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Nash ohomology of smooth manifoldsby W. Kucharz (Albuquerque, NM)In memory of Professor Stanisªaw �ojasiewizAbstrat. A Nash ohomology lass on a ompat Nash manifold is a mod 2 oho-mology lass whose Poinaré dual homology lass an be represented by a Nash subset. We�nd a anonial way to de�ne Nash ohomology lasses on an arbitrary ompat smoothmanifold M . Then the Nash ohomology ring of M is ompared to the ring of algebrai o-homology lasses on algebrai models of M . This is related to three onjetures onerningalgebrai ohomology lasses.1. Introdution. Let X be a ompat nonsingular real algebrai set (in
R

n for some n). A ohomology lass in Hk(X,Z/2) is said to be algebraiif its Poinaré dual homology lass in H∗(X,Z/2) an be represented byan algebrai subset of X. The set Hk

alg(X,Z/2) of all algebrai ohomologylasses inHk(X,Z/2) is a subgroup, while the diret sumH∗
alg(X,Z/2) of the

Hk

alg(X,Z/2), for k ≥ 0, forms a subring of the ohomology ring H∗(X,Z/2).The reader an �nd a survey of properties and appliations of H∗
alg(−,Z/2)in [6℄.Eah ompat smooth (of lass C∞) manifold M has an algebrai model,that is, M is di�eomorphi to a nonsingular real algebrai set [19℄ (f. also[5, Theorem 14.1.10℄ and, for a weaker but in�uential result, [15℄). We saythat a subset E of H∗(M,Z/2) admits an algebrai realization if there ex-ist an algebrai model X of M and a smooth di�eomorphism ϕ : X → Msuh that ϕ∗(E) ⊆ H∗

alg(X,Z/2) (when E = {v} onsists of one element,we simply say that v admits an algebrai realization). If E admits an alge-brai realization, then so does the subring of H∗(M,Z/2) generated by E.The original goal of several researhers was to show that the whole ring
H∗(M,Z/2) admits an algebrai realization, that is, M has an algebraimodel X with H∗

alg(X,Z/2) = H∗(X,Z/2) (suh a onjeture, motivated2000 Mathematis Subjet Classi�ation: 14P20, 14P25, 14C25.Key words and phrases: algebrai ohomology, Nash ohomology, algebrai model.[193℄



194 W. Kuharzby far-reahing potential appliations, was expliitly stated in [1℄). However,sine the publiation of [4℄ it has been known that for some manifolds Mthis is impossible.Denote by A(M) the subring of H∗(M,Z/2) generated by the Stiefel�Whitney lasses of all real vetor bundles on M together with eah oho-mology lass Poinaré dual to a homology lass represented by a smoothsubmanifold of M . A very useful and important result is that A(M) admitsan algebrai realization [20, p. 93℄. Already in [4℄ did the following onjetureappear.
Conjecture A. For any ompat smooth manifold M , eah subringof H∗(M,Z/2) whih admits an algebrai realization is ontained in A(M)(equivalently, H∗

alg(X,Z/2) ⊆ A(X) for any ompat nonsingular real alge-brai set X).If dimM ≤ 5, then [18, Théorème II.26℄ implies A(M) = H∗(M,Z/2),and hene M has an algebrai model X with H∗
alg(X,Z/2) = H∗(X,Z/2).In order to survey known fats in higher dimensions, let us set Ak(M) =

A(M)∩Hk(M,Z/2) for k ≥ 0. Note Ak(M) = Hk(M,Z/2) if either k = 0, 1or k ≥ 1
2
dimM , and assuming dimM ≤ 7 also A3(M) = H3(M,Z/2) (f.[18, Théorème II.26℄). For any ompat nonsingular real algebrai set X,one has H2
alg(X,Z/2) ⊆ A2(X). The inlusion follows from [4℄ (f. also [7℄for an elementary proof). In partiular, H∗

