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On convergence of integrals in o-minimal structures

on archimedean real closed fields

by Tobias Kaiser (Regensburg)

Abstract. We define a notion of volume for sets definable in an o-minimal structure
on an archimedean real closed field. We show that given a parametric family of continuous
functions on the positive cone of an archimedean real closed field definable in an o-minimal
structure, the set of parameters where the integral of the function converges is definable
in the same structure.

Introduction. So far a good notion of volume for sets definable in an
o-minimal structure on an arbitrary real closed field is missing. In [4] A. Be-
rarducci and M. Otero defined a real-valued volume for the finite parts of
definable sets. In Section 1 we recall these definitions which lead to a good
notion in the archimedean case having the desired properties like additivity
and monotonicity. We also obtain the standard connection with antideriva-
tives for integrals.

In Section 2 we show the following

Theorem. Let R be an archimedean real closed field and let f : Rn ×
R≥0 → R≥0 be a continuous function which is definable in an o-minimal

structure on R. Then the set {a ∈ Rn |
T∞
0 f(a, t) dt < ∞} of parameters

where the integrals converge is definable in the same structure.

G. Comte, J.-M. Lion and J.-P. Rolin established a multivariable version
of this theorem for semialgebraic and globally subanalytic functions on the
reals (cf. [5], [7]). In the case R = R the above theorem is proven for arbitrary
o-minimal structures on R by O. Le Gal in [6]. He uses a fact about o-
minimal structures on R (cf. [8]) which heavily relies on the completeness
of R and which is not true for arbitrary archimedean real closed fields. In
this paper we use ideas of the theory of Hardy fields as in the work of
C. Miller and P. Speissegger [9]. But instead of model-theoretic we give
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geometric arguments to prove a stronger result with the above theorem as
a consequence, as follows: By the properties of the integral we can translate
the problem into the value group of the Hardy field of the given o-minimal
structure, i.e. the Hardy field of germs at +∞ of definable functions. The
convergence or divergence of the integrals of the given family gives us a
Dedekind cut (I,F) in the value group. This Dedekind cut (I,F) has a
property we call “width 0”. With this we can show that the values of the
given family have an upper bound in I and a lower bound in F . The theorem
follows.

In Section 3 we give examples of such Dedekind cuts (I,F) and study
them in the case R = R. We also give some consequences for certain classes
of ordinary differential equations. And in Section 4 we show how to rec-
ognize the freeness of this Dedekind cut. From this we deduce a definable
asymptotic integration for families.

1. Volume of definable sets in o-minimal structures on an archi-

medean real closed field. Let R be an archimedean real closed field and
let M be an o-minimal structure on R.

We want to speak about volume of sets and functions which are definable
in M. We use the definition of an additive measure in o-minimal expansions
of fields due to A. Berarducci and M. Otero [4]. They define it for the finite
parts of definable sets also in nonarchimedean real closed fields. Since we
are in the archimedean case we start with definitions more adapted to this
situation; the result is the same.

1.1. Definition.

(a) For a = (a1, . . . , an), (b1, . . . , bn) ∈ Rn we define a ≤ b if ai ≤ bi for
all 1 ≤ i ≤ n, and a < b if ai < bi for all 1 ≤ i ≤ n.

(b) A rectangle is a set of the form

[a, b[ :=
n∏

i=1

[ai, bi[

with a ≤ b ∈ Rn.
(c) A polytope is a finite union of rectangles.

1.2. Definition.

(a) Let a, b ∈ Rn with a ≤ b. For a rectangle Q := [a, b[ we set

Vol(Q) :=
n∏

i=1

(bi − ai).
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(b) Let P be a polytope and P =
.⋃

1≤j≤r Qj be a finite partition into
rectangles. We set

Vol(P ) :=
r∑

i=1

Vol(Qj).

1.3. Remark.

(a) For a ≤ b ∈ Rn we have

Vol([a, b[) > 0 ⇔ a < b.

(b) Each polytope can be written as a disjoint union of rectangles.
(c) Definition 1.2(b) is correct. If there are two finite partitions P =

.⋃
1≤j≤r Qj =

.⋃
1≤s≤t Q′

s of a polytope into rectangles, then

r∑

j=1

Vol(Qj) =
t∑

s=1

Vol(Q′
s).

This can be seen by applying a common subpartition.

1.4. Definition. For an arbitrary set A ⊂ Rn we define

I(A) := {Vol(P ) | P ⊂ A is a polytope}.

If A is bounded we define

O(A) := {Vol(P ) | P ⊃ A is a polytope}.

(I stands for inner, O for outer measure.)

