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Clarke 
riti
al values of subanalyti
Lips
hitz 
ontinuous fun
tionsby Jérôme Bolte (Paris), Aris Daniilidis (Bar
elona),
Adrian Lewis (Itha
a, NY) and Masahiro Shiota (Nagoya)To the memory of Stanisªaw �ojasiewi
zAbstra
t. The main result of this note asserts that for any subanalyti
 lo
ally Lip-s
hitz fun
tion the set of its Clarke 
riti
al values is lo
ally �nite. The proof relies onPawªu
ki's extension of the Puiseux lemma. In the last se
tion we give an example ofa 
ontinuous subanalyti
 fun
tion whi
h is not 
onstant on a segment of �broadly 
riti-
al� points, that is, points for whi
h we 
an �nd arbitrarily short 
onvex 
ombinations ofgradients at nearby points.1. Introdu
tion. Several Sard-type results are known in the literatureusing various notions of a 
riti
al point. For example, Yomdin's 
lassi
al pa-per [18℄ addresses this issue for near-
riti
al points and gives an evaluation ofthe Kolmogorov metri
 entropy for the set of near-
riti
al values. In a re
entwork, Kurdyka�Orro�Simon [12℄ show that the set of asymptoti
ally-
riti
alvalues of a Cp-semialgebrai
 mapping f : R

n → R
k has dimension less than kprovided that p ≥ max{1, n−k+1}. Con
erning nondi�erentiable fun
tions,Ri�ord [15℄, extending a previous result of Itoh�Tanaka [10℄, establishes thatthe set of Clarke 
riti
al values of the distan
e fun
tion to a 
losed subman-ifold of a 
omplete Riemannian manifold has Lebesgue measure zero.Our work relies on 
on
epts of generalized 
riti
al points in the sense ofnonsmooth analysis that we now pro
eed to des
ribe. We say that x∗ is alimiting subgradient for the 
ontinuous fun
tion f on R

n at x, and we write
x∗ ∈ ∂f(x) (the limiting subdi�erential of f), if there exist sequen
es xn → xand x∗

n → x∗ su
h that, for n �xed,
lim inf

y→xn, y 6=xn

f(y) − f(xn) − 〈x∗
n, y − xn〉

‖y − xn‖
≥ 0,2000 Mathemati
s Subje
t Classi�
ation: Primary 35B38; Se
ondary 49J52, 32B30.Key words and phrases: Clarke 
riti
al point, 
onvex-stable subdi�erential, nonsmoothanalysis, Morse�Sard theorem, subanalyti
 fun
tion.[13℄



14 J. Bolte et al.that is, ea
h x∗
n is a Fré
het subgradient of f at xn (see also De�nition 1(i),(ii)). Clearly, for C1 fun
tions the notion of limiting subgradient 
oin
ideswith the usual gradient ∇f of f , while in general the operator x 7→ ∂f(x) ismultivalued. A limiting-
riti
al point of f is therefore a point for whi
h thereexists a zero subgradient, that is, ∂f(x) ∋ 0. Con
erning nonsmooth analysisand related problems of subdi�erentiation, see the introdu
tory books ofClarke [6℄, Clarke�Ledyaev�Stern�Wolenski [7℄ or Ro
kafellar�Wets [16℄.In a re
ent work [4, Theorem 13℄, we show that any 
ontinuous subana-lyti
 fun
tion f on R

n is 
onstant on ea
h 
onne
ted 
omponent of the set ofits limiting-
riti
al points. The main motivation for proving this Sard-typeresult for subanalyti
 
ontinuous fun
tions was to derive a generalized �o-jasiewi
z inequality whi
h in turn was used in the asymptoti
 analysis ofsubgradient-like dynami
al systems [3, Theorem 3.1℄. These dynami
s o