alg(X,Z/2) ⊆ A(X) if dimX = 6or dimX = 7, whih means that Conjeture A is true for all ompat smoothmanifolds of dimension 6 or 7. This is nontrivial sine for eah m ≥ 6, thereis a ompat smoothm-dimensional manifoldM with A2(M) 6= H2(M,Z/2)(f. [17℄ and Example 2.9 below, and also [4℄ for m ≥ 11), whih implies thatno ohomology lass in H2(M,Z/2)\A2(M) admits an algebrai realization.In order to avoid a possible onfusion, let us mention that [4℄ erroneouslyasserts that A(M) = H∗(M,Z/2) for dimM ≤ 6 is a onsequene of [18℄.However, [18℄ implies suh an equality only for dimM ≤ 5.It has reently been notied that for eah positive even integer k, thereis a ompat smooth manifold M having a ohomology lass in Hk(M,Z/2)not admitting an algebrai realization (f. [12℄ and Example 2.9). Whetheranalogous examples exist for k odd greater than 1 remains an open problem.Conjeture A, if true, implies that A(M) is the largest subring of H∗(M,
Z/2) admitting an algebrai realization.
Conjecture B. For any ompat smooth manifoldM , there is a largestsubring of H∗(M,Z/2) whih admits an algebrai realization.Although Conjeture B is rather unappealing, it allows us to identifyand desribe in a nie way the largest subring of H∗(M,Z/2) admitting analgebrai realization, leaving however open the possibility that this subring



Nash ohomology of smooth manifolds 195may be di�erent from A(M). To demonstrate this we need some prepara-tion.By a Nash manifold we shall mean an analyti submanifold of Rn, forsome n, whih is also a semi-algebrai subset. A Nash map between Nashmanifolds is an analyti map with semi-algebrai graph. A Nash subset of aNash manifold is the set of ommon zeros of �nitely many real-valued Nashfuntions. For basi properties of these objets we refer to [5℄.Let N be a ompat Nash manifold. An element of H∗(N,Z/2) is said tobe a Nash ohomology lass if its Poinaré dual homology lass an be repre-sented by a Nash subset of N . The set Hk

Nash(N,Z/2) of all Nash ohomologylasses in Hk(N,Z/2) is a subgroup, while the diret sum H∗
Nash(N,Z/2) ofthe Hk

Nash(N,Z/2) with k ≥ 0 forms a subring of H∗(N,Z/2) (see Lemma2.2). Clearly,
H∗

alg(X,Z/2) ⊆ H∗
Nash(X,Z/2)for any ompat nonsingular real algebrai set X.Given a ompat smooth manifold M , hoose a Nash manifold N and asmooth di�eomorphism ψ : M → N . One readily heks that the subring

ψ∗(H∗
Nash(N,Z/2)) of H∗(M,Z/2), heneforth denoted H∗

Nash(M,Z/2), doesnot depend on the hoie of N and ψ (see Proposition 2.3). Observe thateah subring of H∗(M,Z/2) admitting an algebrai realization is ontainedin H∗
Nash(M,Z/2). In partiular,

A(M) ⊆ H∗
Nash(M,Z/2).

Conjecture C. For any ompat smooth manifold M , the subring
H∗

Nash(M,Z/2) of H∗(M,Z/2) admits an algebrai realization (equivalently,
M has an algebrai model X with H∗

alg(X,Z/2) = H∗
Nash(X,Z/2)).In Setion 2 we prove some results whih seem to support Conjeture C(see Theorems 2.5 and 2.7, Proposition 2.8, Example 2.9). However, thereare only two nontrivial ases in whih we an atually prove Conjeture C,namely for all ompat smooth manifolds of dimension 6 or 7 (Corollary 1.3).Obviously, Conjeture A implies Conjeture B, and Conjeture C impliesConjeture B. Other relationships between the onjetures under onsidera-tion are desribed in Propositions 1.1. and 1.2, whose proofs are ontainedin Setion 3.Given a smooth manifoldM , we setM = (M×{0})∪(M×{1}); thusMis simply a disjoint union of two opies of M . The unit irle will be denotedby S1.Proposition 1.1. Let M be a ompat smooth manifold. If ConjetureB is true for either M × S1 or M , then Conjeture C is true for M .In Setion 3 we show that the full strength of Conjeture B is not neededin Proposition 1.1. To prove that Conjeture C is true for M it su�es to



196 W. Kuharzassume that M × S1 (resp. M) has what we all property H1 (resp. H0),see De�nition 3.1. This re�nement is introdued with the hope that property
H i, i = 0, 1, will be easier to verify diretly, thereby leading to a proof ofConjeture C.Proposition 1.2. LetM be a ompat smooth manifold. If Conjeture Ais true for eitherM×S1 orM , then A(M) = H∗