1.5. Remark.

(a) If A is bounded, then I(A) < O(A).
(b) I(A) ⊂ R≥0 is convex, i.e. if 0 ≤ r < s < t ∈ R with r, t ∈ Vol(A),

then s ∈ I(A). For A bounded, O(A) is convex.

In [4, Theorem 2.4], the following is shown:

1.6. Theorem. If A ⊂ Rn is definable and bounded then (I(A), O(A)) is

a Dedekind cut of R≥0, i.e. for each ε > 0 (resp. n ∈ N) there are v1 ∈ I(A)
and v2 ∈ O(A) with v2 − v1 < ε (resp. < 1/n).

Let R →֒ R be the embedding as real closed fields. Then the Dedekind
cut (I(A), O(A)) of R is realized by a unique real number denoted by Vol(A)
(µ(A) in [4]).

1.7. Remark. For a polytope P the two notions of Vol(P ) coincide.
A. Berarducci and M. Otero define for an unbounded definable set A the
volume of A by

Vol(A) := lim
r→∞
r∈R

Vol(A ∩ Br(0)) ∈ R≥0 ∪ {∞}.
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This is also equivalent to the definition by the inner measure. Let A ⊂ Rn be
unbounded and definable. Then Vol(A) ∈ R≥0 ∪ {∞} realizes the Dedekind
cut (I(A), R≥0 \ I(A)).

We deduce from [4] the following properties of the volume:

1.8. Proposition.

(a) Vol is finitely additive and translation-invariant.
(b) For a definable set A ⊂ Rn we have

Vol(A) > 0 ⇔ A
◦

6= ∅.

From the proposition we get Vol(A) = Vol(Ā) for a definable set A ⊂ Rn,
since (Ā \ A)◦ = ∅.

1.9. Observation. The volume introduced above can also be under-
stood in the following way. Let M be the given o-minimal structure on the
archimedean real closed field R and let R ⊂ R be the unique embedding of R
into its Dedekind completion R. Then there is a unique o-minimal structure
M′ on R such that M ≺ M′, i.e. M is an elementary substructure of M′

(cf. [12]).
Let A ⊂ Rn be definable in M and let AR be its realization in Rn. Then

AR is definable in M′. By stratification theorems for o-minimal structures
AR is obviously Lebesgue-measurable. By Definition 1.4 and the density of
R in R one can deduce Theorem 1.6 and we see that Vol(A) is the Lebesgue
volume of AR. This immediately gives Proposition 1.8.

1.10. Definition. Let f : A → R≥0 be definable. Then\
A

f dx = Vol({(x, t) ∈ A × R≥0 | 0 ≤ t ≤ f(x)}).

This can be extended in the usual way to arbitrary definable functions when-
ever it makes sense, for example to functions with bounded graphs.

We get the usual linearity of the integral:

1.11. Proposition. Let A ⊂ Rn be bounded and let f, g : A → R be

definable and bounded. Let λ, µ ∈ R. Then\
A

(λf + µg) dx = λ
\
A

f dx + µ
\
A

g dx.

We also get the well known connection with the antiderivative:

1.12. Theorem. Let f : R → R be definable and continuous and let

F : R → R be definable and differentiable with F ′ = f . Then for a < b we

get \
[a,b]

f(t) dt = F (b) − F (a).
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Proof 1. By o-minimality we find a finite partition of [a, b] into intervals
such that f has constant sign on each of them. So we may assume that
f ≥ 0 on [a, b]. Again by o-minimality we find a finite partition of [a, b]
into intervals such that f is monotonic on each of the intervals. So we may
assume that f is increasing on [a, b].

Let n ∈ N. Define a
(n)
0 := a and a

(n)
j := a+ j(b − a)/n for 1 ≤ j ≤ n. We

set

P
(n)
1 :=

⋃

0≤j<n

[a
(n)
j , a

(n)
j+1[ × [0, f(a

(n)
j )[,

P
(n)
2 :=

⋃

0≤j<n

[a
(n)
j , a

(n)
j+1[ × [0, f(a

(n)
j+1)[.

Then Vol(P
(n)
1 ) ∈ I(A) and Vol(P

(n)
2 ) ∈ O(A). We will show that for each

ε > 0 there is some n ∈ N such that

F (b) − F (a) − ε < Vol(P
(n)
1 ) < Vol(P

(n)
2 ) < F (b) − F (a) + ε;

this completes the proof. So let ε > 0. Since f is absolutely continuous on
[a, b] there is some δ > 0 such that |f(x)− f(y)| < ε/(b − a) for x, y ∈ [a, b]
with |x − y| < δ. We choose n ∈ N such that 1/n ≤ δ. By the mean-value

property there are points ξ
(n)
j , 0 ≤ j < n, with a

(n)
j ≤ ξ

(n)
j ≤ a

(n)
j+1 and

F (a
(n)
j+1) − F (a

(n)
j ) = f(ξ

(n)
j )(a

(n)
j+1 − a

(n)
j ). Hence we get

Vol(P
(n)
1 ) =

n−1∑

j=0

f(a
(n)
j )(a

(n)
j+1 − a

(n)
j )

