized, from a remark of Guedj and Zeriahi [GZ], that minimal growth is
nothing other than quasi-plurisubharmonicity with respect to the current of
integration along the hyperplane at infinity. This observation is implicit in
the proof of Theorem 1, which presents a family of new disc formulas for
the Siciak–Zahariuta extremal function of an arbitrary open subset of affine
space. Theorem 2 contains more such formulas. Our main result, Theorem 3,
establishes Lempert’s formula, in the following slightly modified form, for
every connected open subset of affine space. The formula is easily seen to
fail for disconnected sets in general.

Theorem. The Siciak–Zahariuta extremal function VX of a connected

open subset X of C
n is given by the disc formula

VX(z) = − sup
f

∑

f(ζ)∈H∞

log |ζ|, z ∈ C
n,

where f runs through all analytic discs in P
n with f(T) ⊂ X and f(0) = z.

Here, T denotes the unit circle andH∞ denotes the hyperplane at infinity
in complex projective space P

n.

Let us summarize our approach. We let X be an open subset of C
n

and seek a disc formula for VX . If we have a good upper semicontinuous
majorant for VX on C

n, so good that VX is its largest plurisubharmonic
minorant, then we have a disc formula for VX as the so-called Poisson en-
velope of the majorant. If B is a ball in X, say the unit ball, then such a
majorant is easily seen to be given as zero on X and VB = log ‖·‖ outside X.
The first main idea is to introduce certain good sets of analytic discs in P

n,
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adapted to X, and get many more good majorants for VX as the envelopes
of a new disc functional (called J below) over such sets. The second main
idea is that the disc formulas for VX thus obtained are in fact closely re-
lated to Lempert’s formula in the convex case, even though they look quite
different at first sight. The relationship appears when we modify the Pois-
son functional by adding to it the nonnegative functional J , balancing this
by taking the envelope over the larger class of all analytic discs in P

n. We
show that the envelope is still VX . If we restrict to analytic discs in P

n with
boundary in X, the Poisson term disappears and J alone remains. This is
essentially Lempert’s formula, so the envelope is still VX if X is convex. A
proof of Lempert’s formula as stated above, assuming only that X is con-
nected, concludes the paper. The proof relies on a judicious choice of a good
set of analytic discs, as well as a fundamental argument in the theory of
disc functionals, Poletsky’s proof of the plurisubharmonicity of the Poisson
envelope, adapted here to a somewhat different purpose.

Good sets of analytic discs and the first disc formula. If Y is a
complex manifold, then we denote by AY the set of analytic discs in Y , that
is, the set of maps D → Y that extend holomorphically to a neighbourhood
of D. If H : AY → R is a disc functional on Y and B ⊂ AY , then the
envelope of H with respect to B is the function EBH : Y → R with

EBH(y) = inf{H(f) : f ∈ B, f(0) = y}, y ∈ Y.

We usually write EH for EAY
H and simply call it the envelope of H.

Perhaps the most important example of a disc functional is the Poisson
functional f 7→

T
T
ϕ ◦ f dσ associated to an upper semicontinuous function

ϕ : Y → [−∞,∞) (here, σ is the normalized arc length measure on the
unit circle T). Its envelope is the largest plurisubharmonic minorant of ϕ
on Y . This was first proved for domains in affine space by Poletsky [P1],
and later, with a different proof, by Bu and Schachermayer [BS], and finally
generalized to all complex manifolds by Rosay [R].

We view C
n as the subset of P

n with projective coordinates [z0 : · · · : zn]
where z0 6= 0 and write H∞ for the hyperplane at infinity where z0 = 0. We
define a disc functional J on P

n by the formula

J(f) = −
∑

ζ∈f−1(H∞)

mf0
(ζ) log |ζ| ≥ 0, f ∈ APn .

Here, mf0
(ζ) denotes the multiplicity of the intersection of f with H∞, that

is, the order of the zero of the component f0 at ζ when f is expressed as
[f0 : · · · : fn] in projective coordinates. When the zeros of f0 are not isolated,
that is, f(D) ⊂ H∞, we set J(f) = ∞, and when f(D) ∩ H∞ = ∅, we set
J(f) = 0.
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To indicate the relevance of J to the Siciak–Zahariuta extremal function,
let X ⊂ C

n be open and f ∈ APn have f(T) ⊂ X. For simplicity, we assume
that f sends only one point ζ ∈ D to H∞ and mf0

(ζ) = 1. Let ρ be the
reciprocal and τ be an automorphism of D interchanging 0 and ζ. Then
g = f ◦ τ ◦ ρ : C \ D → C

n is holomorphic with a simple pole at infinity
and g(T) ⊂ X. Hence, VX ◦ g, extended as zero across D, is a subharmonic
function on C of minimal growth, so VX ◦ g ≤ VD = log | · | and

VX(f(0)) = VX(g(1/ζ)) ≤ − log |ζ| = J(f).

