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On ontinuous solutions to linear hyperboli systemsby Małgorzata Zdanowicz (Biaªystok) and
Zbigniew Peradzyński (Warszawa)Abstrat. We study the onditions under whih the Cauhy problem for a linear hy-perboli system of partial di�erential equations of the �rst order in two independent vari-ables has a unique ontinuous solution (not neessarily Lipshitz ontinuous). In additionto obvious ontinuity assumptions on oe�ients and initial data, the su�ient onditionsare the bounded variation of the left eigenvetors along the harateristi urves.1. Introdution. It is known [4℄ that the Cauhy problem for a hyper-boli system
∂u

∂t
+ A(t, x)

∂u

∂x
= b(t, x) + B(t, x)u,(1)

u(0, x) = u0(x), x ∈ [α, β],(2)with Ck oe�ients, k ≥ 1, has a unique Ck solution provided that u0 ∈
Ck([α, β]). A similar result has been shown in [2℄ for Lipshitz ontinuoussolutions: if all oe�ients are Lipshitz ontinuous then u(t, x) is Lipshitzontinuous in (t, x) if in addition u0 is Lipshitz ontinuous. In [1℄ it has beenshown that Lipshitz ontinuity an be in priniple also replaed, to someextent, by absolute ontinuity. To have uniqueness one assumes however theLipshitz ontinuity in x of the eigenvalues of A. The question arises whetherwe an still replae the assumption of Lipshitz and absolute ontinuity bya weaker one to assure only the ontinuity of the solution.This work onerns the Cauhy problem (1)�(2) where u is an n-dimen-sional olumn vetor funtion of two variables t and x. System (1) is hyper-boli, whih means that the matrix A has real eigenvalues {ξk(t, x)}k=1,...,p,
p ≤ n (with multipliities mk) and the orresponding eigenvetors span the
n-dimensional spae. We assume that the multipliities mk, k = 1 . . . , p, areonstant (not depending on (t, x)) and the inequality ξ1 < · · · < ξp holdsfor all (t, x) ∈ [0, T ] × [α0, β0], where [α, β] ⊂ (α0, β0). Let {Lj}j=1,...,n be2000 Mathematis Subjet Classi�ation: Primary 35L45.Key words and phrases: linear hyperboli system, ontinuous solutions.[273℄



274 M. Zdanowiz and Z. Peradzy«skileft linearly independent eigenvetors of A orresponding to the eigenvalues
{ξk}. The matrix A is of the form A = L−1 D L, where D = diag[ξ1, . . . , ξn]and L is the nonsingular n × n matrix whose rows are the left eigenvetors
L1, . . . , Ln.We will prove the existene and uniqueness of ontinuous solutions pro-vided that the left eigenvetors have bounded variation along harateristiurves. Our purpose is to show the existene and uniqueness of a generalizedsolution of system (1)�(2). By a ontinuous generalized solution we under-stand a funtion satisfying an integral system obtained from the di�erentialsystem by integration along harateristi urves. In the proof we use theontration mapping priniple.2. Charateristi urves and generalized solution. Throughoutthis setion we assume that L ∈ C1([0, T ] × [α0, β0]). Multiplying (1) onthe left by L,

L
∂u

∂t
+ DL

∂u

∂x
= Lb + LBu,and introduing the new unknown vetor funtion (Riemann invariants)(3) r(t, x) = L(t, x) · u(t, x)we transform problem (1)�(2) to the following one:

(4)
∂r

∂t
+ D

∂r

∂x
= Lb +

[
LB +

(
∂L

∂t
+ D

∂L

∂x

)]
u,

(5) r0(x) = r(0, x) = L(0, x) · u0(x), x ∈ [α, β].Obviously the funtion u on the right hand side of (4) an be expressed by r,namely u = L−1r.The harateristi urve x = xk(t; t, x) of the kth family passing throughthe point (t, x) is the solution of the equation(6) dx

dt
= ξk(t, x)whih satis�es the initial ondition(7) xk(t; t, x)|t=t = x.If the funtion ξk(t, x) is ontinuous and satis�es the Lipshitz ondition withrespet to x then, by the Piard theorem, there is only one urve xk passingthrough the point (t, x), whih is ontinuously di�erentiable with respetto t. Sine ξk(t, x) is bounded on [0, T ] × [α0, β0], the urve representedby the solution x = xk(t; t, x), (t, x) ∈ (0, T ) × (α0, β0), exists for all t ∈

[0, T ] unless it intersets the lateral boundaries [0, T ] × {α0} ∪ [0, T ] × {β0}of [0, T ] × [α0, β0].