=
n−1∑

j=0

f(ξ
(n)
j )(a

(n)
j+1 − a

(n)
j )

−
n−1∑

j=0

(f(ξ
(n)
j ) − f(a

(n)
j+1))(a

(n)
j+1 − a

(n)
j )

>

n−1∑

j=0

f(ξ
(n)
j )(a

(n)
j+1 − a

(n)
j ) −

ε

b − a

(n−1∑

j=0

a
(n)
j+1 − a

(n)
j

)

=
n−1∑

j=0

(F (a
(n)
j+1) − F (a

(n)
j )) − ε = F (b) − F (a) − ε.

In the same way we get Vol(P
(n)
2 )) < F (b) − F (a) + ε.

Proof 2. We may assume that f ≥ 0 on [a, b]. We set A := {(t, y) ∈ R2 |
a ≤ t ≤ b, 0 ≤ y ≤ f(t)}. Let fR, FR and AR be the realizations of f , F and
A in R. Then fR : R → R is continuous, FR : R → R is differentiable with



180 T. Kaiser

F ′
R

= fR and AR = {(t, y) ∈ R2 | a ≤ t ≤ b, 0 ≤ y ≤ fR(t)}. So in R we
have

Vol(AR) =

b\
a

fR(t) dt = FR(a) − FR(b).

The claim now follows from the fact that Vol(A) = Vol(AR) and FR(t) =
F (t) for all t ∈ R.

2. The main theorem. We fix an archimedean real closed field R. We
prove the following two equivalent theorems:

2.1. Theorem. Let M be an o-minimal structure on R. Let f : Rn ×
R≥0 → R≥0 be a continuous function, definable in M. Then the set

{
a ∈ Rn

∣∣∣
∞\
0

f(a, t) dt < ∞
}

is definable in M.

2.2. Theorem. Let M be an o-minimal structure on the field R. Let

f : Rn×R≥0 → R≥0 be a continuous function, definable in M. Then the set

{
a ∈ Rn

∣∣∣
∞∑

k=0

f(a, k) < ∞
}

is definable in M. (For ak ∈ R≥0 ⊂ R≥0 we define
∑∞

k=0 ak ∈ R≥0 ∪ {∞}
as the limit of the real-valued partial sums.)

These two theorems are clearly equivalent since a function definable in
an o-minimal structure is ultimately monotone.

Proof of Theorem 2.1. The o-minimal structure on the field R will be
fixed and denoted by M. Definable means definable with parameters in M.

Let g : R≥0 → R≥0 be definable and continuous. Then the question ifT∞
0 g(t) dt < ∞ depends only on the germ of g at +∞. Let H be the set of

germs at +∞ of definable functions. It is well known that H is a Hardy field;
it is a field with canonical ordering, derivation and the additively written
valuation ν : H∗ → ν(H∗) =: Γ given by

ν(h)





> 0 if lim
t→∞

h(t) = 0,

= 0 if lim
t→∞

h(t) ∈ R∗,

< 0 if lim
t→∞

|h(t)| = ∞,

for h ∈ H∗. For h ∈ H we define
∞\
|h| < ∞ if

∞\
t0

|h(t)| dt < ∞ for all t0 large,

and similarly we define
T∞

|h| = ∞.
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The question if
T∞

|h| < ∞ depends, by the monotonicity and the linear-
ity of the integral, only on the valuation ν(h). Again by the monotonicity of
the integral we get a Dedekind cut (I,F) of Γ (i.e. I < F and I ∪̇ F = Γ )
with

I =
{
ν(h) ∈ Γ

∣∣∣
∞\
|h| = ∞

}
, F =

{
ν(h) ∈ Γ

∣∣∣
∞\
|h| < ∞

}
.

We show that there are ν(g) ∈ I and ν(h) ∈ F such that for each a ∈ Rn,

ν(f(a, ·)) ≤ ν(g) or ν(f(a, ·)) ≥ ν(h).

Hence
{
a ∈ Rn

∣∣∣
∞\
0

f(a, t) dt < ∞
}

=

{
a ∈ Rn

∣∣∣∣ lim
t→∞

f(a, t)

|h(t)|
< ∞

}
,

which is obviously definable in M, so Theorem 2.1 is an easy consequence
of this.

Miller and Speisegger showed a similar fact in a slightly different setting
with model-theoretic means (see [9, Theorem 1]). We show it in a more
general setting.

