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Continuity of the relative extremal function

on analytic varieties in Cn

by Frank Wikström (Ann Arbor, MI, and Sundsvall)

Abstract. Let V be an analytic variety in a domain Ω ⊂ Cn and let K ⊂⊂ V

be a closed subset. By studying Jensen measures for certain classes of plurisubharmonic
functions on V , we prove that the relative extremal function ωK is continuous on V if Ω

is hyperconvex and K is regular.

1. Introduction. Let P (D) be a linear partial differential operator with
constant coefficients. Hörmander [9] gave a characterization of when P (D)
is surjective on the space A(Ω) of real-analytic functions when Ω is a convex
domain in Rn. This characterization is stated in terms of Phragmén–Lindelöf
type estimates for plurisubharmonic functions on the zero variety of the sym-
bol of P (D). Hörmander’s result has been the main inspiration for trying to
find various kinds of geometric or algebraic criteria for recognizing varieties
satisfying such Phragmén–Lindelöf estimates, and there are a large number
of papers attacking this problem. One of the tools that have been used is
the relative extremal function ωK . (See for example [1, 2, 3].) The main goal
of this paper is to prove that ωK is continuous if K is regular. To state the
result more precisely, we will require some preliminary definitions.

Definition 1.1. Let Ω be an open subset in Cn. An analytic variety V
in Ω is defined as a closed analytic subset of Ω. (See Chirka [5].) If x ∈ V
and there is an open neighborhood U of x such that V ∩ U is irreducible,
we say that V is locally irreducible at x. We denote by Virr the set of locally
irreducible points in V . If x 6∈ Virr, we say that V is reducible at x; we denote
the set of reducible points by Vred. Note that Virr is an open dense subset
of V containing all regular points of V .

Definition 1.2. Let V be an analytic variety in some open set Ω ⊂ Cn

and let U be an open subset of V . A function u : U → [−∞,∞) is plurisub-
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harmonic if it is upper semicontinuous and u ◦ f is subharmonic on D for
every holomorphic f : D → U . (Here, D denotes the unit disc in C.) We let
PSH(U) denote the set of all plurisubharmonic functions on U .

Remark. Functions in PSH(U) are sometimes called weakly plurisubhar-

monic. In the series of papers mentioned above, when studying Phragmén–
Lindelöf estimates, a slightly larger class of plurisubharmonic functions is
used. Let us say that u is almost plurisubharmonic on U , denoted u ∈

P̃SH(U), if u is plurisubharmonic (in the usual sense) on Ureg, the regular
points of U , and satisfies

u(z) = lim
Ureg∋ζ→z

u(ζ)

for all z ∈ U \ Ureg. It turns out that in the study of the relative extremal

function, it does not matter much whether we consider PSH(U) or P̃SH(U).
We will come back to these questions in Section 3.

A function on U is called strongly plurisubharmonic if it extends to a
plurisubharmonic function on an open neighborhood of U in Cn. By a deep
result of Fornæss and Narasimhan [8], any weakly plurisubharmonic function
is in fact strongly plurisubharmonic (this is also true in the more general
setting of complex spaces), and we will make good use of this fact later
on. On the other hand, almost plurisubharmonic functions do not necessar-
ily extend to any neighborhood of the variety, as shown by the following
example:

Example 1.3. Let V = {(z, w) ∈ B2 : zw = 0}, where B2 is the unit
ball in C2, and define a function u on V by u(z, 0) = 0 when z 6= 0, and

u(0, w) = 1. Then u ∈ P̃SH(V ) (but u 6∈ PSH(V )), and it is clear that u
does not extend to a plurisubharmonic function in any neighborhood in C2

of the origin.

Most of the usual properties of plurisubharmonic functions in Cn carry
over to the setting of plurisubharmonic functions on a variety, but when
the variety is not locally irreducible, there are some subtle differences. Most
notably, (the upper semicontinuous regularization of) the supremum of an
upper bounded family of plurisubharmonic functions is not necessarily pluri-
subharmonic.

Example 1.4. Let V = {(z, w) ∈ B2 : zw = 0} and for ε > 0, define a
function uε on V by

uε(z, w) =

{
1 + ε log |w|, z = 0,

ε log |z|, w = 0.