Nash(M,Z/2) and ConjeturesA and C are true for M .An interesting onsequene of Proposition 1.2 is the following result.Corollary 1.3. For all ompat smooth manifolds M of dimension 6or 7, one has A(M) = H∗
Nash(M,Z/2). In partiular , Conjeture C is truefor suh manifolds.Proof. As we already demonstrated above, Conjeture A is true for allompat smooth manifolds M of dimension 6 or 7. Thus it is true for M ,and hene Proposition 1.2 implies Corollary 1.3.In Setion 2 we will prove Corollary 1.3 in a more diret way.It is lear that given a ompat smooth manifold M , Conjeture C istrue for M if and only if it is true for eah onneted omponent of M .Whether an analogous statement is true for Conjeture A or Conjeture Bis not obvious. We only have the following weaker result.Corollary 1.4. LetM be a ompat smooth manifold and letM1, . . . ,Mrbe the onneted omponents of M .(i) If Conjeture A (resp. Conjeture B) is true for M , then it is truefor eah Mi with 1 ≤ i ≤ r.(ii) If Conjeture A (resp. Conjeture B) is true for eah Mi × S1 with

1 ≤ i ≤ r, then it is true for M .Proof. (i) is obvious, while (ii) follows from Proposition 1.2 for Conje-ture A and from Proposition 1.1 for Conjeture B.In onlusion, we have the following diagram:
Conjecture A =⇒ Conjecture B

m m

A(−) = H∗
Nash(−,Z/2) =⇒ Conjecture Cin whih eah impliation Φ ⇒ Ψ should be understood as follows: if Φ istrue for all ompat smooth manifolds, then Ψ is true for suh manifolds.Furthermore, if one of the onjetures under onsideration is true for allonneted ompat smooth manifolds, then it is true for all ompat smoothmanifolds.



Nash ohomology of smooth manifolds 1972. Nash ohomology. Let N be a ompat Nash manifold. Eah d-dimensional Nash subset V of N (being an analyti subset) arries a uniquefundamental homology lass in Hd(V,Z/2), denoted here by [V ] (f. [9℄;sine V is ompat, we use the singular homology instead of the Borel�Moore homology used in [9℄). We write [V ]N for the image of [V ] underthe homomorphism Hd(V,Z/2) → Hd(N,Z/2) indued by the inlusionmap V →֒ N . Eah element of Hd(N,Z/2) of the form [V ]N , for some
d-dimensional Nash subset V of N , is said to be a Nash homology lass.Sine [V ]N = [V1]N + · · · + [Vr]N , where V1, . . . , Vr are the irreduible om-ponents of V of dimension d, it follows that the setHNash

d
(N,Z/2) of all Nashhomology lasses in Hd(N,Z/2) is a subgroup. Elements of the subgroup

Hc

Nash(N,Z/2) = D−1
N

(HNash
d (N,Z/2))of Hc(N,Z/2), where c+ d = dimN and

DN : Hc(N,Z/2) → Hd(N,Z/2)is the Poinaré duality isomorphism, are alled Nash ohomology lasses. Weset
H∗

Nash(N,Z/2) =
⊕

c≥0

Hc

Nash(N,Z/2).Lemma 2.1. Let f : L→ N be a ontinuous map between ompat Nashmanifolds. Then
f∗(H∗

Nash(N,Z/2)) ⊆ H∗
Nash(L,Z/2).Proof. Let v be an element of Hc

Nash(N,Z/2)). Then DN (v) = [V ]N forsome Nash subset V of N . Let S be a strati�ation of V satisfying Whitney'sondition (a) (f. [5℄ or [13℄) and let g : L→ N be a smooth map homotopito f and transverse to S, that is, transverse to eah stratum of S. The set ofall smooth maps from L into N transverse to S is open and dense in the spaeof all smooth maps (Whitney's ondition (a) guarantees the openness, f. [11,Proposition 3.6℄). There is a Nash map h : L→ N arbitrarily lose to g, andhene homotopi to f . In partiular, f∗ = h∗ in ohomology. Furthermore,we may assume that h is transverse to S. Thus
f∗(v) = h∗(v) = D−1

L
([h−1(V )]L),where the last equality is a onsequene of [9, Proposition 2.15℄. Hene f∗(v)belongs to H∗

Nash(L,Z/2) and the proof is omplete.Lemma 2.2. For any ompat Nash manifold N , the set H∗
Nash(N,Z/2)is a subring of the ohomology ring H∗(N,Z/2).Proof. We only have to show that H∗

Nash(N,Z/2) is losed under upprodut ∪. One readily sees that if v1 and v2 are in H∗
Nash(N,Z/2), then theross produt v1 × v2 is in H∗