urfrequently in various domains su
h as optimization, me
hani
s and PDE's.With this line of resear
h in mind we adopt here a di�erent viewpoint.The assumptions on f are strengthened�namely, f is assumed to be lo
allyLips
hitz 
ontinuous�while the de�nition of a 
riti
al point is weakened. Asabove, this alternative notion relies on a 
on
ept of subdi�erentiation: wesay that x∗ is a Clarke-subgradient of f at x if
x∗ ∈ ∂◦f(x) := 
o ∂f(x),where 
o ∂f(x) is the 
losed 
onvex hull of ∂f(x) (see also De�nition 1(iii)).A

ordingly, a point x is said to be Clarke 
riti
al if ∂◦f(x) ∋ 0. This turnsout to be equivalent to the following property:(CR) 0 ∈ 
o{ ⋃

z∈B(x,ε)

∂̂f(z)
} for every ε > 0

(see Proposition 9 or [5℄), whi
h re�e
ts the idea that a point is Clarke 
riti
alif we 
an �nd short 
onvex 
ombinations of gradients at nearby points (1).For instan
e, x = 0 is a Clarke 
riti
al point for the fun
tion x 7→ −‖x‖, butit is not limiting-
riti
al, sin
e ∂f(0) = Sn−1 (the unit sphere of R
n), while

∂◦f(x) = BRn(0, 1) (the unit ball of R
n).Our main result asserts that any lo
ally Lips
hitz 
ontinuous subanalyti
fun
tion f de�ned on some open subset of R

n is 
onstant on ea
h 
onne
ted
omponent of the set of its Clarke 
riti
al points. Sin
e the latter is suban-alyti
, it follows dire
tly that the set of Clarke 
riti
al values of f is lo
ally�nite. The proof of this result is based on a �path-perturbation� lemma[4, Lemma 12℄, whi
h itself relies heavily on Pawªu
ki's extension of thePuiseux Lemma [14, Proposition 2℄.(1) This is no longer true for 
ontinuous fun
tions: a point satisfying (CR) need notbe Clarke 
riti
al.



Clarke 
riti
al values of subanalyti
 fun
tions 15An alternative notion of subdi�erential, namely the 
onvex-stable sub-di�erential, has been introdu
ed by Burke, Lewis and Overton [5℄. The 
or-responding 
riti
al points are pre
isely the points whi
h 
omply with (CR).As pointed out above, if f is a Lips
hitz 
ontinuous fun
tion, one re
oversexa
tly the notion of a Clarke 
riti
al point; however for general 
ontinu-ous fun
tions the 
onvex-stable subdi�erential appears to be larger than theusual Clarke subdi�erential, giving rise to another 
on
ept of a 
riti
al point:the �broadly 
riti
al points�. In the last se
tion we show that a 
ontinuoussubanalyti
 fun
tion may fail to have the Sard property on the broadly 
rit-i
al set. We indeed exhibit a fun
tion f : R
3 → R whi
h is not 
onstant onsome segment of points satisfying (CR).2. Preliminaries. In this se
tion we re
all several de�nitions and resultsne
essary for further developments. For basi
 and fundamental results ofsubanalyti
 geometry see Bierstone�Milman [2℄, �ojasiewi
z [13℄, van derDries�Miller [9℄ or Shiota [17℄. Con
erning nonsmooth analysis some generalreferen
es are Clarke [6℄, Clarke�Ledyaev�Stern�Wolenski [7℄ or Ro
kafellar�Wets [16℄.In the �rst two se
tions, we are interested in lo
ally Lips
hitz fun
tions:a

ordingly, we state the de�nitions and theorems of nonsmooth analysisthat we use spe
i�
ally for this 
ase. The 
ase of 
ontinuous fun
tions istreated in Se
tion 4.Consequently, throughout Se
tions 2 and 3 we make the following stand-ing assumption:

U is a nonempty open subset of R
n and

f : U → R is lo
ally Lips
hitz 
ontinuous.We shall essentially deal with the following three notions of subdi�eren-tiation.Definition 1. For any x ∈ U let us de�ne(i) the Fré
het subdi�erential ∂̂f(x) of f at x:
∂̂f(x) =

{
x∗ ∈ R

n : lim inf
y→x, y 6=x

f(y) − f(x) − 〈x∗, y − x〉

‖y − x‖
≥ 0

}
,(ii) the limiting subdi�erential ∂f(x) of f at x:

x∗∈ ∂f(x) ⇔ ∃xn ∈U, ∃x∗
n ∈ ∂̂f(xn) : xn → x, x∗

n → x∗ as n→∞,(iii) the Clarke subdi�erential ∂◦f(x) of f at x:(1) ∂◦f(x) = 
o ∂f(x),where 
o ∂f(x) is the 
losed 
onvex hull of ∂f(x).