A subset B of APn is called good with respect to an open subset X of C
n

if:

(1) f(T) ⊂ X for every f ∈ B,
(2) for every z ∈ C

n, there is a disc in B with centre z,
(3) for every x ∈ X, the constant disc at x is in B, and
(4) the envelope EBJ is upper semicontinuous on C

n and has minimal
growth, that is, EBJ − log+ ‖ · ‖ is bounded above on C

n.

Note that by (2), 0 ≤ EBJ < ∞ on C
n, by (3), EBJ = 0 on X, and

clearly EBJ = ∞ on H∞. Property (4) may be hard to verify directly,
but Proposition 2 gives a useful sufficient condition for it to hold. Roughly
speaking, if B contains a disc centred at each point of P

n, then (4) holds if
(but not only if) discs in B can be varied continuously.

Theorem 1. Let X be an open subset of C
n and B be a good set of

analytic discs in P
n with respect to X. Then the Siciak–Zahariuta extremal

function VX of X is the envelope of the disc functional HB on P
n defined by

the formula

HB(f) = J(f) +
\

T\f−1(X)

EBJ ◦ f dσ, f ∈ APn .

Remarks. 1.We define VX = ∞ on H∞ and it is clear that EHB = ∞
on H∞. Since EBJ = 0 on X, the integral above might as well be taken
over all of T. The disc functional HB is thus given as the Poisson functional
of EBJ minus the Lelong-like functional −J (see [LS2] for the definition of
the Lelong functional). Envelopes of disc functionals associated to complex
subspaces in the way that −J is associated to H∞ are Green functions of a
type studied in [RS].

2. Using Proposition 2, it is easy to see that the largest subset B ⊂ APn

that is good with respect to X is the set AX
Pn of all f ∈ APn with f(T) ⊂ X.

This yields the smallest possible EBJ in the second term of the formula for
HB. We write HX for HAX

Pn
, so HX is the smallest disc functional HB where

B ⊂ APn is good with respect to X. Other choices of B make the second
term explicitly computable and yield information about almost extremal
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discs (see Propositions 4 and 5). Theorem 2 shows that VX is in fact the
envelope of HB over analytic discs in C

n only; for such discs, J vanishes.
3. By a result of Lempert [M, Appendix], if X is convex, then VX is the

envelope of HB over analytic discs in P
n with boundary in X and at most

one simple pole; for such discs, the second term vanishes, leaving only J . We
discuss this in detail later in the paper. For disconnected X, it is generally
not true that VX = EAX

Pn
J . For example, suppose X is the disjoint union of

two nonempty convex open sets Y and Z. Then

EAX
Pn
J = min{EAY

Pn
J,EAZ

Pn
J} = min{VY , VZ}

is not even plurisubharmonic in general (but it does provide an upper bound
for VX).

Proof of Theorem 1. Let π : Z = C
n+1 \ {0} → P

n be the projection.
Write Z0 = π−1(H∞) = {z ∈ Z : z0 = 0}. The advantage of working on Z
rather than on P

n is that the pullback of the current of integration along
H∞ has a global plurisubharmonic potential ϕ(z) = log |z0| on Z. Note that
if x ∈ P

n and z ∈ Z with π(z) = x, then every analytic disc in P
n centred

at x lifts to an analytic disc in Z centred at z. Hence, as f runs through all
analytic discs in Z with f(0) = z, π ◦ f runs through all analytic discs g in
P

n with g(0) = x.
Let π∗B be the set of analytic discs f in Z with π ◦ f ∈ B. Define a

function ψ on Z \ Z0 by the formula

ψ(z) = inf
{\

T

ϕ ◦ f dσ : f ∈ π∗B, f(0) = z
}
, z ∈ Z \ Z0.

By the defining property (2) of a good set of analytic discs and plurisubhar-
monicity of ϕ, we have ϕ ≤ ψ < ∞ on Z \ Z0, and by property (3), ψ = ϕ
on π−1(X).

If f ∈ π∗B and f(0) 6∈ Z0, then the Riesz Representation Theorem
applied to the subharmonic function ϕ ◦ f = log |f0| gives

ϕ(f(0)) =
\
T

ϕ ◦ f dσ +
1

2π

\
D

log | · |∆(ϕ ◦ f).