Then each uε is in PSH(V ) but (supuε)
∗ = u, with u as in Example 1.3.
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However, this is the only thing that can go wrong when forming suprema
of locally upper bounded families of plurisubharmonic functions. More pre-
cisely, we have the following theorem:

Theorem 1.5. Let V be an analytic variety in Ω ⊂ Cn and let F ⊂
PSH(V ) be a locally uniformly upper bounded family. Define U(z) =
supu∈F u(z). If V is locally irreducible, then U∗ ∈ PSH(V ). More gener-

ally , U∗ ∈ PSH(Virr). Furthermore, U∗ ∈ P̃SH(V ) even if V is not locally

irreducible.

Similarly , if F̃ ⊂ P̃SH(V ) is a uniformly locally upper bounded family,

and Ũ(z) = sup
u∈F̃

u(z), then Ũ∗ ∈ P̃SH(V ).

Proof. The plurisubharmonicity of U∗ (and Ũ∗) at every regular point
in V follows readily from the theory of plurisubharmonic functions on Cn.
Also, upper semicontinuity of Ũ∗ and Ũ∗ implies that they are both almost
plurisubharmonic on V .

To show that U∗ is plurisubharmonic on Virr, we can as well assume that
V is locally irreducible (since the result is local). It follows from a removable
singularity theorem for plurisubharmonic functions on locally irreducible va-
rieties (if V is locally irreducible and u ∈ PSH(V \X) where X is a subva-
riety of V and u is locally upper bounded near X, then u∗ ∈ PSH(V )) that
U∗ is in fact plurisubharmonic everywhere. See Demailly [6, Théorème 1.7]
for a proof of the removable singularity theorem. The proof is not immediate,
and relies on Hironaka’s desingularization theorem.

Let us move on to the definition of the relative extremal function.

Definition 1.6. Let V be an analytic variety in Ω ⊂ Cn and let K be
a closed subset of V . We define the relative extremal function for K (and
V , Ω) by

ωK(z) = ωK,V,Ω(z) = sup{u(z) : u ∈ PSH(V ), u ≤ 0, u|K ≤ −1}.

In general, ωK is not plurisubharmonic even on Virr (it need not be upper
semicontinuous), but the upper semicontinuous regularization ω∗

K is. If ωK =
ω∗

K on Virr, or equivalently if ωK is continuous at K, we say thatK is regular.

We can now state the main result of the paper:

Theorem 1.7. Let V be a locally irreducible analytic variety in Ω ⊂ Cn

and let K be a closed subset of V . If Ω is hyperconvex and K is regular ,
then ωK ∈ C(V ∩Ω). In general , if K is regular and Ω is hyperconvex , but

V is not necessarily locally irreducible, then ωK is continuous on Virr.

Remark. Here and in the following, V denotes the closure of V in Ω.

Recall also that a domain Ω ⊂ Cn is said to be hyperconvex if there is a
function v ∈ PSH(Ω) ∩ C(Ω), with v < 0 on Ω and v = 0 on ∂Ω.
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To prove Theorem 1.7, we will introduce two different convex subcones
of PSH(V ) and their associated Jensen measures. By adapting an approx-
imation result by Cegrell for plurisubharmonic functions on hyperconvex
domains [4] (see also [11]), we will prove that the two classes of Jensen
measures coincide, and from this fact, Theorem 1.7 will follow.

Remark. The analogous result for the relative extremal function for a
regular compact subset of a hyperconvex domain is well known. (See [10] for
the original proof.)

Acknowledgments. The author was supported by grants from the
Sweden-America foundation and the Swedish Research Council. The au-
thor would like to thank Professor B. A. Taylor for suggesting the problem,
as well as Urban Cegrell and Berit Bengtson for valuable comments.

2. Jensen measures and approximations of plurisubharmonic

functions on analytic varieties. Let X be a compact metric space, and
let F be a cone of real-valued, upper bounded and upper semicontinuous
functions on X containing all the constants. If g is a real-valued function
on X, then we define

Sg(z) = sup{u(z) : u ∈ F , u ≤ g}.

Let z ∈ X and define a class of positive measures by J F
z = {µ : u(z) ≤T

u dµ for all u ∈ F}. One can verify that J F
z is a convex, weak-∗ compact

set. If g is a Borel function on X, we define Ig(z) = inf{
T
g dµ : µ ∈ J F

z }.
Note that every measure in J F

z is a probability measure.
The measures in J F

z are called Jensen measures for the cone F , and the
main reason for introducing these measures is the following duality theorem
by Edwards [7]. A more accessible proof can be found in [11].