16 J. Bolte et al.For every fun
tion f and every x ∈ dom f we obviously have:
∂̂f(x) ⊂ ∂f(x) ⊂ ∂◦f(x).Remark 1. (a) If T : U ⇉ R

n is a point-to-set mapping, its domainand its graph are respe
tively de�ned by dom T := {x ∈ U : T (x) 6= ∅} andGraph T := {(x, y) ∈ U × R
n : y ∈ T (x)}. Clearly dom ∂̂f ⊂ dom ∂f ⊂

dom ∂◦f . A well known result of variational analysis asserts that dom ∂̂f isa dense subset of U (see [6℄, for example).(b) Sin
e f is lo
ally Lips
hitz 
ontinuous, the point-to-set mapping
U ∋ x 7→ ∂◦f(x) is bounded on 
ompa
t subsets of U .(
) If f is di�erentiable at x, then ∂̂f(x) = {∇f(x)}.(d) If f is a subanalyti
 fun
tion all the subdi�erential mappings de�nedabove have a subanalyti
 graph (see [4, Proposition 2.13℄).The notion of a Clarke 
riti
al point is then de�ned naturally.Definition 2. A point a ∈ U is 
alled Clarke 
riti
al for a lo
allyLips
hitz fun
tion f if

∂◦f(a) ∋ 0,or equivalently, if relation (CR) holds (see Proposition 9).Remark 2. Let us re
all that a lo
ally Lips
hitz fun
tion f is 
alledsubdi�erentially regular if
∂̂f = ∂f,or equivalently if
∂̂f = ∂◦f.For subdi�erentially regular fun
tions, the sets of Fré
het 
riti
al and ofClarke 
riti
al points 
oin
ide and one 
an obtain easily the 
on
lusion ofour main result via an elementary argument (see Remark 3 for details).Let us re
all the 
hain rule for subdi�erentials (see [16, Theorem 10.6,p. 427℄, for example).Proposition 3 (subdi�erential 
hain rule). Let V be an open subset of

R
m and G : V → U a C1 mapping. De�ne g : V → R by g(x) = f(G(x))for all x ∈ V . Then

∂̂g(x) ⊃ ∇G(x)T ∂̂f(G(x)),(2)
∂g(x) ⊂ ∇G(x)T ∂f(G(x)),(3)where ∇G(x)T denotes the transpose of the Ja
obian matrix of G at x. If inaddition G is a di�eomorphism the above in
lusions be
ome equalities, thus

(4) ∂g(x) =∇G(x)T∂f(G(x)), ∂◦g(x) =∇G(x)T ∂◦f(G(x)), ∀x∈ V.



Clarke 
riti
al values of subanalyti
 fun
tions 17The following lemma, based on a result of Pawªu
ki [14℄, plays a key rolein the proof of both Theorem 5 and Theorem 7.Lemma 4 (path perturbation lemma, [4, Lemma 12℄). Let F be a non-empty subanalyti
 subset of R
n, γ : [0, 1] → cl F a one-to-one 
ontinuoussubanalyti
 path and η > 0. Then there exists a 
ontinuous subanalyti
 path

z : [0, 1] → clF su
h that(i) ‖ż(t) − γ̇(t)‖ < η for almost all t ∈ (0, 1),(ii) the (subanalyti
) set(5) ∆ := {t ∈ [0, 1] : z(t) ∈ clF \ F}has Lebesgue measure less than η,(iii) z(t) = γ(t) for all t ∈ ∆ ∪ {0, 1}.Let us re
all the following Sard-type result 
on
erning the limiting-
riti
alpoints of 
ontinuous subanalyti
 fun
tions.Theorem 5 (Sard theorem for limiting-
riti
al points, [4, Theorem 13℄).Let g : U → R be a subanalyti
 