Also,

1

2π

\
D

log | · |∆(ϕ ◦ f) =
∑

ζ∈f−1

0
(0)

mf0
(ζ) log |ζ| = −J(π ◦ f),

so \
T

ϕ ◦ f dσ = ϕ(f(0)) + J(π ◦ f),

and

ψ = ϕ+ EBJ ◦ π on Z \ Z0.
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By property (4), EBJ is upper semicontinuous on C
n, so ψ : Z \Z0 → R

is upper semicontinuous. The minimal growth condition on EBJ means that
EBJ ◦π+ϕ = ψ is locally bounded above at Z0. Hence, the upper semicon-
tinuous extension ψ∗ : Z → [−∞,∞), which we shall simply call ψ, is well
defined, and we have ϕ ≤ ψ on Z and ψ = ϕ on π−1(X). The key property
of ψ is that if u is a plurisubharmonic function on Z and u ≤ ϕ on π−1(X),
then u ≤ ψ on Z \ Z0 by property (1), so u = (u|Z \ Z0)

∗ ≤ ψ on all of Z.
The converse is clear since ψ = ϕ on π−1(X).

Now u ∈ L if and only if u ◦ π + ϕ is plurisubharmonic on Z. Namely,
the minimal growth condition that defines L means that u ◦ π+ϕ, which is
plurisubharmonic on Z \ Z0, is locally bounded above at Z0, which in turn
means that u ◦ π + ϕ extends uniquely to a plurisubharmonic function on
all of Z.

Hence, u ∈ L and u ≤ 0 on X if and only if u◦π+ϕ is plurisubharmonic
on Z and u◦π+ϕ ≤ ϕ on π−1(X), that is, u◦π+ϕ ≤ ψ on Z. Thus, clearly,
VX ◦ π + ϕ ≤ ψ. Also, since ψ − ϕ = EBJ ◦ π on Z \ Z0 is invariant under
homotheties, so is its largest plurisubharmonic minorant PZ\Z0

(ψ − ϕ) on
Z \ Z0. Since ϕ is pluriharmonic on Z \ Z0,

PZ\Z0
(ψ − ϕ) = PZ\Z0

(ψ) − ϕ,

so PZ\Z0
(ψ) = u ◦ π + ϕ, where u ∈ L and u ≤ 0 on X. Therefore, u ≤ VX

and PZ(ψ) ≤ PZ\Z0
(ψ) ≤ VX ◦π+ϕ on Z \Z0, so PZ(ψ) ≤ VX ◦π+ϕ on Z.

This shows that VX ◦ π + ϕ is the largest plurisubharmonic minorant of
ψ on Z, so Poletsky’s theorem yields a disc formula for VX ◦ π + ϕ as the
Poisson envelope of ψ on Z. For z ∈ Z \ Z0, it follows that VX(π(z)) is the
infimum over all analytic discs f in Z with f(0) = z of the numbers\

T

ψ ◦ f dσ − ϕ(z).

By the Riesz Representation Theorem,\
T

ψ ◦ f dσ − ϕ(z) =
\
T

(ψ − ϕ) ◦ f dσ + J(π ◦ f)

= J(π ◦ f) +
\

T\f−1(π−1(X))

EBJ ◦ π ◦ f dσ.

Note that f−1(Z0) ∩ T is finite, so the second and third integrals are equal.
This shows that VX(x) = EHB(x) for all x ∈ C

n. For x ∈ H∞, this is
obvious, as mentioned in Remark 1 above.

The multiplicity factor in the definition of J may be omitted without
affecting Theorem 1 with B = AX

Pn , that is, without changing EAX
Pn
J or

EHX .
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Proposition 1. Let X ⊂ C
n be open and f ∈ APn have f(0) 6∈ H∞.

Then there is g ∈ APn with g(0) = f(0), mg0
= 1 on g−1(H∞), and J(f) =

J(g), such that g is uniformly as close to f on D as we wish, so in particular ,
if f(T) ⊂ X, then g(T) ⊂ X.

Proof. Now f intersects H∞ in finitely many points a1, . . . , ak ∈ D \ {0}

with multiplicities mj = mf0
(aj). Let f̃ ∈ AZ be a lifting of f . By exactly

the same argument as in the proof of Lemma 3.1 in [LS2], taking the function
α there to be the characteristic function of Z0 in Z, we obtain g̃ ∈ AZ arbi-

trarily uniformly close to f̃ on D such that g̃(0) = f̃(0), the zeros c1, . . . , cm
of g̃0 in D all have multiplicity 1, their number m equals m1 + · · ·+mk, and

m∑

j=1

log |cj | =
k∑

j=1

mj log |aj|.

Finally, take g = π ◦ g̃.