Theorem 2.1 (Edwards’ Theorem). Let F be as above. If g is lower

semicontinuous on X, then Sg = Ig.

For our purposes, F will be a convex subcone of PSH(V ). In particular,
let us introduce the following definitions:

Definition 2.2. Let V be an analytic variety in Ω ⊂ Cn. Define

PSH0(V ) = {u ∈ PSH(V ) : u∗|V ∩∂Ω = u∗|V ∩∂Ω = const},

the set of plurisubharmonic functions with constant boundary values. (Here
u∗ and u∗ denote the upper and lower semicontinuous regularizations of u,
respectively.) Furthermore, define

PSH0
c(V ) = PSH0(V ) ∩ C(V ∩Ω).

It is clear that PSH0
c(V ) ⊂ PSH0(V ) and that both classes are con-

vex subcones of PSH(V ). For z ∈ V ∩ Ω, we let J 0
z and J 0

c,z denote the
corresponding Jensen measures.
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Theorem 2.3. Let V be an analytic variety in Ω ⊂ Cn and assume that

Ω is hyperconvex. If u ∈ PSH0(V ), then there exists a sequence (uj) with

uj ∈ PSH0
c(V ) such that uj ց u∗ on V ∩Ω.

Proof. By adding a constant, we may as well assume that u∗ = u∗ = 0 on
V ∩∂Ω. Let h ∈ PSH(Ω)∩C(Ω) be a bounded plurisubharmonic exhaustion
function for Ω with h|∂Ω = 0. (Such a function exists, since Ω is assumed
to be hyperconvex.)

By Fornæss and Narasimhan [8], we can extend u to be plurisubharmonic
on some open neighborhood U ⊃ V in Ω. This extension will still be denoted
by u.

For ε > 0, define Ωε = {z ∈ Ω : h(z) < −ε}. For each positive integer j,
let εj = 1/2j2 and choose rj > 0 such that rj < dj := dist(Ωεj

, ∂Ω) and
rj < dist(V ∩Ωεj

, ∂U). By decreasing rj further, we may assume that rj ց 0.
Define Uj = {z ∈ U ∩Ωdj

: dist(z, ∂U) > rj}.
Let ψ ∈ C∞

0 (Cn) be a non-negative radial function with support in the
unit ball and

T
ψ dV = 1, and let ψδ(z) = δ−nψ(z/δ). Define uj = u ∗ ψrj

and let

(2.1) ũm(z) =

{
max{um(z) − 1/m,mh(z)}, z ∈ V ∩ Um,

mh(z), z ∈ V \ Um.

Note that on V ∩∂Um, um ≤ −1/m and mh = −1/2m, so ũm is well defined,
plurisubharmonic on V and continuous on V . For simplicity of notation, we
will use the shorthand notation ũm = max{um(z) − 1/m,mh(z)} for (2.1).

Define vj(z) = supm≥j{ũm(z)}. We claim that each vj is plurisubhar-

monic on V and continuous on V . Clearly, vj is lower semicontinuous on V ,
being the supremum of continuous functions, and v∗j |V ∩∂Ω =(vj)∗|V ∩∂Ω =0.
Furthermore

vj = sup
m≥j

{max{um − 1/m,mh}} = sup
m≥j

{max{um,mh+ 1/m} − 1/m}

≤ max{ max
K≥m≥j

{max{um,mh+ 1/m} − 1/m}, max{uK ,Kh+ 1/K}}

for any K ≥ j, since

(2.2) max{um,mh+ 1/m} − 1/m ≤ max{uK ,Kh+ 1/K}

if m ≥ K because the right hand side of (2.2) is decreasing in K.
Finally, note that

ṽj
K := max{ max

K≥m≥j
{max{um,mh+ 1/m} − 1/m},max{uK ,Kh+ 1/K}}

decreases to vj asK → ∞. Each ṽj
K is continuous on V and hence vj is upper

semicontinuous. It is clear that vj ց u∗ on V , and the proof is finished.

As an immediate corollary, we deduce that the Jensen measures for
PSH0 and PSH0

c coincide.
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Corollary 2.4. Let V be an analytic variety in Ω ⊂ Cn and assume

that Ω is hyperconvex. If z ∈ V , then J 0
z = J 0

c,z.