ontinuous fun
tion. Then f is 
onstant onea
h 
onne
ted 
omponent of the set of its limiting-
riti
al points
(∂f)−1(0) := {x ∈ U : ∂f(x) ∋ 0}.Unless the fun
tion is subdi�erentially regular, the above theorem is ob-viously not appropriate for the study of lo
ally Lips
hitz fun
tions withthe Clarke subdi�erential. Typi
al examples are given by fun
tions whoseepigraphs have �inward 
orners�, su
h as for instan
e f(x) = −‖x‖. Sharpsaddle points also provide some elementary illustrations. For example if onesets

f : R
m × R

n × R
p ∋ (x, y, z) 7→ ‖x‖ − ‖y‖,then points of the type (0, 0, z) are Clarke 
riti
al but not limiting-
riti
al. In-deed, by straightforward 
omputations, ∂f(0, 0, z) = BRm(0, 1)×Sn−1×{0}pand ∂◦f(0, 0, z) = BRm(0, 1) × BRn(0, 1) × {0}p.3. A Sard theorem for subanalyti
 Lips
hitz 
ontinuous fun
-tions. For the proof of the 
entral result of this note we will need the fol-lowing lemma.Lemma 6. Set e := (1, 0, . . . , 0) ∈ R

n and assume that [0, 1]e ⊂ U , with
∂◦f(te) ∋ 0 for all t ∈ [0, 1]. Then f is 
onstant on [0, 1]e.Proof. Let us provisionally set SL := {x ∈ [0, 1]e : 0 ∈ ∂f(x)}, where ∂fdenotes the limiting subdi�erential of f (De�nition 1(ii)). By Remark 1(d),the set SL is subanalyti
, thus, being a (
losed) subset of [0, 1]e, it is a �niteunion of segments. By using Theorem 5 we 
on
lude that f is 
onstant onea
h one of them. Owing to the 
ontinuity of f , it is therefore su�
ient to



18 J. Bolte et al.prove that f is also 
onstant on ea
h nontrivial segment of [0, 1]e \ SL. Thisshows that there is no loss of generality to assume that SL is empty, that is:
0 /∈ ∂f(te), t ∈ [0, 1].Now �x some δ > 0 and de�ne(6) Γδ = {x ∈ [0, 1]e : ∀x∗ ∈ ∂f(x), |〈x∗, e〉| > δ}.We observe that (6) de�nes a subanalyti
 subset of R

n. Let us prove by
ontradi
tion that this set is �nite.Indeed, if this were not the 
ase, then by using the subanalyti
ity of Γδ,there would exist a < b in [0, 1] su
h that (a, b)e ⊂ Γδ. Let V be an openbounded subset of U su
h that [0, 1]e ⊂ V ⊂ cl V ⊂ U and de�ne
Γ̂+

δ = {x ∈ cl V : ∃x∗ ∈ ∂̂f(x), 〈x∗, e〉 > δ},

Γ̂−
δ = {x ∈ cl V : ∃x∗ ∈ ∂̂f(x), 〈x∗, e〉 < −δ},where ∂̂f denotes the Fré
het subdi�erential of f (De�nition 1(i)). Sin
e

0 ∈ ∂◦f(x) = 
o ∂f(x) for every x ∈ Γδ, we have
max{〈x∗, e〉 : x∗ ∈ ∂f(x)} > δ and min{〈x∗, e〉 : x∗ ∈ ∂f(x)} < −δ.So using the de�nition of the limiting subdi�erential we 
on
lude that