Further results on good sets of analytic discs. Using the proof of
Theorem 1, we now present a sufficient condition for a set of analytic discs
to be good.

Proposition 2. Let X be an open subset of C
n and B be a subset of

APn with the following two properties:

(2′) For every z ∈ P
n, there is a disc in B with centre z.

(4′) Discs in B can be varied continuously , that is, for every f ∈ B there

is a map from a neighbourhood U of f(0) into B, continuous as a

map D × U → P
n, taking each x ∈ U to a disc centred at x and

taking f(0) to f .

Then B has property (4) in the definition of a good set of analytic discs.

Hence, if B satisfies (1), (2′), (3), and (4′), then B is good with respect

to X.

Proof. Define

ψ(z) = inf
{\

T

ϕ ◦ f dσ : f ∈ π∗B, f(0) = z
}
, z ∈ Z \ Z0,

as in the proof of Theorem 1. Properties (2) and (4′) imply ψ : Z \ Z0 → R

is upper semicontinuous. Now EBJ ◦ π = ψ − ϕ on Z \ Z0, so EBJ is upper
semicontinuous on C

n. Moreover, EBJ has minimal growth since ψ is locally
bounded above at Z0 by (2′) and (4′).

The next result provides an interesting class of examples of good sets of
analytic discs.

Proposition 3. Let X be a connected open subset of C
n and let β be

a free homotopy class of loops in X, that is, of continuous maps T → X.
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Let B be the set of analytic discs f in P
n such that f(T) ⊂ X and f |T ∈ β.

Then B has properties (1), (2′), and (4′). If β is the trivial class, then B
also satisfies (3), so B is good with respect to X.

Proof. Only (2′) is not obvious. Let z ∈ C
n and a continuous map α :

T → X be a representative for β. Rational functions on C whose poles lie
outside T∪{0} are uniformly dense among continuous functions T∪{0} → C

(see e.g. [AW, Theorem 2.8]). Therefore, for each ε > 0, we obtain rational
functions f1, . . . , fn without poles on T ∪ {0}, defining an analytic disc f =
(f1, . . . , fn) in P

n, such that f(0) = z and f |T is within ε of α, so f |T is
freely homotopic to α in X if ε is small enough. If z ∈ H∞, we reduce to
the previous case by moving z into C

n by an automorphism of P
n close to

the identity.

Majorants for the Siciak–Zahariuta function and the second

disc formula. Let X be an open subset of C
n and B be a good set of

analytic discs in P
n with respect to X. By Theorem 1, VX = EHB. Clearly,

EHB ≤ EBHB = EBJ , so VX ≤ EBJ . Moreover, if u is a plurisubharmonic
function on C

n with u ≤ EBJ , then u ≤ 0 on X by property (3) in the
definition of a good set of analytic discs, and u has minimal growth by
property (4), so u ≤ VX . This shows that VX is the largest plurisubharmonic
minorant, and hence the Poisson envelope, of EBJ on C

n. It follows that
EBJ is plurisubharmonic if and only if EBJ = VX . We have proved the
following result.

Theorem 2. Let X be an open subset of C
n and B be a good set of ana-

lytic discs in P
n with respect to X. Then VX is the largest plurisubharmonic

minorant of EBJ on C
n. Consequently , for every z ∈ C

n,

VX(z) = inf
\

T\f−1(X)

EBJ ◦ f dσ,

where the infimum is taken over all analytic discs f in C
n with f(0) = z.

The third disc formula and almost extremal discs. Let X be
an open subset of C

n. The simple disc formula for VX mentioned in the
introduction is in fact a special case of Theorem 2. Namely, suppose B is a
closed ball with centre a and radius r > 0 contained in X. As is well known,
VB = log ‖ · −a‖ − log r outside B. Setting w = VB outside X and w = 0
on X, we obtain an upper semicontinuous majorant w : C

n → [0,∞) for VX .
It is easily seen that VX is the largest plurisubharmonic minorant and hence
the Poisson envelope of w. Let us record this fact.

Proposition 4. Let X be an open subset of C
n containing the closed

ball with centre a and radius r > 0. Then VX is the envelope of the disc
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functional Hr on C
n defined by the formula

Hr(f) =
\

T\f−1(X)

log ‖f − a‖ dσ − σ(T \ f−1(X)) log r, f ∈ ACn .