Continuous solutions to linear hyperboli systems 275Set(8) G = {(t, x) ∈ [0, T̃ ] × [α0, β0] : X(t) ≤ x ≤ Y (t)}where
dX(t)

dt
= max

k=1,...,p
{ξk(t, X)}, X(0) = α,

dY (t)

dt
= min

k=1,...,p
{ξk(t, Y )}, Y (0) = β, α < β.

The time T̃ is de�ned in the following way: if X(t) and Y (t) have the (�rst)intersetion point at time t∗ ≤ T , X(t∗) = Y (t∗), or if X(t) or Y (t) interset(for the �rst time) the lateral boundaries of [0, T ] × [α0, β0] at time t1, t2(respetively) then T̃ = min {t1, t2, t∗}, otherwise T̃ = T .
t∗

T

α0 α β β0

G

Notie that G has the property that every harateristi urve starting from
(t, x) ∈ G is fully ontained in G for 0 ≤ t ≤ T̃ and xk(0; t, x) ∈ [α, β],
k = 1, . . . , n.The di�erential operators appearing in equation (4) are in fat the di-retional derivatives along the harateristi urves. Indeed, for any di�er-entiable funtion f(t, x) we have

d

dt
f(t, xk(t; t, x)) =

∂

∂t
f(t, x) + ξk

∂

∂x
f(t, x).Therefore (4) beomes

drk(t, xk(t; t, x))

dt
= Lk(t, xk(t; t, x)) · b(t, xk(t; t, x))(9)

+ Lk(t, xk(t; t, x)) · B(t, xk(t; t, x)) · u(t, xk(t; t, x))

+
d Lk(t, xk(t; t, x))

dt
· u(t, xk(t; t, x))for k = 1, . . . , n. Here d Lk/dt denotes the vetor [d Lk1/dt, . . . , d Lkn/dt].



276 M. Zdanowiz and Z. Peradzy«skiWe de�ne a linear mapping
Pt : C0([0, T̃ ] × [α0, β0]) → C0([0, T̃ ] × [0, T̃ ] × [α0, β0])ating on vetor funtions f = (f1, . . . , fn)T by(10) (Pf)k(t, t, x) = fk(t, xk(t; t, x)), k = 1, . . . , n.Sine we have

sup
(t,t,x)∈[0,T̃ ]×[0,T̃ ]×[α0,β0]

|fk(t, xk(t; t, x))| = sup
(t,x)∈[0,T̃ ]×[α0,β0]

|fk(t, x)|,

P is ontinuous. For onveniene we will use the notation
Ptf = (Pf)(t, ·, ·).Hene we an rewrite (9) as follows:(11) d

dt
(Ptr) = Pt

(
Lb + LBu +

dL

dt
u

)
.Integrating (11) with respet to t from 0 to t we obtain(12) r(t, x) = P0r

0 +

t\
0

Pt

(
Lb + LB u +

dL

dt
u

)
dt.We thus arrived at a system of n integral equations in plae of the originalsystem (1):

u(t, x) = L−1(t, x)P0r
0 + L−1(t, x)

t\
0

Pt(Lb + LBu) dt(13)
+ L−1(t, x)

t\
0

Pt

(
dL

dt
u

)
dt.To generalize the notion of solution we an treat the last integral as a Stieltjesintegral with respet to t and rewrite (13) in the form

u(t, x) = L−1(t, x)P0r
0 + L−1(t, x)

t\
0

Pt(Lb + LBu) dt(14)
+ L−1(t, x)

t\
0

Pt(dL · u).If the funtion u is ontinuous then for the existene of the Stieltjes integralin (14) it is su�ient that the entries of the matrix L have bounded variationalong the harateristi urves for t ∈ [0, t] (respetively Lsj along xs(t; t, x),
s, j = 1, . . . , n).By a ontinuous generalized solution of the Cauhy problem (1)�(2) weunderstand a funtion satisfying the integral system (14).



Continuous solutions to linear hyperboli systems 2773. Existene theorem. Let us formulate our main result:Theorem 1. Let the entries of the matries L(t, x) and L−1(t, x) be on-tinuous funtions on [0, T ] × [α0, β0]. Suppose L(t, x) has bounded variationalong eah harateristi urve x = xk(t; t, x) ontained in [0, T ] × [α0, β0],i.e. Lkj(t, xk(t; t, x)), k, j = 1, . . . , n, has bounded variation as a funtionof t. Let in addition this variation be a ontinuous funtion of t, x. Assumethat the entries of the matries D(t, x), B(t, x), b(t, x) are ontinuous on
[0, T ]×[α0, β0]. Let the entries of D(t, x) satisfy the Lipshitz ondition withrespet to x and let the initial data u0(x) be ontinuous on [α, β]. Then thereexists a unique funtion u(t, x) of lass C0(G) whih satis�es (1)�(2).To prove the existene we will use the Banah �xed point theorem. We�rst de�ne (for T ∗ ∈ (0, T̃ ]) the set(15) GT ∗ = G ∩ ([0, T ∗] × [α0, β0]).For the proof we onsider the linear operator Q, whih transforms the vetorfuntion u ∈ C0(GT ∗) into the vetor funtion U ∈ C0(GT ∗), U = Q(u),where aording to (14),