Nash(N ×N,Z/2). Sine v1 ∪ v2 = △∗(v1 × v2),



198 W. Kuharzwhere △ : N → N ×N is the diagonal map, Lemma 2.1 implies that v1 ∪ v2belongs to H∗
Nash(N,Z/2).We an de�ne the Nash ohomology of an arbitrary ompat smoothmanifold M . To this end, hoose a Nash manifold N and a smooth di�eo-morphism ψ : M → N , and set

Hc

Nash(M,Z/2) = ψ∗(Hc

Nash(N,Z/2)),

H∗
Nash(M,Z/2) =

⊕

c≥0

(Hc

Nash(M,Z/2)).Proposition 2.3. With notation as above, H∗
Nash(M,Z/2) does not de-pend on the hoie of N and ψ. Moreover , H∗

Nash(M,Z/2) is a subring ofthe ohomology ring H∗(M,Z/2).Proof. Let L be another Nash manifold and let θ : M → L be a smoothdi�eomorphism. Then σ = ψ ◦ θ−1 : L→ N is a smooth di�eomorphism. Inview of Lemma 2.1,
σ∗(H∗

Nash(N,Z/2)) = H∗
Nash(L,Z/2).This implies

θ∗(H∗
Nash(L,Z/2)) = ψ∗(H∗

Nash(N,Z/2)),whih shows H∗
Nash(M,Z/2) is well de�ned. The fat that H∗

Nash(M,Z/2) isa subring of H∗(M,Z/2) follows immediately from Lemma 2.2.Proposition 2.4. If f : M → P is a ontinuous map between ompatsmooth manifolds, then
f∗(H∗

Nash(P,Z/2)) ⊆ H∗
Nash(M,Z/2).Proof. The assertion follows from Lemma 2.1.Given a smooth manifold P , we let N∗(P ) denote the unoriented bordismgroup of P (f. [10℄).Theorem 2.5. Let f : M → P be a smooth map between ompat smoothmanifolds. Assume that the bordism lass of f in N∗(P ) is equal to the bor-dism lass of a onstant map from some ompat smooth manifold into P .Then the subring f∗(H∗

Nash(P,Z/2)) of H∗(M,Z/2) admits an algebrai re-alization.Proof. Without loss of generality, we may assume P is a onneted Nashmanifold. Let V1, . . . , Vr be Nash subsets of P suh that {[V1]P , . . . , [Vr]P }is the set of all Nash homology lasses in H∗(P,Z/2). Let λi : P → R bea Nash funtion with λ−1
i

(0) = Vi. By applying the Artin�Mazur theorem[5, Theorem 8.4.4℄ to the Nash map λ = (λ1, . . . , λr) : P → R
r, we obtaina nonsingular algebrai set Y , a onneted omponent Y0 of Y , a Nash dif-feomorphism σ : P → Y0, and a regular map µ = (µ1, . . . , µr) : Y → R

r



Nash ohomology of smooth manifolds 199satisfying µ|Y0 = λ ◦ σ−1. Sine σ is a di�eomorphism we get(1) H∗
Nash(P,Z/2) = σ∗(H∗

Nash(Y0,Z/2)).Next, σ(V1), . . . , σ(Vr) are Nash subsets of Y0 and {[σ(V1)]Y0
, . . . , [σ(Vr)]Y0

}is the set of all Nash homology lasses inH∗(Y0,Z/2). Sine σ(Vi) = µ−1
i

(0)∩
Y0 and µ−1

i
(0) is an algebrai subset of Y , we obtain σ(Vi) = Wi ∩Y0, where

Wi is the losure of σ(Vi) in the Zariski topology on Y . In partiular, Wi isan algebrai subset of Y of dimension dimσ(Vi) and [σ(Vi)]Y0
is the image of

[Wi]Y under the homomorphism between the Borel�Moore homology groups
HBM

∗ (Y,Z/2) → HBM
∗ (Y0,Z/2) = H∗(Y0,Z/2)indued by the inlusion map e : Y0 →֒ Y (Y may not be ompat andtherefore the Borel�Moore homology is required, f. [9℄). Consequently,(2) H∗