For simplicity, let us assume that a is the origin. Let B contain the
constant analytic discs in X as well as the analytic discs gz in P

n with

gz(ζ) =
‖z‖ + rζ

r + ‖z‖ζ

r

‖z‖
z

for each z ∈ C
n \X. Note that gz is centred at z, lies in the projective line

through z and the origin, and has its boundary on the sphere of radius r
centred at the origin. Also, gz sends one point in D to H∞, namely −r/‖z‖.
Hence, EBJ(z) = J(gz) = log ‖z‖ − log r if z ∈ C

n \ X, and EBJ = 0 on
X, so EBJ = w. The defining conditions for B to be a good set of analytic
discs are easily verified. This shows that Proposition 4 is a special case of
Theorem 2. Note that the good set B has neither property (2′) nor (4′) in
Proposition 2.

By the disconnected example in Remark 3 above, the following descrip-
tion of almost extremal discs may be said to be optimal. Namely, we cannot
always obtain VX as the envelope of HX or, equivalently, of J over ana-
lytic discs in P

n, let alone C
n, with boundaries in X. (Recall that HX was

introduced as shorthand for HAX
Pn

in Remark 2.)

Proposition 5. Let X be a nonempty open subset of C
n. Let K be a

compact subset of X and z ∈ C
n. For each ε > 0, there is an analytic disc

f in C
n centred at z such that

VX(z) ≤ HX(f) =
\

T\f−1(X)

EAX
Pn
J ◦ f dσ < VX(z) + ε

and

σ(T \ f−1(X \K)) < ε.

Proof. SayX\K contains a closed ball of radius R > 0. By Proposition 4
applied to X \K, for each 0 < r ≤ R, there is fr ∈ ACn with fr(0) = z and

VX(z) ≤ HX(fr) ≤ HX\K(fr) ≤ Hr(fr) < VX\K(z) + ε = VX(z) + ε.

Thus, as r → 0, we must have σ(T \ f−1
r (X \K)) → 0, so we take f = fr

with r small enough.

Since VX ≤ EAX
Pn
J , Proposition 5 has the curious consequence, for every

open subset X of C
n, that VX is its own Poisson envelope with respect to

analytic discs in C
n that take all but an arbitrarily small piece of the circle

T into X.
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Relationship to the work of Lempert in the convex case. We
will now describe the relationship between Lempert’s disc formula for the
Siciak–Zahariuta extremal function in the convex case, an account of which
was provided by Momm in [M, Appendix], and our first disc formula.

Let K be a strictly convex compact subset of C
n with real-analytic

boundary and let z ∈ C
n \ K. Lempert’s formula states that VK(z) is the

infimum of the numbers log r over all holomorphic maps f : C \ D → C
n

with a continuous extension to T such that f(T) ⊂ K, f(r) = z with r > 1,
and ‖f‖/| · | is bounded, meaning that f has at most a simple pole at ∞.
(Furthermore, extremal maps exist and can be described explicitly.) Pre-
composing f with the reciprocal, we see that VK(z) is the infimum of the
numbers − log |ζ| over all f ∈ APn with f(T) ⊂ K and f(ζ) = z such that f
maps into C

n except for at most a simple pole at 0. Precomposing f with an
automorphism of D that interchanges 0 and ζ, we see that VK(z) is the infi-
mum of the numbers − log |ζ| over all f ∈ APn with f(T) ⊂ K and f(0) = z
such that f maps into C

n except for at most a simple pole at ζ. For such a
map f , we have − log |ζ| = J(f).

Let X be a convex open subset of Cn. Then X can be written as the
increasing union of relatively compact open subsets Xn, n ≥ 1, such that
the closure Xn is strictly convex with real-analytic boundary. Namely, take
a strictly convex exhaustion function of X, such as the sum of ‖ · ‖2 and
the reciprocal of the Euclidean distance to the boundary, and Weierstrass-
approximate it by a polynomial; the generic sublevel sets of the polynomial
will be smooth.

Now VX is the decreasing limit of VXn
and hence also the decreasing limit

of VXn
as n → ∞. Therefore, by Lempert’s formula, VX(z) for z ∈ C

n \X,
and thus obviously for all z ∈ P

n, is the infimum of the numbers J(f) over
all f ∈ APn with f(T) ⊂ X and f(0) = z such that f maps into C

n except
for at most one simple pole. By Theorem 1, in between this infimum and
VX(z) is the infimum of J(f) over the larger class of f ∈ APn with f(T) ⊂ X
and f(0) = z.

Thus, Lempert’s formula can be stated as the following strengthening of
Theorem 1 for the convex case.

Lempert’s formula. Let X be a convex open subset of C
n. Then the

Siciak–Zahariuta extremal function of X is the envelope of J with respect to

the set of analytic discs in P
n with boundary in X and at most one simple

pole. It follows that

VX = EAX
Pn
J.