Q(u) = U(t, x) = L−1(t, x)P0r
0 + L−1(t, x)

t\
0

Pt(Lb + LBu) dt(16)
+ L−1(t, x)

t\
0

Pt(dL · u).We will show that for su�iently small T ∗ the mapping Q is a ontration.We shall need the followingLemma 1. Let f, g : [0, T̃ ]×G → R. Assume that the funtions f(τ, t, x)and g(τ, t, x) are ontinuous on [0, T̃ ] × G. Moreover let g be of boundedvariation with respet to the variable τ for any �xed t and x, and its variationbe a ontinuous funtion of t, x (1). Then
(1) Continuity of h(x, y) and bounded variation with respet to y do not guaranteethat the total variation is a ontinuous funtion of x. An example is the funtion

h : [−1, 1] × [−π, π] → R, h(x, y) =

{
x sin y

x
, x > 0,

0, x ≤ 0.It is ontinuous on [−1, 1]× [−π, π] and has bounded variation with respet to y (for any�xed x). Moreover its total variation is
V

π
−π(h(x, ·)) =

{
0, x ∈ [−1, 0],

2x
[

2

x

]
+ 2x

∣∣sin π

x
− sin

(
π

2

[
2

x

])∣∣ , x ∈ (0, 1].This is not a ontinuous funtion of x beause limx→0+ V π
−π(h(x, ·)) = 4, whereas

limx→0− V π
−π(h(x, ·)) = 0.



278 M. Zdanowiz and Z. Peradzy«ski
(17) J(t, x) =

t\
0

f(τ ; t, x) dg(τ ; t, x)is a ontinuous funtion with respet to both variables.
Remark. In the integral (17), t and x are treated as parameters.Proof. Let V t2

t1
(g(τ ; t, x)) denote the variation of the funtion g for τ ∈

[t1, t2]. We have the estimate
|J(t, x)−J(t0, x0)| =

∣∣∣
t\
0

f(τ ; t, x) dg(τ ; t, x) −

t0\
0

f(τ ; t0, x0) dg(τ ; t0, x0)
∣∣∣

≤
∣∣∣

t\
0

f(τ ; t, x) dg(τ ; t, x)−

t\
0

f(τ ; t0, x0) dg(τ ; t0, x0)
∣∣∣

+
∣∣∣

t\
0

f(τ ; t0, x0) dg(τ ; t0, x0)−

t0\
0

f(τ ; t0, x0) dg(τ ; t0, x0)
∣∣∣

≤
∣∣∣

t\
0

[f(τ ; t, x) − f(τ ; t0, x0)] dg(τ ; t, x)
∣∣∣

+
∣∣∣

t\
0

f(τ ; t0, x0) d[g(τ ; t, x) − g(τ ; t0, x0)]
∣∣∣

+
∣∣∣

t\
t0

f(τ ; t0, x0) dg(τ ; t0, x0)
∣∣∣

≤ max
τ∈[0,T ]

|f(τ ; t, x) − f(τ ; t0, x0)| · V
T
0 (g(τ ; t, x))

+ max
τ∈[0,T ]

|f(τ ; t0, x0)| · V
T
0 (g(τ ; t, x) − g(τ ; t0, x0))

+ max
τ∈[0,T ]

|f(τ ; t0, x0)| · V
t
t0

(g(τ ; t0, x0)).As f is ontinuous, we have
lim
t→t0
x→x0

max
τ∈[0,T ]

|f(τ ; t, x) − f(τ ; t0, x0)| = 0.

The funtion g is ontinuous and has bounded variation with respet to τfor any �xed t0 and x0, therefore [3℄ we have
lim
t→t0

V t
t0

(g(τ ; t0, x0)) = 0.Aording to the assumptions, the variation is a ontinuous funtion of t, x.Hene
lim
t→t0
x→x0

V T
0 (g(τ ; t, x) − g(τ ; t0, x0)) = 0.