(a, b)e ⊂ cl Γ̂+
δ and (a, b)e ⊂ cl Γ̂−

δ .Set l = b−a and M := sup{‖x∗‖ : x∗ ∈ ∂◦f(x), x ∈ cl V }. The �nitenessof M 
omes from the Lips
hitz 
ontinuity property of f (see Remark 1(b) forinstan
e) and the 
ompa
tness of cl V . The fun
tion t 7→ f(te) is subanalyti
and 
ontinuous, hen
e absolutely 
ontinuous ([4, Lemma 5℄). Thus by usingrelation (3) of Proposition 3 (subdi�erential 
hain rule), we infer for all
0 ≤ u ≤ v ≤ 1 that

v\
u

∣∣∣∣
d

dt
f(te)

∣∣∣∣ dt ≤ (v − u) sup{|〈e, x∗〉| : t ∈ [u, v], x∗ ∈ ∂f(te)} ≤ (v − u)M.Take η > 0 and apply Lemma 4 (path perturbation lemma) for F = Γ̂+
δ ,and γ(t) = te, t ∈ (a, b). Sin
e γ̇(t) = e for all t ∈ [0, 1], it follows that thereexists a subanalyti
 
ontinuous 
urve z : [a, b] → cl Γ̂+

δ su
h that
• ‖ż(t) − e‖ < η for almost all t ∈ (a, b),
• the (subanalyti
) set ∆ := {t ∈ [a, b] : z(t) ∈ cl Γ̂+

δ \ Γ̂+
δ } has Lebesguemeasure less than η,

• z(t) = γ(t) for all t ∈ ∆ ∪ {a, b}.The 
ontinuous fun
tion g(t) = f(z(t)) is also subanalyti
, so for all but�nitely many t's in (a, b) \∆ we 
on
lude from relation (2) of Proposition 3and Remark 1(
) that
{g′(t)} = ∂̂g(t) ⊃ 〈ż(t), ∂̂f(z(t)〉 ⊃ {〈ż(t), z∗+(t)〉},



Clarke 
riti
al values of subanalyti
 fun
tions 19where z∗+(t) ∈ ∂̂f(z(t)) 
an be 
hosen in order to satisfy 〈e, z∗+(t)〉 > δ (sin
e
z(t) ∈ Γ̂+

δ ). Thus for almost all t in [a, b] \ ∆ we have
g′(t) = 〈e, z∗+(t)〉 + 〈ż(t) − e, z∗+(t)〉 ≥ δ − ‖ż(t) − e‖M ≥ δ − ηM,so that
f(be) − f(ae) =

b\
a

d

dt
f(z(t)) dt ≥

\
[a,b]\∆

g′(t) dt −
\
∆

∣∣∣∣
d

dt
f(z(t))

∣∣∣∣ dt

≥ (l − η)(δ − ηM) − ηM.By 
hoosing η small enough, the above quantity 
an be made positive sothat f(be) > f(ae). It su�
es to repeat the argument with Γ̂−
δ to obtain

f(be) < f(ae), whi
h yields a 
ontradi
tion.Thus the set Γδ is �nite. We further set
Γ0 = {x ∈ [0, 1]e : ∃x∗ ∈ ∂f(te), 〈x∗, e〉 = 0}.It follows easily from De�nition 1(ii) that the limiting subdi�erential ∂fhas 
losed values. Thus, the set ∂f(te) is 
losed for every t ∈ [0, 1], whi
hyields

[0, 1]e = Γ0 ∪
⋃

i≥1

Γ1/i.Note that ⋃
i≥1 Γ1/i is 
ountable and equal to the subanalyti
 set [0, 1]e\Γ0.It follows that ⋃

i≥1 Γ1/i is �nite and so {t ∈ [0, 1] : te ∈ Γ0} is a �nite unionof intervals with a �nite 
omplement in [0, 1]. Using the 
ontinuity of f , itsu�
es to prove that f is 
onstant on ea
h segment of Γ0.Let (a, b)e ⊂ Γ0 with 0 ≤ a < b ≤ 1. For any ε > 0 we de�ne
Γ̂ ε