Proof. Clearly J 0
z ⊂ J 0

c,z. Let µ ∈ J 0
c,z and let u ∈ PSH0 be an arbitrary

plurisubharmonic function. By Theorem 2.3, we can find a sequence uj ∈
PSH0

c with uj ց u∗ on V . Hence, by the monotone convergence theorem,\
u∗ dµ = lim

j→∞

\
uj dµ ≥ lim

j→∞
uj(z) = u∗(z).

Since u was arbitrary, µ ∈ J 0
z .

3. Continuity of ωK . If we use the results from Section 2, the proof of
our main result is straightforward.

Proof of Theorem 1.7. Let h ∈ PSH(Ω)∩C(Ω) be a bounded exhaustion
function with h|∂Ω = 0. If u is a member of the defining family for ωK , then
so is ũ = max{u,Mh} for M > 0 large enough and ũ ∈ PSH0(V ). Hence it
is enough to consider functions in PSH0 when defining ωK , i.e.

ωK(z) = sup{u(z) : u ∈ PSH0(V ), u ≤ 0, u|K ≤ −1}.

Consequently, since −χK is lower semicontinuous, Edwards’ Theorem and
Corollary 2.4 imply that

ωK(z) = inf
{\

−χK dµ : µ ∈ J 0
z

}
= inf

{\
−χK dµ : µ ∈ J 0

c,z

}

= sup{u(z) : u ∈ PSH0
c(V ), u ≤ 0, u|K ≤ −1} =: ωc

K(z),

for all z ∈ V . Clearly, ωc
K is lower semicontinuous, being the supremum

of continuous functions, and since we assume that K is regular, ωK = ω∗
K

is plurisubharmonic and in particular upper semicontinuous on Virr. Hence,
ωK ∈ PSH(Virr) ∩ C((V \ Vred) ∩Ω).

Note that the relative extremal function studied in [1, 2, 3] is defined in
terms of almost plurisubharmonic functions. Let us conclude the paper by
showing that, at least for a reasonable class of varieties, there is no difference
between these two extremal functions.

Definition 3.1. Let V be an analytic variety in Ω ⊂ Cn and let K be
a closed subset of V . Define

ω̃K(z) = ω̃K,V,Ω(z) = sup{u(z) : u ∈ P̃SH(V ), u ≤ 0, u|K ≤ −1}.

If ω̃K is continuous at K, we say that K is P̃SH-regular.

Since PSH(V ) ⊂ P̃SH(V ), it is clear that ωK ≤ ω̃K . However, we can
prove the following result:

Theorem 3.2. Let V be an analytic variety in Ω ⊂ Cn, let K be a closed

subset of V and assume that there is a negative function φ ∈ P̃SH(V )
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with φ−1(−∞) = Vsing. If Ω is hyperconvex and K is P̃SH-regular , then

ω̃K = ωK on Virr, and in particular , ω̃K ∈ C((V \ Vred) ∩Ω).

Proof. First note that if u ∈ P̃SH(V ), then u+ εφ ∈ PSH(V ) for every
ε > 0. Hence ω̃K ≤ ωK + εφ for all ε > 0. By letting ε → 0, it follows that
ω̃K = ωK on Vreg, so by Theorem 1.7, ω̃∗

K = ω∗
K = ωK on Virr.

Remark. Note that any algebraic variety and more generally any vari-
ety in Ω whose defining functions extend to a common open neighborhood
of Ω satisfies the assumption in Theorem 3.2. Also note that if a compact

set K is P̃SH-regular, then it is regular (since −1 ≤ ωK ≤ ω̃K).
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[2] —, —, —, Local radial Phragmén–Lindelöf estimates for plurisubharmonic functions

on analytic varieties, Proc. Amer. Math. Soc. 131 (2003), 2423–2433.
[3] —, —, —, The geometry of analytic varieties satisfying the local Phragmén–Lindelöf
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[9] L. Hörmander, On the existence of real analytic solutions of partial differential equa-

tions with constant coefficients, Invent. Math. 21 (1973), 151–182.
[10] J. Siciak, Extremal plurisubharmonic functions in C

n, Ann. Polon. Math. 39 (1981),
175–211.

[11] F. Wikström, Jensen measures and boundary values of plurisubharmonic functions,
Ark. Mat. 39 (2001), 181–200.

Department of Mathematics
University of Michigan
Ann Arbor, MI 48109-1043, U.S.A.
E-mail: fwikstro@umich.edu

Current address:
Department of Mathematics

Mid Sweden University
851 70 Sundsvall, Sweden

E-mail: Frank.Wikstrom@miun.se
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