Continuous solutions to linear hyperboli systems 279From the above remarks it follows that
lim
t→t0
x→x0

J(t, x) = J(t0, x0),whih proves the lemma.By Lemma 1, Q maps C0(GT ∗) into itself. We laim that it is possibleto hoose the time T ∗ so that the linear mapping Q will be a ontration.Indeed, let u and u be vetor funtions from the spae C0(GT ∗) with norm
‖u‖ = max

(t,x)∈GT∗

max
k=1,...,n

|uk(t, x)|.We obtain
‖Q(u) −Q(u)‖ = ‖U − U‖

≤
∥∥∥L−1

t\
0

Pt(LB(u − u)) dt
∥∥∥ +

∥∥∥L−1
t\
0

Pt(dL(u − u))
∥∥∥

≤ ‖u − u‖ ‖L−1‖(T ∗‖LB‖ + n max
(t,x)∈GT∗

max
s,j=1,...,n

V T ∗

0 (Lsj(t, xs(t; t, x)))).It follows that
(18) ‖U − U‖

≤ ‖L−1‖(T ∗‖LB‖ + n max
(t,x)∈GT∗

max
s,j=1,...,n

V T ∗

0 (Lsj(t, xs(t; t, x))))‖u− u‖.Here V T ∗

0 (Lsj(t, xs(t; t, x))) stands for the variation of the funtion Lsj withrespet to t. The entries of the matrix L and L−1 are ontinuous on [0, T ∗]×
[α0, β0]. Hene ‖L−1‖ < ∞, ‖LB‖ < ∞.Aording to (18), Q is a ontration mapping if T ∗ satis�es(19) ‖L−1‖(T ∗‖LB‖ + n max

(t,x)∈GT∗

max
s,j=1,...,n

V T ∗

0 (Lsj(t, xs(t; t, x)))) < 1.Our task is now to show that (19) holds for some T ∗ > 0.The �rst term in brakets ontains T ∗ and an be made arbitrarily smallfor small T ∗:(20) T ∗‖L−1‖ ‖LB‖ → 0 as T ∗ → 0.Similarly [3℄ for all s, j = 1, . . . , n we have(21) V T ∗

0 (Lsj(t, xs(t; t, x))) → 0 as T ∗ → 0Sine Q is a ontration, being a linear mapping in a Banah spae it is alsoontinuous. From the fat that GT ∗ is a ompat set we dedue that T ∗ > 0an be hosen in suh a way that (21) holds for all (t, x) ∈ GT ∗ uniformly.We onlude from (20) and (21) that there exists T ∗, 0 < T ∗ ≤ T̃ , suhthat (19) is satis�ed. By the Banah priniple there is a unique �xed pointof the mapping Q. We have proved the existene of a loal in time solution



280 M. Zdanowiz and Z. Peradzy«skiof (14) on GT ∗ . Sine the norms of the entries of the matries L, B, L−1 donot depend on t, we an extend the solution onto the whole set G. Indeed,taking now t = T ∗ as the initial time and u(T ∗, x) as the new initial onditionwe ome to the problem de�ned on the set
G2 = {(t, x) ∈ [T ∗, T̃ ] × [α0, β0] : X(t) ≤ x ≤ Y (t)}.We ontinue in this fashion obtaining a solution on the set G, whih om-pletes the proof.

Remarks. To onlude, let us note that a (loal in time) existene the-orem similar to Theorem 1 an be proved for a semilinear system, i.e. whenthe RHS is a nonlinear ontinuous funtion Lipshitzian in u.In appliations it often happens that the oe�ients of the system dependonly on x:
∂u

∂t
+ A(x)

∂u

∂x
= b(x),(22)

u(0, x) = u0(x), x ∈ [α, β].(23)We laim that Theorem 1 is still true in this ase if instead of the ontinuityof the vetor funtion b(x) we only assume that it is a derivative along theharateristi diretions of some ontinuous funtion f(x), i.e.(24) b(x) =

(
∂

∂t
+ D(x)

∂

∂x

)
f(x) = D(x)

∂

∂x
f(x).Using the integral formulation (14) for the Cauhy problem (22)�(23) wehave

u(t, x) = L−1(t, x) · P0r
0 + L−1(t, x)

t\
0

Pt(L · df)

+ L−1(t, x)

t\
0

Pt(dL · u).Integrating by parts we obtain
t\
0

Pt(L · df) = −

t\
0

Pt(dL · f) + Pt(Lf) − P0(Lf).By the above, let us de�ne a solution of the Cauhy problem (22)�(23) tobe a C0 funtion satisfying the following integral system:
u(t, x) = −L−1(t, x)

t\
0

Pt(dL · f) + L−1(t, x)

t\
0

Pt(dL · u)

+ L−1(t, x) · P0r
0 + L−1(t, x) · Pt(Lf) − L−1(t, x) · P0(Lf)



Continuous solutions to linear hyperboli systems 281The integral Tt0 Pt(dL · f) exists and, by Lemma 1, is a ontinuous funtionof (t, x).If the matrix D(x) is nonsingular and b(x) ∈ L1([α0, β0]) then a vetorfuntion f(x) as in (24) always exists and it is given by
f(x) =

x\
α0

D−1(y)b(y) dy.Aknowledgments. The authors would like to thank J. Trzeiak foruseful remarks.
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