0 := {x ∈ clV : ∃x∗ ∈ ∂̂f(x), |〈x∗, e〉| < ε}.By de�nition of the limiting subdi�erential, (a, b)e ⊂ cl Γ̂ ε
0 . Applying Lem-ma 4 for the set Γ̂ ε

0 , for η < ε and for the path γ(t) = te, we obtain a
urve z : [a, b] → Γ̂ ε
0 and a set ∆ ⊂ [a, b] satisfying (i)�(iii) of Lemma 4.Set h(t) = f(z(t)). As before, for all but �nitely many t's in [a, b] \ ∆ wehave {h′(t)} = {〈ż(t), z∗ε(t)〉}, where z∗ε(t) ∈ ∂̂f(z(t)) 
an be taken su
h that

|〈z∗ε(t), e〉| < ε. Therefore for almost all t in [a, b] \ ∆ we have
|h′(t)| = |〈e, z∗+(t)〉 + 〈ż(t) − e, z∗+(t)〉| ≤ ε + ηM,so that

|f(be) − f(ae)| ≤
b\
a

∣∣∣∣
d

dt
f(z(t))

∣∣∣∣ dt ≤
\

[a,b]\∆

|h′(t)| dt +
\
∆

∣∣∣∣
d

dt
f(z(t)) dt

∣∣∣∣

≤ (l − η)(ε + ηM) + ηM.



20 J. Bolte et al.Taking ε (and thus η) su�
iently small, we see that the fun
tion f is 
onstanton [0, 1]e and the proof is 
omplete.Theorem 7 (main result). Let U be a nonempty open subset of R
n and

f : U → R a lo
ally Lips
hitz subanalyti
 mapping. Let S denote the set ofClarke 
riti
al points of f , that is,
S := {x ∈ U : ∂◦f(x) ∋ 0}.Then f is 
onstant on ea
h 
onne
ted 
omponent of S.Proof. Let x, y belong to the same 
onne
ted 
omponent of S. We haveto prove that f(x) = f(y). Sin
e S = (U × {0}n) ∩Graph ∂◦f , we 
on
ludeby Remark 1(d) that it is a subanalyti
 set, so every 
onne
ted 
omponent of

S is also path-
onne
ted (see [1℄, [2℄ or [8℄, for example). Thus, there existsa 
ontinuous subanalyti
 path γ : [0, 1] → S joining x to y. To prove that
f(x) = f(y) it su�
es to prove that f is 
onstant on γ(0, 1). By using thesubanalyti
ity of γ together with the 
ontinuity of f , we 
an assume that:

• γ(0, 1) is a subanalyti
 submanifold of U .[Indeed, sin
e γ(0, 1) is a �nite union of subanalyti
 manifolds, we 
andeal with ea
h one separately, establishing (as will be des
ribed below)that f is 
onstant on ea
h su
h manifold. Then the same 
on
lusionwill follow for γ(0, 1) by a 
ontinuity argument.℄
• There exists a subanalyti
 di�eomorphism G from a neighbourhood

V of γ(0, 1) into an open subset of R
n su
h that G(γ(0, 1)) = (0, 1)e;see [2℄ for instan
e.In view of relation (4) of Proposition 3 we have

γ(0, 1) ⊂ (∂◦f)−1(0) if and only if (0, 1)e ⊂ [∂◦(f ◦ G−1)]−1(0).This is indeed a 
onsequen
e of the equivalen
e
∂◦f(x) ∋ 0 ⇔ ∂◦[f ◦ G−1](G(x)) ∋ 0, for all x ∈ V.As a 
onsequen
e f is 
onstant on γ(0, 1) if and only if f ◦ G−1 is 
onstanton (0, 1)e. The 
on
lusion then follows from Lemma 6.Corollary 8 (Sard theorem for Clarke 
riti
al points). Under the as-sumptions of Theorem 7 the set f(S) of the Clarke 
riti
al values of f is
ountable (and hen
e has measure zero).Proof. This follows from Theorem 7 and the fa
t that the set S, be-ing subanalyti
, has at most a 
ountable number of 
onne
ted 
omponents(a �nite number on ea
h 
ompa
t subset of U).Let us �nally 
on
lude with the following remark.Remark 3 (
ase of subdi�erential regularity). If f is assumed to besubdi�erentially regular (see Remark 1(b)) then Theorem 7 follows via a