We conclude the paper by proving Lempert’s formula for any connected
open subset X of C

n in the slightly weakened form VX = EAX
Pn
J , which

we will henceforth refer to as Lempert’s formula. As remarked earlier, this
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formula is easily seen to fail for disconnected sets in general. We do not
know whether the stronger, original form of Lempert’s formula, using only
analytic discs with at most one simple pole, extends to all connected sets.

Lempert’s formula for arbitrary domains. Let X be a connected
open subset of C

n. We may assume that X is neither empty nor all of C
n

(otherwise, Lempert’s formula is obvious). From now on, B will denote the
set of analytic discs in P

n containing all the constant discs in X and every
disc

fz,w,r : ζ 7→ w +
‖z − w‖ + rζ

r + ‖z − w‖ζ

r

‖z − w‖
(z − w)

in P
n, where z ∈ C

n \X, w ∈ X, and r is less than the Euclidean distance
d(w, ∂X) from w to the boundary ∂X of X. Observe that fz,w,r is injective,
centred at z, takes one point to H∞, namely −r/‖z − w‖, lies on the pro-
jective line through z and w, and maps T onto the circle with centre w and
radius r on this line. It is easy to verify that

EBJ = inf
w∈X

log+ ‖ · −w‖

d(w, ∂X)
= inf{VB : B is a ball in X}.

It follows that B is a good set of analytic discs in P
n with respect to X. Note

that EBJ is not plurisubharmonic in general: just consider an annulus.
If X is smoothly bounded, then using balls touching the boundary from

the inside, we see that EBJ = 0 on ∂X. Now VX ≤ EAX
Pn
J ≤ EBJ on C

n,

so VX = EAX
Pn
J on X. Since every domain can be exhausted by smoothly

bounded domains and Lempert’s formula is preserved by increasing unions,
it suffices to prove the formula on Cn \X assuming EBJ = 0 on ∂X. The
argument is based on the following result.

Lemma. Let X be a connected open subset of C
n and B be as above. For

every analytic disc h in C
n \X, continuous function v ≥ EBJ on C

n \X,
and ε > 0, there is g ∈ AX

Pn with g(0) = h(0) and

J(g) ≤
\
T

v ◦ h dσ + ε.

Fixing z ∈ C
n \ X and taking the infimum over all v, ε, and h with

h(0) = z as in the Lemma, we see that EAX
Pn
J is no larger than the Poisson

envelope, that is, the largest plurisubharmonic minorant P
Cn\XEBJ , of EBJ

on C
n \X. Now

P
Cn\XEBJ = PCnEBJ |C

n \X.

Namely, if u is plurisubharmonic on C
n \ X and u ≤ EBJ , then, after

replacing u by max{u, 0} and using the assumption that EBJ = 0 on ∂X,
we can extend u to a plurisubharmonic function on all of C

n by setting u = 0
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on X. Then u ≤ EBJ on C
n, so u ≤ PCnEBJ . This proves one inequality; the

other is obvious. Finally, by the remarks preceding Theorem 2, PCnEBJ =
VX since B is good. Thus, given the Lemma, we have established Lempert’s
formula:

Theorem 3. The Siciak–Zahariuta extremal function of a connected

open subset X of C
n is the envelope of J with respect to the set of ana-

lytic discs in P
n with boundary in X, that is,

VX = EAX
Pn
J.

It remains to prove the Lemma. Our argument is an adaptation of Pol-
etsky’s orginal proof of the plurisubharmonicity of the Poisson envelope. See
[P1] or [LS1, Section 2]. We proceed as if we were trying to show that EBJ
was plurisubharmonic.

Proof of the Lemma. Take ζ0 ∈ T and set z0 = h(ζ0). By the definition
of B, there exist w0 ∈ X and r0 < d(w0, ∂X) with

J(fz0,w0,r0
) = log(‖z0 − w0‖/r0) < EBJ(z0) + ε.

By continuity, there exists an open arc I0 containing ζ0 such that

J(fh(ζ),w0,r0
) = log(‖h(ζ) − w0‖/r0) < v(h(ζ)) + ε/2, ζ ∈ I0.

By compactness, there exist a cover of T by open arcs I1, . . . , Im, points
w1, . . . , wm in X, and r1, . . . , rm > 0 such that rj < d(wj , ∂X) and

J(fh(ζ),wj ,rj
) = log(‖h(ζ) − wj‖/rj) < v(h(ζ)) + ε/2

for ζ ∈ Ij , j = 1, . . . ,m. There exist A ⊂ {1, . . . ,m} and closed arcs Jj ⊂ Ij ,
j ∈ A, which cover T and have disjoint interiors. By possibly renumbering
the arcs and splitting the interval Ij containing 1, we may assume that
A = {1, . . . ,m} and

Jj = {eiθ : θ ∈ [aj, aj+1]}, where 0 = a1 < a2 < · · · < am+1 = 2π.