Nash(Y0,Z/2) = e∗(H∗
alg(Y,Z/2)).The bordism lass of the smooth map g = e ◦ σ ◦ f : M → Y in N∗(Y )is equal to the bordism lass of a onstant map from some ompat smoothmanifold K into Y . We may assume that K is a nonsingular real algebraiset. It follows that there exist a nonsingular real algebrai set X, a smoothdi�eomorphism ϕ : X → M , and a regular map h : X → Y homotopi to

g ◦ ϕ (f. [2, Theorem 2.8.2℄). Sine ϕ∗ ◦ g∗ = (g ◦ ϕ)∗ = h∗ in ohomology,(3) ϕ∗(g∗(H∗
alg(Y,Z/2)) = h∗(H∗

alg(Y,Z/2)) ⊆ H∗
alg(X,Z/2).On the other hand, g∗ = (e ◦ σ ◦ f)∗ = f∗ ◦ σ∗ ◦ e∗, and hene, in view of (1)and (2), we get

g∗(H∗
alg(Y,Z/2)) = f∗(H∗

Nash(P,Z/2)),whih ombined with (3) yields
ϕ∗(f∗(H∗

Nash(P,Z/2))) ⊆ H∗
alg(X,Z/2).The last inlusion means that f∗(H∗

Nash(P,Z/2)) admits an algebrai real-ization.Corollary 2.6. Let f : M → P be a smooth map between ompatsmooth manifolds. If the bordism lass of f in N∗(P ) is zero, then the subring
f∗(H∗

Nash(P,Z/2)) of H∗(M,Z/2) admits an algebrai realization.Proof. If the bordism lass of f in N∗(P ) is zero, thenM is the boundaryof a ompat smooth manifold with boundary, and hene the bordism lassof any onstant map fromM into P is zero. It now su�es to apply Theorem2.5.Our next result is in the style of Nash's original paper [15℄.Theorem 2.7. For any onneted ompat smooth manifold M there isa nonsingular real algebrai set X suh that



200 W. Kuharz(i) X has exatly two onneted omponents, eah di�eomorphi to M ,(ii) for any smooth map h : M → X transforming M di�eomorphiallyonto a onneted omponent of X, one has
H∗

Nash(M,Z/2) = h∗(H∗
alg(X,Z/2)).Proof. Let F : M × [0, 1] → M be the anonial projetion. Setting

M = (M × {0}) ∪ (M × {1}) we let f : M → M denote the restritionof F . The bordism lass of f in N∗(M) is zero and hene, by Corollary 2.6,the subring f∗(H∗
Nash(M,Z/2)) of H∗(M,Z/2) admits an algebrai realiza-tion. Let X be an algebrai model of M and let ϕ : X → M be a smoothdi�eomorphism satisfying
ϕ∗(f∗(H∗

Nash(M,Z/2))) ⊆ H∗
alg(X,Z/2).By onstrution, X has exatly two onneted omponents

X0 = ϕ−1(M × {0}), X1 = ϕ−1(M × {1}),eah di�eomorphi to M . Thus (i) holds.To show that (ii) is also satis�ed we argue as follows. Let ei : Xi →֒ Xbe the inlusion map, i = 0, 1. Sine e∗
i
◦ϕ∗ ◦f∗ = (f ◦ϕ◦ ei)

∗ and f ◦ϕ◦ ei :
Xi →M is a smooth di�eomorphism, we get

H∗
Nash(Xi,Z/2) = e∗i (ϕ

∗(f∗(H∗
Nash(M,Z/2)))) ⊆ e∗i (H

∗
alg(X,Z/2)),whih immediately yields

H∗
Nash(Xi,Z/2) = e∗i (H

∗
alg(X,Z/2)).The last equality implies (ii).As we already noted in Setion 1, for any ompat smooth manifold M ,one has A(M) ⊆ H∗

Nash(M,Z/2), and Ak(M) = Hk(M,Z/2) if either k =
0, 1 or k ≥ 1

2
dimM , and assuming dimM ≤ 7 also A3(M) = H3(M,Z/2).HeneHk

Nash(M,Z/2) = Hk(M,Z/2) for k and dimM satisfying the same re-stritions. We shall now identify two onditions whih the Nash ohomologylasses always satisfy and show how this leads to a onstrution of manifoldswith H i

Nash(M,Z/2) 6= H i(M,Z/2) for some i.Denote by ̺M : H∗(M,Z) → H∗(M,Z/2) the homomorphism induedby the epimorphism Z → Z/2. Set
Bk(M) = {v ∈ Hk(M,Z/2) | v ∪ v is in ̺M (H2k(M,Z))},

B(M) =
⊕

k≥0

Bk(M).

Note (this is not important for our purposes) that B(M) is a subring of
H∗(M,Z/2).