Clarke 
riti
al values of subanalyti
 fun
tions 21straightforward appli
ation of [16, Theorem 10.6℄. Let us re
all this sim-ple argument (see also [3, Remark 3.2℄). Assume that x, y are in the same
onne
ted 
omponent of S. Let z : [0, 1] → S be a 
ontinuous subana-lyti
 path with z(0) = x and z(1) = y and de�ne the subanalyti
 fun
-tion h(t) = (f ◦ z)(t). From the �monotoni
ity lemma� (see [9, Fa
t 4.1℄, or[11, Lemma 2℄, for example) we get h′(t) = 0 for all t ∈ [0, 1] \ F where F isa �nite set. Sin
e 0 ∈ ∂̂f(z(t)) for all t ∈ [0, 1], using the 
hain rule for theFré
het subdi�erential we obtain
{h′(t)} = ∂̂h(t) ⊇ z′(t)∂̂f(z(t)) ⊇ {0}for all t ∈ [0, 1]\F . It follows that h is 
onstant on [0, 1], when
e f(x) = f(y).4. An example of a 
ontinuous subanalyti
 fun
tion whi
h isnot 
onstant on the set of its broadly 
riti
al points. In this se
tionwe assume that f : R

n → R is 
ontinuous. In that 
ase the de�nition of theClarke subdi�erential (1) of f at x ∈ R
n is as follows:(7) ∂◦f(x) = 
o{∂f(x) + ∂∞f(x)}where ∂∞f(x) is the asymptoti
 limiting subdi�erential of f at x, that is,the set of all y∗ ∈ R

n su
h that there exists {tn}n ⊂ R+ with {tn} ց 0+,
{yn}n ⊂ R

n, y∗n ∈ ∂̂f(yn) su
h that yn → x and tny∗n → y∗. When f islo
ally Lips
hitz 
ontinuous, the lo
al boundedness of the limiting subgradi-ents (Remark 1(b)) implies ∂∞f(x) = 0, and so the above de�nition is�of
ourse�
ompatible with De�nition 1(iii).Following the terminology of [5℄, let us now introdu
e the 
onvex-stablesubdi�erential. For every x ∈ R
n set(8) Tf (x) =

⋂

ε>0


o{ ⋃

x∈B(x0,ε)

∂̂f(x)
}
.

A point x0 ∈ R
n is 
alled a broadly 
riti
al point for f if(9) 0 ∈ Tf (x0).The proof of the following proposition 
an be found in [5℄.Proposition 9. Let U be nonempty open subset of R

n.(i) For any 
ontinuous fun
tion f : U → R we have
∂◦f(x) ⊂ Tf (x) for all x ∈ U.(ii) If f : U → R is a lo
ally Lips
hitz fun
tion, then
∂◦f(x) = Tf (x) for all x ∈ U.Consequently , for lo
ally Lips
hitz fun
tions, Clarke 
riti
al and broadly 
rit-i
al points 
oin
ide.
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on
lusion of Theorem 7(main result) is no more valid for the set of broadly 
riti
al points of a
ontinuous subanalyti
 fun
tion. More pre
isely (see Fa
ts 1�3 below):There exists a 
ontinuous subanalyti
 fun
tion f : R
3 → R whi
h isnot 
onstant on a segment of broadly 
riti
al points.Constru
tion of the example. Consider the fun
tion θ0 : [0, π) → [0, π/2]de�ned by

θ0(z) :=

{
z if 0 ≤ z ≤ π/2,
π − z if π/2 < z < π.We extend the domain of θ0 from [0, π) to R in the following way:

z 7→ θ̃0(z) := θ0(z (mod π)).Then for every (θ, z) ∈ [0, π/2] × R we de�ne
σ(θ, z) :=