2.3. Definition. A Dedekind cut (A,B) of Γ is of width 0 if for each
γ ∈ Γ>0 there are γ1 ∈ A and γ2 ∈ B such that γ2 − γ1 < γ.

2.4. Examples.

(a) Every Dedekind cut which is not free is of width 0.
(b) (I,F) is of width 0: Let ν(h) ∈ Γ<0. Then ν((1/h)′) ∈ F and ν(h′) ∈

I. We have

ν

((
1

h

)′)
− ν(h′) = ν

(
h′

h2

)
− ν(h′) = ν

(
1

h2

)
= −2ν(h).

(c) Changing the archimedean class is not of width 0:

M = Rexp, B = {ν(h) | |h(t)| ≤ tn for some n ∈ N}.

We now prove the following

2.5. Theorem. Let (A,B) be a cut of Γ of width 0, and let f : Rn ×
R≥0 → R≥0 be definable. Then there are γ ∈ A and δ ∈ B such that for each

a ∈ Rn,

ν(f(a, ·)) ≤ γ or ν(f(a, ·)) ≥ δ.

Proof. Without restriction, f(a, t) > 0 for all (a, t) ∈ Rn ×R≥0. Assume
the statement does not hold. We define

g : Rn × Rn × R≥0 → R>0, (a, b, t) 7→ f(a, t)/f(b, t).
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Let W := {(a, b) ∈ Rn × Rn | limt→∞ g(a, b, t) = ∞}. For (a, b) ∈ W let
t(a,b) := min{s ≥ 0 | g(a, b, ·)|[s,∞[ is strictly increasing}. We define

h : {(a, b, τ) ∈ V × R≥0 | τ ≥ g(t(a,b))} → R>0, h(a, b, τ) := g−1
(a,b)(τ).

Then h is definable in M. Since (A,B) is of width 0, h satisfies the following
condition: For each γ̃ ∈ Γ<0 there is some (a, b) ∈ V such that ν(h(a, b, ·))
≤ γ̃. But by universal boundedness of growth of definable functions (cf. [13]),
this is impossible.

3. Examples and consequences. We look closer at the Dedekind cut
(I,F). It is related to an important invariant of a Hardy field (cf. [10], [11])
which also has consequences in applications (cf. [1]–[3]). We concentrate on
the case R = R, where the antiderivative of a continuous function exists. If
the function is definable in an o-minimal structure then the antiderivative
lives in the Pfaffian closure, i.e. in an o-minimal expansion of the given
structure.

We start with some facts from the theory of Hardy fields.

3.1. Definition.

(a) Let ν(h) ∈ Γ . Then ν(g) is called an asymptotic antiderivative of
ν(h) if ν(g′) = ν(h).

(b) M is closed under asymptotic integration if each ν(h) ∈ Γ has an
asymptotic antiderivative.

3.2. Definition ([10]). Let

Ψ := {ν(h′/h) | ν(h) ∈ Γ ∗} = {ν(h′/h) | ν(h) ∈ Γ<0}.

3.3. Rosenlicht’s Theorem ([10]). ν(h) ∈ Γ has asymptotic anti-

derivative if and only if ν(h) 6= supΨ . In particular , M is closed under

asymptotic integration if and only if supΨ does not exist.

Proof. This was shown by Rosenlicht in [10]. For ν(h) ∈ Γ ∗, ν(h) 6=
supΨ , an asymptotic antiderivative is given by

ν

(
h ·

(
h·u
u′

)
(

h·u
u′

)′
)′)

,

with |ν(u)| ≤ |ν(u0)|, ν(u0) ∈ Γ ∗ depending on ν(h).

3.4. Remark. The theorem of Rosenlicht is stated for the more general
case of Hardy fields.

For o-minimal structures we get a connection between the Dedekind cut
(I,F) and Ψ :



Convergence of integrals in o-minimal structures 183

3.5. Lemma. Let M be an o-minimal structure. Then sup I exists, if and

only if supΨ exists and then

sup I = supΨ.

Proof. Case 1: M is polynomially bounded. This case is clear (cf. also
Example 3.7(a)).

Case 2: M is not polynomially bounded. Then the exponential function
is definable in M. Now, it was shown in [9] that

I \ {supI} = Ψ \ {supΨ}.

3.6. Observation. Let M be an o-minimal structure. Assume that
sup I exists. Let f : [t0,∞[ → R≥0 be definable and continuous with ν(f) =

sup I. Let F : [t0,∞[ → R≥0, t 7→
Tt
t0

f(s) ds, be the antiderivative of f .
Then F is definable in an o-minimal expansion M∗ of M.

(a) If ν(f) = max I, then by Rosenlicht’s theorem and the last lemma,

0 > ν(F ) > ν(h) for all ν(h) ∈ Γ<0.