Nash ohomology of smooth manifolds 201Proposition 2.8. For any ompat smooth manifold M ,(i) H∗
Nash(M,Z/2) ⊆ B(M),(ii) H2
Nash(M,Z/2) = A2(M).Proof. Let X be a ompat nonsingular real algebrai set. It follows from[3, Theorem A(b)℄ that

H∗
alg(X,Z/2) ⊆ B(X),while, as we already realled in Setion 1,

H2
alg(X,Z/2) ⊆ A2(X).Hene (i) and (ii) follow from Theorem 2.7.We an now reprove Corollary 1.3 in a more diret way.Proof of Corollary 1.3. Let M be a ompat smooth manifold of dimen-sion 6 or 7. We have Ak(M) = Hk

Nash(M,Z/2) = Hk(M,Z/2) for all k 6= 2.In view of Proposition 2.8(ii), A(M) = H∗
Nash(M,Z/2). Conjeture C is truefor M sine A(M) admits an algebrai realization.We shall next demonstrate that Proposition 2.8(i) gives a nontrivial on-dition.

Example 2.9. For any positive even integer k and any integer m ≥
2k+ 2, there exists an m-dimensional orientable onneted ompat smoothmanifold M with Bk(M) 6= Hk(M,Z/2). Proposition 2.8(i) implies that anelement u in Hk(M,Z/2) \ Bk(M) is not in Hk

Nash(M,Z/2), and hene udoes not admit an algebrai realization.We an onstrut suh a manifold M as follows. It is known that thereis a 6-dimensional orientable onneted ompat smooth manifold N with
B2(N) 6= H2(N,Z/2) (f. [17, Lemmas 1, 2℄). Choose a ohomology lass vin H2(N,Z/2)\B2(N). Let P

2(C) be the omplex projetive plane and let zbe the generator of H2(P2(C),Z/2) ∼= Z/2. Let P = P
2(C)× · · · × P

2(C) bethe ℓ-fold produt, where 2ℓ = k−2, and let w = z×· · ·×z in Hk−2(P,Z/2)be the ℓ-fold ross produt; if ℓ = 0, we assume that P onsists of onepoint and w = 1. Let Q be the unit (m − (2k + 2))-sphere; if m = 2k + 2,then by onvention, Q onsists of one point. Set M = N × P × Q and
u = v×w×1. Then M is an orientable onneted ompat smooth manifoldof dimension m, and u is a ohomology lass in Hk(M,Z/2). Making useof Künneth's theorem in ohomology, one readily heks that u is not in
Bk(M).
Remark 2.10. If M is a ompat smooth manifold and r is an oddpositive integer, then Br(M) = Hr(M,Z/2). Indeed, for any ohomologylass b in Hr(M,Z/2), one has b ∪ b = Sqr(b) = Sq1(Sqr−1(b)), where Sqi isthe ith Steenrod square (f. [16, p. 281℄ or [14, p. 182℄) and eah lass in the



202 W. Kuharzimage of Sq1 belongs to ̺M (H∗(M,Z)) (f. [14, p. 182℄). In partiular, theonstrution in Example 2.9 annot be repeated with k odd.
Remark 2.11. Example 2.9 implies that the Nash homology does notbehave in a funtorial manner. More preisely, there exists a Nash map

f : L → N between ompat Nash manifolds suh that f∗([L]) is not in
HNash

∗ (N,Z/2). One onstruts L, N , and f as follows. In view of Example2.9, there is a ompat Nash manifold N having a homology lass z whihis not in HNash
∗ (N,Z/2). By [18℄, z = f∗([L]) for some ompat smoothmanifold L and smooth map f : L → N . We may assume that L is a Nashmanifold and f is a Nash map (f. [5, Corollary 8.9.7℄).3. Proofs of Propositions 1.1 and 1.2. Conjeture B is equivalentto the following statement: For any ompat smooth manifold M , if E1 and

E2 are subsets of H∗(M,Z/2), eah admitting an algebrai realization, thenthe union E1 ∪ E2 admits an algebrai realization.
Definition 3.1. A ompat smooth manifoldM is said to have property