{
1 if θ ≥ θ̃0(z),
−1 if θ < θ̃0(z).Finally, for every (̺, θ, z) ∈ R

∗
+ × [0, π/2] × R we set(10) Φ1(̺, θ, z) =

{
(2/π)θ̃0(z) + σ(θ, z)̺ if ̺ ≤ (2/π)|θ − θ̃0(z)|,
(2/π)θ if ̺ > (2/π)|θ − θ̃0(z)|.Now for (̺, θ, z) ∈ R

∗
+ × [0, π) × R we set

Φ2(̺, θ, z) =

{
Φ1(̺, θ, z) if 0 ≤ θ ≤ π/2,
Φ1(̺, π − θ, z) if π/2 < θ ≤ π.Finally, we de�ne Φ : R

∗
+ × [0, 2π) × R → [0, 1] by(11) Φ(̺, θ, z) =

{
Φ2(̺, θ, z) if 0 ≤ θ ≤ π,
Φ2(̺, θ − π, z) if π < θ < 2π.De�ne f : R

3 → [0, 1] as the fun
tion whose graph in 
artesian 
oordi-nates is the one of Φ in 
ylindri
al 
oordinates. For instan
e, for any x, y > 0we have
f(x, y, z) = Φ(

√
x2 + y2, arctan(y/x), z).

Fact 1. The fun
tion f is 
ontinuous and subanalyti
.[For the subanalyti
ity of f it is 
ru
ial that the fun
tion t 7→ arctan(1/t),
t > 0, extends to an analyti
 fun
tion in a neighbourhood of t = 0. To seethis, note that arctan(1/t) = π/2 − arctan t for all t > 0.℄
Fact 2. The restri
tion of f to the set Z = {(0, 0, z) : z ∈ R} is not
onstant.
Fact 3. Every point of Z is broadly 
riti
al, that is, Z ⊂ {u ∈ R

3 :
Tf (u) ∋ 0}.



Clarke 
riti
al values of subanalyti
 fun
tions 23
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f = 0 f = 0

f = 1/2

f = 1/2
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y
f = 1

f = 1

f = 0

x

f = 1/2

y
f = 1

f = 0

f = 1

f = 0

f = 1/2

Fig. 1. Level sets of the fun
tion f(·, ·, z) for z = 0, π/4, π/2Proof of Fa
t 3. It is su�
ient to prove that if 0 < z0 < π/2, then
0 ∈ ∂◦f((0, 0, z0)).To this end, set u0 = (0, 0, z0), θ0 = θ̃0(z0) (so that 0 < θ0 < π/2) andlet(12) θn = θ0 +

π

2n+2(so that θn ց θ0). Then set an = tan θn and(13) xn =
1

2n
√

1 + a2
n(so that xn ց 0), yn := anxn and thus(14) ̺n =

√
x2

n + y2
n = (

√
1 + a2

n)xn =
1

2n
.For every n ≥ 1 we de�ne

un := (xn, yn, z0) and un = (−xn,−yn, z0).In view of (10), (13) and (14), the sequen
es {un}n≥1, {un}n≥1 ⊂ R
3 
onvergeto u0 and satisfy

f(un) = f(un) = Φ(̺n, θn, z0) = (2/π)θn.By (11) and (10) it is easily seen that f is di�erentiable at un (respe
tively,at un). Pre
isely, we have
∂Φ

∂̺
(un) =

∂Φ

∂z
(un) = 0and

∂Φ

∂θ
(un) =

2

π
,so we 
on
lude that

∇f(un) =
2

π

(
−yn

x2
n + y2

n

,
xn

x2
n + y2

n

, 0

)
.



24 J. Bolte et al.Repeating the above for the sequen
e {un}n≥1 we obtain
∇f(un) = −∇f(un),or in other words,

0 ∈
⋂

ε>0

co{∇f(u) : u ∈ B(u0, ε) ∩ Df}where Df denotes the points of di�erentiability of f . This shows that thepoint u0 is broadly 
riti
al.A
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