(b) If ν(f) = minF , then

0 > ν

(
1

a − F

)
> ν(h) for all ν(h) ∈ Γ<0

with a :=
T∞
t0

f(t) dt.

So in the o-minimal expansion M∗ we have a function going to infinity
“more slowly” than every function definable in M and tending to infinity.

3.7. Example.

(a) Let M be polynomially bounded, e.g. M = R. Then

I = {ν(tα) | α ≥ −1, tα definable in M},

F = {ν(tα) | α < −1, tα definable in M},

Ψ = {ν(1/t)}.

So max I = ν(1/t) exists and the Dedekind cut (I,F) is not free.
The antiderivative of 1/t, log t, goes to ∞ “more slowly” than every
tα, α > 0.

(b) Let M be the o-minimal structure Rexp. Since the Pfaffian closure
of Rexp is exponentially bounded, by the previous observation the
Dedekind cut (I,F) is free and Rexp is closed under asymptotic
integration. Each definable function is bounded by an iterated exp-
function expn(t) := exp ◦ · · · ◦ exp(t) (n times). So (ν(logn(t)′))n∈N

is cofinal in I and (ν(1/logn(t))′)n∈N is coinitial in F . Since

(logn(t))′ =
1∏n−1

k=0 logk(t)
and

(
1

logn(t)

)′

=
1∏n−1

k=0 logk(t) · (logn(t))2
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we see that (−
∑n

k=0 γk)n∈N is cofinal in I and (−
∑n

k=0 γk −γn)n∈N

is coinitial in F , where γn := ν(logn(t)).

3.8. Remark. So far every o-minimal structure on R known fits in the
above examples. If the o-minimal structure is polynomially bounded, then
we are in case (a); if the exponential function is definable, the o-minimal
structure is the reduct of the Pfaffian closure of a polynomially bounded
o-minimal structure, so that the statements of case (b) hold.

To end this section we give some consequences of Theorem 2.1 on bound-
edness and lifetime of ODE’s on o-minimal structures. The first two deal with
ODE’s with separated variables.

3.9. Corollary. Let f : Rn × R≥0 → R≥0 and g : Rn × R≥0 → R>0 be

definable and differentiable. For a ∈ Rn consider the first order ordinary

differential equation

Da: y′ = g(a, y) · f(a, t), y(0) = 0.

Then the set

{a ∈ Rn | the solution ya(t) of Da is bounded at +∞}

is definable in M.

Proof. Let

Ga : R≥0 → R>0, s 7→
s\
0

dt

g(a, t)
,

and

Fa : R≥0 → R≥0, t 7→
t\
0

f(a, τ) dτ.

Then the maximal solution of Da is given by

ya : Ia → R≥0, t 7→ ya(t) = G−1
a (Fa(t)),

where Ia ⊂ R≥0 is given by

Ia = [0, sup
t∈R≥0

{Fa(t) < lim
s→∞

Ga(s)}[.

Hence

{a ∈ Rn | the solution ya(t) of Da is not bounded at +∞}

=
{
a ∈ Rn

∣∣∣
∞\
0

f(a, t) dt = ∞
}
∩

{
a ∈ Rn

∣∣∣∣
∞\
0

ds

g(a, s)
ds = ∞

}

and is therefore definable by Theorem 2.1.
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3.10. Corollary. Let f, g and Da for a ∈ Rn be as in Corollary 3.9.
Further assume that

T∞
0 f(a, t) dt = ∞ for all a ∈ Rn. Then the set

{a ∈ Rn | the solution ya(t) of Da lives forever}

is definable in M.

Proof. By the proof of Corollary 3.9, ya(t) lives forever if and only if
lims→∞ Ga(s) = ∞. So

{a ∈ Rn | the solution ya(t) of Da lives forever}=

{
a ∈ Rn

∣∣∣∣
∞\
0

ds

g(a, s)
= ∞

}
,

hence is definable in M by Theorem 2.1.

The last corollary deals with a special case of a linear differential equa-
tion:

3.11. Corollary. Let f, g : Rn × R≥0 → R be definable and continuous

with
T∞
0 |f(a, t)| dt < ∞ for all a ∈ Rn. For a ∈ Rn consider the linear

differential equation

La : y′ = f(a, t) · y + g(a, t).

Then given a ∈ Rn all the solutions of La are simultaneously bounded or

unbounded and the set

{a ∈ Rn | the solutions of La are bounded}

is definable in M.