H i, where i = 0 or i = 1, if for any subset E of H∗(M,Z/2) admitting analgebrai realization, the union E ∪H i(M,Z/2) admits an algebrai realiza-tion.Sine H i(M,Z/2), with i = 0 or i = 1, always admits an algebrairealization, M has property H i, provided Conjeture B is true for M . Notethat M has property H0 if and only if for any subring R of H∗(M,Z/2)admitting an algebrai realization and for any onneted omponent M ′of M , the subring e∗(R) of H∗(M ′,Z/2), where e : M ′ →֒M is the inlusionmap, admits an algebrai realization.It is hoped that eah ompat smooth manifold has property H i. Thiswould be interesting in view of the next two results.Proposition 3.2. Let M be a ompat smooth manifold. If M ×S1 hasproperty H1, then Conjeture C is true for M .Proof. Suppose M × S1 has property H1. Let π : M × S1 → M be theanonial projetion. By Corollary 2.6, the subring R = π∗(H∗
Nash(M,Z/2))ofH∗(M×S1,Z/2) admits an algebrai realization. PropertyH1 implies thatthere exist an algebrai model Y of M × S1 and a smooth di�eomorphism

ψ : Y →M × S1 satisfying(1) ψ∗(R ∪H1(M × S1,Z/2)) ⊆ H∗
alg(Y,Z/2).Choose a point y0 in S1 and let i : M ×{y0} →֒M ×S1 be the inlusionmap. Sine i∗◦π∗ = (π◦i)∗ and the anonial projetion π◦i : M×{y0} →Mis a smooth di�eomorphism, we get

H∗
Nash(M × {y0},Z/2) = i∗(π∗(H∗

Nash(M,Z/2))) = i∗(R).



Nash ohomology of smooth manifolds 203Set K = ψ−1(M × {y0}) and let θ : K →M × {y0} be the restrition of ψ.Sine θ is a smooth di�eomorphism,(2) H∗
Nash(K,Z/2) = θ∗(H∗

Nash(M × {y0},Z/2)) = θ∗(i∗(R)).We have i ◦ θ = ψ ◦ j, where j : K →֒ Y is the inlusion map, and hene
θ∗ ◦ i∗ = j∗ ◦ ψ∗. In view of (2),(3) H∗

Nash(K,Z/2) = j∗(ψ∗(R)).It follows from (1) that H1
alg(X,Z/2) = H1(Y,Z/2). This implies that Kan be approximated by nonsingular algebrai subsets of Y . More preisely,there is a smooth di�eomorphism σ : Y → Y , whih an be hosen arbitrarilylose to the identity map, suh that X = σ−1(K) is a nonsingular algebraisubset of Y (f. [8, Theorem 3.1℄ or [5, Theorem 12.4.11℄). The restrition

τ : X → K of σ is a smooth di�eomorphism and hene
H∗

Nash(X,Z/2) = τ∗(H∗
Nash(K,Z/2)),whih in view of (3) yields(4) H∗

Nash(X,Z/2) = τ∗(j∗(ψ∗(R))).We may assume that σ is homotopi to the identity map of Y . In partiular,
σ∗ is the identity homomorphism. Thus denoting by e : X →֒ Y the inlusionmap, we get σ ◦ e = j ◦ τ and e∗ = e∗ ◦ σ∗ = τ∗ ◦ j∗, whih in view of (4)implies(5) H∗

Nash(X,Z/2) = e∗(ψ∗(R)).Combining (1) and (5), we obtain
H∗

Nash(X,Z/2) ⊆ e∗(H∗
alg(Y,Z/2)) ⊆ H∗

alg(X,Z/2),where the last inlusion follows from the fat that e : X →֒ Y is a regularmap. Thus
H∗

Nash(X,Z/2) = H∗
alg(X,Z/2)and the proof is omplete sine X is di�eomorphi to M .Proposition 3.3. Let M be a ompat smooth manifold. If M has prop-erty H0, then Conjeture C is true for M .Proof. De�ne f : M →M by f(x, i) = x for x inM and i = 0, 1. Clearly,the bordism lass of f in N∗(M) is zero. By Corollary 2.6, the subring R =

f∗(H∗
Nash(M,Z/2)) of H∗(M,Z/2) admits an algebrai realization. De�ne

e : M → M by e(x) = (x, 0) for x in M . If M has property H0, then thesubring e∗(R) of H∗(M,Z/2) admits an algebrai realization. Observing that
f ◦ e : M →M is the identity map, we get

H∗
Nash(M,Z/2) = e∗(f∗(H∗

Nash(M,Z/2))) = e∗(R),whih ompletes the proof.