Then

(1)
m∑

j=1

\
Jj

J(fh(ζ),wj ,rj
) dσ(ζ) <

\
T

v ◦ h dσ + ε/2.

Since X is connected, we can join wj and wj+1 by a C∞ path αj : [0, 1] → X
with αj(0) = wj , αj(1) = wj+1, and choose a C∞ function βj : [0, 1] →
(0,∞) with βj(0) = rj , βj(1) = rj+1, and βj < d(αj , ∂X). Here we take
wm+1 = w1 and rm+1 = r1. We may assume that the derivatives of all
orders of αj and βj vanish at 0 and 1. We choose

(2) C >

m∑

j=1

sup
ζ∈Jj , t∈[0,1]

|J(fh(ζ),wj ,rj
) − J(fh(ζ),αj(t),βj(t))|
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and δ > 0 such that Cδ < ε/2 and δ < minj(aj+1 − aj). We split each arc
Jj into the subarcs Kj = {eiθ : θ ∈ [aj , aj+1 − δ]} and Lj = {eiθ : θ ∈
[aj+1 − δ, aj+1]}, and define the C∞ loop γ : T → X by

γ(ζ) =

{
wj , ζ ∈ Kj , j = 1, . . . ,m,

αj((θ − aj+1 + δ)/δ), ζ = eiθ ∈ Lj , j = 1, . . . ,m,

the C∞ function ̺ : T → (0,∞) by

̺(ζ) =

{
rj , ζ ∈ Kj , j = 1, . . . ,m,

βj((θ − aj+1 + δ)/δ), ζ = eiθ ∈ Lj , j = 1, . . . ,m,

and, finally, the C∞ family

F (·, ζ) = fh(ζ),γ(ζ),̺(ζ), ζ ∈ T,

of analytic discs in AX
Pn . By (1) and (2),\

T

J(F (·, ζ)) dσ(ζ) <
m∑

j=1

\
Jj

J(fh(ζ),wj ,rj
) dσ(ζ) + Cδ <

\
T

v ◦ h dσ + ε.(3)

We take the lifting h̃ = (1, h) ∈ AZ of h to Z = C
n+1 \{0} by the projection

π : Z → P
n, and the lifting f̃z,w,r of fz,w,r given by

f̃z,w,r(ξ) = (‖z −w‖ξ/r+ 1, (‖z −w‖ξ/r+ 1)w+ (rξ/‖z −w‖+ 1)(z −w)).

Then the lifting F̃ (·, ζ) = f̃h(ζ),γ(ζ),̺(ζ) of F satisfies F̃ (0, ·) = h̃ on T.
Take r > 1 such that h∈O(Dr,C

n) and F (·, ζ)∈O(Dr,P
n) for all ζ∈T,

where Dr = {z ∈ C : |z| < r}, and define F̃j ∈ O(Dr × (Dr \ {0}),Cn+1),
j ≥ 1, by

F̃j(ξ, ζ) = h̃(ζ) +

j∑

k=−j

(
1

2π

2π\
0

(F̃ (ξ, eiθ) − h̃(eiθ))e−ikθ dθ

)
ζk.

Since the function θ 7→ F̃ (ξ, eiθ) − h̃(eiθ) is C∞ with period 2π, its Fourier
series converges uniformly on R to the function itself. Hence, the sequence
(F̃j) converges uniformly on {ξ} × T for each ξ ∈ Dr. The convergence is
uniform on Dt ×T for each t ∈ (1, r). In fact, an integration by parts of the
integral above shows that it can be estimated by

1

k2
max

ξ∈Dt,θ∈R

|∂2(F̃ (ξ, eiθ) − h̃(eiθ))/∂θ2|, k 6= 0.

Fixing t ∈ (1, r), since F̃ (Dr × T) ⊂ Z, F (T × T) ⊂ X, and F̃j → F̃

uniformly on Dt × T, we have F̃j(Dt × T) ⊂ Z and F̃j(T × T) ⊂ π−1(X) if

j is large enough. For such j, define Fj = π ◦ F̃j : Dt × T → P
n. The 0th

coordinate of F̃ is F̃0(ξ, ·) = ‖h− γ‖ξ/̺+ 1, so the 0th coordinate of F̃j is

F̃j0(ξ, ·) = χjξ + 1, where θ 7→ χj(e
iθ) is the jth partial sum of the Fourier
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series of θ 7→ ‖h(eiθ) − γ(eiθ)‖/̺(eiθ). Hence,

J(Fj(·, ζ)) = log |χj(ζ)| → log(‖h(ζ) − γ(ζ)‖/̺(ζ)) = J(F (·, ζ))

uniformly for ζ ∈ T. Thus, by (3),\
T

J(Fj(·, ζ)) dσ(ζ) <
\
T

v ◦ h dσ + ε

for j large enough. We now fix j so large that these properties hold.