Proof. Let Fa : R≥0 → R, t 7→
Tt
0 f(a, τ) dτ . The set of solutions of the

homogeneous equation

Lh
a : y′ = f(a, t) · y

is given by R · eFa . By variation of constants a special solution of La is given
by

ϕa : R≥0 → R, t 7→

( t\
0

g(a, τ)

eFa(τ)
dτ

)
· eFa(t),

and the set of all solutions of La by ϕa + R · eFa . Since eFa is bounded by
assumption, we get

{a ∈ Rn | the solutions of La are bounded} =
{
a ∈ Rn

∣∣∣
∞\
0

|g(a, t)| dt < ∞
}
,

which is definable by Theorem 2.1.

4. The Dedekind cut (I,F). In the discussion of Theorem 2.1 in
Section 3 we saw that it is important whether the Dedekind cut (I,F)
defined by integration is free or not. In this section we show how to recognize
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this by operations on the value group and we discuss several consequences.
We start with

4.1. Proposition. Let f ∈ H with ν(f) in the archimedean class of

ν(t). Then the map

f ◦ : Γ<0 → Γ, ν(ϕ) 7→ ν(f ◦ |ϕ|),

is well defined.

Proof. Let ϕ1, ϕ2 ∈ H with

lim
t→∞

ϕ1(t) = lim
t→∞

ϕ2(t) = ∞ and lim
t→∞

ϕ1(t)

ϕ2(t)
∈ R∗.

We have to show that

lim
t→∞

(f ◦ ϕ1)(t)

(f ◦ ϕ2)(t)
∈ R∗.

By changing f to 1/f we may assume that f is increasing. Further we may
assume that f > 0. There is a C > 1 such that

1

C
<

ϕ1(t)

ϕ2(t)
< C for all t > 0 large.

Since ν(f) is in the archimedean class of ν(t) there is some n ∈ N with

f(t) ≤ tn for all t > 0 large.

Hence limt→∞ t2n/f(t) = ∞. We get

f ◦ ϕ1(t)

f ◦ ϕ2(t)
≤

f ◦ (Cϕ2)(t)

f ◦ ϕ2(t)
=

f(Cϕ2(t))

f(ϕ2(t))

= C2n f(Cϕ2(t))

(Cϕ2(t))2n
·
(ϕ2(t))

2n

f(ϕ2(t))
≤ C2n

for all t > 0 large since t2n/f(t) is eventually increasing, and

f ◦ ϕ1(t)

f ◦ ϕ2(t)
≥

f ◦ ϕ1(t)

f ◦ (Cϕ1)(t)
=

f(ϕ1(t))

f(Cϕ1(t))
≥

1

C2n

for all t > 0 large.

The converse of Proposition 4.1 is also true:

4.2. Proposition. Let f ∈ H∗ with

lim
t→∞

f(ct)

f(t)
∈ R∗ for all c > 0.

Then ν(f) is in the archimedean class of ν(t).

Proof. We may assume that f is increasing and that f > 0. We have to
show the existence of some n ∈ N with

f(t) ≤ tn for all t > 0 large.
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We define

g : R>0 → R>0, c 7→ lim
t→∞

f(ct)

f(t)
.

Then g is definable and satisfies the functional equation

g(c · d) = g(c) · g(d), c, d > 0.

Indeed,

g(c · d) = lim
t→∞

f(c · d · t)

f(t)
= lim

t→∞

f(c · d · t)

f(d · t)
·
f(d · t)

f(t)

= lim
dt→∞

f(c · dt)

f(dt)
· lim

t→∞

f(d · t)

f(t)
= g(c) · g(d).

Hence there is some α > 0 with

g(c) = cα for all c > 0 large.

Choose n > α. Let t0 > 0 be such that f is defined on [t0,∞[. Fix c > 1 and
t1 ≥ t0 such that

f(ct)

f(t)
< cn for all t ≥ t0.

For k ∈ N we get

f(ckt0)

f(t0)
=

k∏

l=1

f(clt0)

f(cl−1t0)
=

k∏

l=1

f(c(cl−1t0))

f(cl−1t0)
< (cn)k = (ck)n.

So f(ckt0) < (ck)n · f(t0) for all k ∈ N and hence by o-minimality

f(x · t0) < xn · f(t0) for all x > 0 large.

This gives the claim.

We denote the archimedean class of ν(t) by p (p stands for polynomial).
Then I ∩ p is cofinal in I and F ∩ p is coinitial in F .

Now we characterize the Dedekind cut (I,F). This cut is not free if and
only if supI = inf F exists. We frequently use the fact from Section 3 that
if ν(f) 6= sup I, then there exists some ν(g) ∈ Γ<0 with ν(g′) = ν(f).

4.3. Theorem. For ν(f) ∈ p we define the mapping sf on Γ<0 by

sf : Γ<0 → Γ, ν(ϕ) 7→ ν((f ◦ |ϕ|) · ϕ′)

(sf stands for substitution). Then the Dedekind cut (I,F) is not free if and

only if there is some ν(f) ∈ p such that the mapping sf is constant , and

then ν(f) = sup I.