204 W. KuharzProof of Proposition 1.1. If Conjeture B is true for M × S1 (resp. M),then M × S1 (resp. M) has property H1 (resp. H0). The proof is ompletein view of Propositions 3.2 and 3.3.Proof of Proposition 1.2. Suppose that Conjeture A is true for M × S1.Let π : M ×S1 →M be the anonial projetion. By Corollary 2.6, the sub-ring π∗(H∗
Nash(M,Z/2)) of H∗(M×S1,Z/2) admits an algebrai realization,and hene

π∗(H∗
Nash(M,Z/2)) ⊆ A(M × S1).Fix a point y0 in S1 and de�ne e : M → M × S1 by e(x) = (x, y0) for xin M . Sine e∗ ◦π∗ = (π ◦ e)∗ and π ◦ e : M →M is the identity map, we get

H∗
Nash(M,Z/2) = e∗(π∗(H∗

Nash(M,Z/2))) ⊆ e∗(A(M × S1)) ⊆ A(M),whih implies H∗
Nash(M,Z/2) = A(M). Thus Proposition 1.2 is proved underthe hypothesis that Conjeture A is true forM×S1 (reall that A(M) admitsan algebrai realization).Suppose now that Conjeture A is true for M . Then Conjeture B istrue for M . In view of Proposition 1.1, Conjeture C is true for M , whihimplies that it is also true forM . Thus A(M) = H∗

Nash(M,Z/2), whih yields
A(M) = H∗

Nash(M,Z/2). The last equality means that Conjeture A is truefor M .
Referenes[1℄ S. Akbulut and H. King, The topology of real algebrai sets, Enseign. Math. 29(1983), 221�261.[2℄ �, �, Topology of Real Algebrai Sets, Math. Si. Res. Inst. Publ. 25, Springer,New York, 1992.[3℄ �, �, Transendental submanifolds of R

n, Comment. Math. Helv. 68 (1993), 308�318.[4℄ R. Benedetti and M. Dedò, Counterexamples to representing homology lasses by realalgebrai subvarieties up to homeomorphism, Compositio Math. 53 (1984), 143�151.[5℄ J. Bohnak, M. Coste and M.-F. Roy, Real Algebrai Geometry, Ergeb. Math. Grenz-geb. 36, Springer, Berlin, 1998.[6℄ J. Bohnak and W. Kuharz, On homology lasses represented by real algebraivarieties, in: Banah Center Publ. 44, Inst. Math., Polish Aad. Si., Warszawa,1998, 21�35.[7℄ �, �, A topologial proof of the Grothendiek formula in real algebrai geometry,Enseign. Math. 48 (2002), 237�258.[8℄ J. Bohnak, W. Kuharz and M. Shiota, On algebraiity of global real analyti setsand funtions, Invent. Math. 70 (1982), 115�156.[9℄ A. Borel et A. Hae�iger, La lasse d'homologie fondamentale d'un espae analytique,Bull. So. Math. Frane 89 (1961), 461�513.[10℄ P. E. Conner, Di�erentiable Periodi Maps, 2nd ed., Leture Notes in Math. 738,Springer, Berlin, 1979.



Nash ohomology of smooth manifolds 205[11℄ E. A. Feldman, The geometry of immersions I, Trans. Amer. Math. So. 120 (1965),185�224.[12℄ W. Kuharz, Homology lasses of real algebrai sets, preprint, Univ. of New Mexio.[13℄ S. �ojasiewiz, Ensembles semi-analytiques, Inst. Hautes Études Si., Bures-sur-Yvette, 1965.[14℄ J. W. Milnor and J. D. Stashe�, Charateristi Classes, Ann. of Math. Stud. 76,Prineton Univ. Press, Prineton, NJ, 1974.[15℄ J. Nash, Real algebrai manifolds, Ann. of Math. 56 (1952), 405�421.[16℄ E. H. Spanier, Algebrai Topology, MGraw-Hill, New York, 1966.[17℄ P. Teihner, 6-dimensional manifolds without totally algebrai homology, Pro.Amer. Math. So. 123 (1995), 2909�2914.[18℄ R. Thom, Quelques propriétés globales des variétés di�érentiables, Comment. Math.Helv. 28 (1954), 17�86.[19℄ A. Tognoli, Su una ongettura di Nash, Ann. Suola Norm. Sup. Pisa Si. Fis. Mat.27 (1973), 167�185.[20℄ �, Algebrai approximation of manifolds and spaes, in: Leture Notes in Math.842, Springer, Berlin, 1981, 73�94.Department of Mathematis and StatistisUniversity of New MexioAlbuquerque, NM 87131-1141, U.S.A.E-mail: kuharz�math.unm.eduReçu par la Rédation le 2.6.2004 (1621)