For every ξ ∈ Dr, the map ζ 7→ F̃j(ξ, ζ)−h̃(ζ) has a pole of order at most

j at the origin, and for every ζ ∈ Dr, ζ 6= 0, the map ξ 7→ F̃j(ξ, ζ) − h̃(ζ)

has a zero at the origin. Hence, (ξ, ζ) 7→ F̃j(ξζ
k, ζ) extends to a holomorphic

map D × D → C
n+1 for every k ≥ j.

Since F̃j(0, ζ) = h̃(ζ) ∈ Z for all ζ ∈ Dr, ζ 6= 0, there is δ > 0 such

that F̃j(ξζ
k, ζ) ∈ Z for all k ≥ j and (ξ, ζ) ∈ Dδ × D. Since F̃j(ξ, ζ) ∈ Z

for all (ξ, ζ) ∈ D × T, there is τ < 1 such that F̃j(ξ, ζ) ∈ Z for all (ξ, ζ) ∈

D × (D \Dτ ), so F̃j(ξζ
k, ζ) ∈ Z for all (ξ, ζ) ∈ D × (D \Dτ ) and all k ≥ j.

Choose k ≥ j large enough that |ξζk| < δ for all (ξ, ζ) ∈ D×Dτ . Then there

is s ∈ (1, t) such that F̃j(ξζ
k, ζ) ∈ Z for all (ξ, ζ) ∈ Ds ×Ds.

Now define G̃ ∈ O(Ds×Ds, Z) by G̃(ξ, ζ) = F̃j(ξζ
k, ζ) and let G = π◦G̃.

In the proof of Theorem 1, we observed that if f̃ = (f0, . . . , fn) ∈ AZ is a
lifting of f ∈ APn and f0(0) 6= 0, then

J(f) =
\
T

ϕ ◦ f̃ dσ − ϕ(f̃(0)),

where, as before, ϕ(z) = log |z0| for z ∈ C
n+1. Now G̃(0, ·) = h̃ = (1, h), so

ϕ(G̃(0, ·)) = 0. Therefore,\
T

J(G(·, ζ)) dσ(ζ) =
\

T2

ϕ ◦ G̃ d(σ × σ) =
1

(2π)2

2π\
0

2π\
0

ϕ(F̃j(e
i(t+kθ), eiθ)) dt dθ

=
\

T2

ϕ ◦ F̃j d(σ × σ) =
\
T

J(Fj(·, ζ)) dσ(ζ)

<
\
T

v ◦ h dσ + ε.

By the Mean Value Theorem, there is θ0 ∈ [0, 2π] such that\
T

J(G(·, ζ)) dσ(ζ) =
1

(2π)2

2π\
0

2π\
0

ϕ(G̃(ei(θ+t), eit)) dt dθ

=
1

2π

2π\
0

ϕ(G̃(ei(θ0+t), eit)) dt.
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Now define g̃(ζ) = G̃(eiθ0ζ, ζ) for ζ ∈ Ds, and g = π ◦ g̃. Then

g̃(0) = G̃(0, 0) = (1, h(0)),

so g(0) = h(0), and

g(T) ⊂ π(G̃(T × T)) ⊂ X,

so g ∈ AX
Pn . Also,

J(g) =
\
T

ϕ ◦ g̃ dσ =
1

2π

2π\
0

ϕ(G̃(eiθ0eit, eit)) dt =
\
T

J(G(·, ζ)) dσ(ζ)

<
\
T

v ◦ h dσ + ε,

and the proof is complete.
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[Pl] W. Pleśniak, Siciak’s extremal function in complex and real analysis, Ann. Polon.

Math. 83 (2003), 37–46.
[P1] E. A. Poletsky, Plurisubharmonic functions as solutions of variational problems,

in: Several Complex Variables and Complex Geometry (Santa Cruz, CA, 1989),
Proc. Sympos. Pure Math. 52, Part 1, Amer. Math. Soc., 1991, 163–171.

[P2] —, Holomorphic currents, Indiana Univ. Math. J. 42 (1993), 85–144.
[P3] —, The minimum principle, ibid. 51 (2002), 269–303.
[PS] E. A. Poletsky and B. V. Shabat, Invariant metrics, in: Several Complex Variables

III, Encyclopaedia Math. Sci. 9, Springer, 1989, 63–111.
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