Proof. Taking ϕ(t) = t we see that ν(f) ∈ sf (Γ<0). Let ν(f) ∈ p with
ν(f) 6= sup I.

Case 1: ν(f) ∈ I. Then there is some ν(g) ∈ Γ<0 ∩ p with ν(g′) = ν(f).
Choose ν(h) ∈ Γ<0 with ν(g) < ν(h). Take ϕ := g−1 ◦ h. Then g ◦ ϕ = h.
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By Proposition 4.1 we get

ν(f) = ν(g′) < ν(h′) = ν((g ◦ ϕ)′) = ν((f ◦ ϕ) · ϕ′).

By the same argument there is some ν(ϕ̃) ∈ Γ<0 with ϕ̃ > 0 and

ν(f) > ν((f ◦ ϕ̃) · ϕ̃′).

Case 2: ν(f) ∈ F . The argument goes similarly. Hence sf (Γ<0) )

{ν(f)} if ν(f) 6= sup I.

Now let ν(f) = sup I.

Case 1: ν(f) ∈ I. Without restriction f > 0. Let ν(ϕ) ∈ Γ<0; without
restriction ϕ > 0. Assume that ν((f ◦ ϕ) · ϕ′) > ν(f). Then by substitution

∞\
(f ◦ ϕ) · ϕ′ =

∞\
f = ∞.

So ν(f) 6= sup I, a contradiction.
Assume that ν((f ◦ ϕ) · ϕ′) < ν(f). Then there is some ν(g) ∈ Γ<0 with

ν(g′) = ν((f ◦ϕ) ·ϕ′); without restriction g > 0. For t0 > 0 large enough we
define

F : ]t0,∞[ → R>0, t 7→
t\
t0

f(τ) dτ,

the antiderivative of f . Again by substitution we have

ϕ−1(t)\
ϕ−1(t0)

(f ◦ ϕ(τ)) · ϕ′(τ) dτ = F (t),

so ν((g ◦ ϕ−1)′) = ν(f); but by Rosenlicht’s Theorem 3.3 this is a contra-
diction to ν(f) = sup I.

Case 2: ν(f) ∈ F . This is similar.

Assume now that sup I exists. To shorten the statement below suppose
that sup I = max I. Let ν(f) = max I, and let F be the antiderivative of f .
Then by Section 3 we have 0 > ν(F ) > ν(g) for all ν(g) ∈ Γ<0. But F is
much smaller than all functions definable in M, tending to ∞ at ∞. From
the last theorem we get the following result:

4.4. Corollary. Let f : R≥0 → R≥0 be definable and continuous with

ν(f) = max I. Let F : R≥0 → R≥0, t 7→
Tt
0 f(τ) dτ , be the antiderivative

of f . Define the family

H : R>0 × R≥0 → R≥0, (c, t) 7→ F−1(cF (t)).

Then H is a one-parameter family of functions on R≥0, which is definable

in an o-minimal expansion of M, and which is cofinal and coinitial in Γ<0

for the given o-minimal structure.
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Proof. Let ϕ be definable in M with ν(ϕ) < 0; without restriction ϕ > 0.
By the proof of the last theorem,

ν(F ◦ ϕ) = ν(F ),

so there are c1, c2 > 0 with

c1F (t) ≤ F (ϕ(t)) ≤ c2F (t) for all t > 0 large.

But then

F−1(c1F (t)) ≤ ϕ(t) ≤ F−1(c2F (t)) for all t > 0 large,

hence

ν(F−1(c1F )) ≥ ν(ϕ) ≥ ν(F−1(c2F )).

Remark. Obviously ν(F−1) < ν(F−1(cF )) < ν(F ) for all c > 0.

4.5. Example. Let M be polynomially bounded. Then maxI = ν(1/t).
We have F (t) = log t and

F−1(cF (t)) = tc for all c > 0.

Finally, we prove definable asymptotic integration. Let f : Rn×R≥0 → R

be a definable and continuous function. The question whether the function

F : Rn × R≥0 → R, (a, t) 7→
t\
0

f(a, τ) dτ,

is definable in an o-minimal expansion is only solved if f is definable in
the o-minimal structure generated by restricted analytic functions: If f is
definable in Ran, then F is definable in Ran,exp. But in the other cases it is
still open. But for asymptotic integration we get a definable result:

4.6.Theorem. Let f : Rn×R≥0 → R be a definable and continuous func-

tion. Then there is an o-minimal expansion of M and a function F̃ : Rn ×
R≥0 → R definable in this expansion such that

ν((F̃ (a, ·))′) = ν(f(a, ·)) for all a ∈ Rn.

The function can be chosen in such a way that

F̃ |{a ∈ Rn | ν(f, ·) 6= sup I}

is definable in M. In particular , if M is closed under asymptotic integration

then F̃ is definable in M.

Proof. We can assume that ν(f(a, ·)) 6= ∞ for all a ∈ Rn. Let A :=
{a ∈ Rn | ν(f(a, ·)) = sup I}. Then A is definable in M. Fix a0 ∈ A and
define

F : R≥0 → R, t 7→
t\
0

f(a0, τ) dτ.
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Then F is definable in an o-minimal expansion M̃ of M. On A we take

F̃ : A × R≥0 → R≥0, (a, t) 7→ F (t).

Now let B := Rn \ A. We may assume that ν(f(a, ·)) 6= 0 for all a ∈ B.
(If ν(f(a, ·)) = 0 we can take the identity function.) Again by universal
boundedness of growth (compare the proof of Theorem 2.1) there are ν(h) ∈
I\{sup I} and ν(g) ∈ F \{sup I} with ν(f(a, ·)) < ν(h) or ν(f(a, ·)) > ν(g)
for all a ∈ B. Choose now ν(u0,1), ν(u0,2) ∈ Γ>0 according to Rosenlicht’s
Theorem 3.3, such that

ν

((h ·
(h·u0,1

u′
0,1

)

(h·u0,1

u′
0,1

)′
)′)

= ν(h), ν

((g ·
(h·u0,2

u′
0,2

)

( g·u0,2

u′
0,2

)′
)′)

= ν(g).

If we take |ν(u0)| := min{|ν(u0,1)|, |ν(u0,2)|}, then again by the proof of that
theorem (cf. [10]) we find that

F̃ : Rn × R≥0 → R, (a, t) 7→

(f(a, t) ·
(f(a,t)·u0(t)

u′
0
(t)

)

( f(a,t)·u0(t)
u′
0
(t)

)′
)′

works.
If sup I exists we can give a different proof, where the solution is shorter.

Again we restrict ourselves to the case that sup I = maxI. We concentrate
on the set

C := {a ∈ Rn | ν(f(a, ·)) 6= 0, max I}.

Take g : R≥0 → R>0 definable and continuous with ν(g) = maxI. Let
h : R≥0 → R>0 be definable and continuous with ν(h) 6= maxI. By inte-
gration by parts we have

t\
0

g(τ) dτ =

t\
0

(
h ·

g

h

)
(τ) dτ =

(
H ·

g

h

)
(t) −

t\
0

H ·

(
g

h

)′

dτ,

where H is the antiderivative of h. Let G be the antiderivative of g and H̃
be the antiderivative of H · (g/h)′. We choose them so that H(0) = G(0) =

H̃(0) = 0. Then G, H, H̃ live in an o-minimal expansion M̃ of M. Let Γ̃ be

the canonical value group of M̃, and let Γ be as usual the canonical value
group of M. By Rosenlicht’s Theorem 3.3 there is a ν(p) ∈ Γ \ {0} with

ν(p) = ν(H). We get, in Γ̃ ,

ν(G) = ν

(
H ·

g

h
− H̃

)
.

Case 1: ν(H · g/h) 6= ν(H̃). Then ν(G) = min{ν(H · g/h), ν(H̃)}. Since

ν(H · g/h) = ν(p · g/h) ∈ Γ and ν(G) 6∈ Γ we get ν(G) = ν(H̃), and so
ν(g) = ν(H · (g/h)′).
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Case 2: ν(H · g/h) = ν(H̃). Then ν((H · g/h)′) = ν(H · (g/h)′) and as
a consequence ν(g + H · (g/h)′) = ν(H · (g/h)′). So ν(g) ≥ ν(H · (g/h)′).

Assume that ν(g) > ν(H ·(g/h)′). Since ν(g) = maxI and ν(H ·(g/h)′) =

ν(p(g/h)′) ∈ Γ we get ν(H̃) < 0. Hence ν(H · g/h) < 0. But

ν

(
H ·

g

h

)
= ν

(
H

h

)
+ v(g) = ν

(
H

H ′

)
+ ν(g)

= −ν

(
H ′

H

)
+ v(g) = −ν

(
p′

p

)
+ ν(g) ≥ 0,

because ν(p′/p) ∈ Ψ and Ψ ≤ max I by Lemma 3.5, a contradiction. So in
both cases ν(g) = ν(H · (g/h)′) and therefore

ν(H) = ν

(
g

(g/h)′

)
.

On C we can take now

F : B × R≥0 → R≥0, (a, t) 7→
g(t)

(g(t)/f(a, t))′
,

which is definable in M.
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Universitätsstr. 31
D-93040 Regensburg, Germany
E-mail: Tobias.Kaiser@mathematik.uni-regensburg.de
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