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The �ojasiewiz exponent of subanalyti setsby Stanisław Spodzieja (�ód¹)Abstrat. We prove that the in�mum of the regular separation exponents of twosubanalyti sets at a point is a rational number, and it is also a regular separation exponentof these sets. Moreover, we onsider the problem of attainment of this exponent on analytiurves.1. Introdution. Let M be a �nite-dimensional, real analyti manifoldountable at in�nity, ̺ be a distane funtion onM indued by a Riemannianmetri on M, and let X, Y ⊂ M be losed subanalyti sets. In the theoryof semi-analyti and subanalyti sets ([2℄, [15℄, [22℄, [24℄, [25℄), an importantrole is played by the fat (proved by �ojasiewiz in [22℄ and [25℄) that Xand Y are regularly separated at any x0. Namely:Theorem 1.1. For any x0 ∈ X ∩ Y there exist ν > 0 and C > 0 suhthat for some neighbourhood Ω ⊂ M of x0,(S) ̺(x,X) + ̺(x, Y ) ≥ C̺(x,X ∩ Y )ν for x ∈ Ω.If additionally x0 ∈ X \ Y , then ν ≥ 1 and (S) is equivalent to(S′) ̺(x, Y ) ≥ C ′̺(x,X ∩ Y )ν for x ∈ Ω′ ∩X,where C ′ > 0 and Ω′ is a neighbourhood of x0.Note that the ondition x0 6∈ X \ Y leads to the trivial ases ν = 0 in(S′) and ν = 0 or ν = 1 in (S), provided we put 00 = 0.In this paper we investigate the smallest exponent ν satisfying (S). Bo-hnak and Risler ([3, Corollary 2℄) proved:Theorem 1.2. For a �xed relatively ompat neighbourhood Ω of x0 ∈
X ∩ Y ,
LΩ(X,Y ) := inf{ν ∈ R : ∃C>0 ∀x∈Ω ̺(x,X) + ̺(x, Y ) ≥ C̺(x,X ∩ Y )ν}is a rational number.2000 Mathematis Subjet Classi�ation: Primary 32B20.Key words and phrases: subanalyti set, �ojasiewiz inequality, �ojasiewiz exponent.[247℄



248 S. SpodziejaThe exponent ν satisfying (S) for some Ω and C > 0 is alled a regularseparation exponent of X and Y at x0. The in�mum of all regular separationexponents of X and Y at x0 is alled the �ojasiewiz exponent of X, Y at
x0 and denoted by Lx0

(X,Y ). It is easy to see that
Lx0

(X,Y ) = inf{LΩ(X,Y ) : Ω a relatively ompat neighbourhood of x0}.We shall prove the following generalisation of Theorem 1.2.Theorem 1.3. Let x0 ∈ X ∩ Y . Then Lx0
(X,Y ) ∈ Q, and (S) holds for

ν = Lx0
(X,Y ), some C > 0 and a neighbourhood Ω of x0.The exponent Lx0

(X,Y ) is attained on an analyti urve, namely, wehaveTheorem 1.4. Let x0 ∈ X ∩ Y and x0 ∈ M \ (X ∩ Y ). Then for anyneighbourhood Ω of x0 there exists an analyti urve ϕ : [0, r) → Ω suh that
ϕ(0) ∈ X ∩ Y , ϕ((0, r)) ⊂ Ω \ (X ∩ Y ) and for some onstant C ′ > 0,

̺(ϕ(t), X) + ̺(ϕ(t), Y ) ≤ C ′̺(ϕ(t), X ∩ Y )Lx0
(X,Y ), t ∈ [0, r).The above two theorems will follow from analogous results ina slightly more general situation. Namely, for three subanalyti sets X,Y, Z

⊂ M suh that X ∩ Y ⊂ Z, we de�ne a regular separation exponent of Yand Z on X at a point x0 ∈ X ∩ Y to be any real positive ν suh that(#) ̺(x, Y ) ≥ C̺(x, Z)ν for x ∈ X ∩Ω,where C > 0 and Ω is a neighbourhood of x0. The in�mum of all suhexponents ν will be denoted by Lx0
(X;Y, Z). If Z = X ∩ Y then obviously

Lx0
(X;Y, Z) = Lx0

(X,Y ), provided x0 ∈ X \ Y . The main result of thispaper is the followingTheorem 1.5. Let X, Y, Z be losed subanalyti subsets of M with
X ∩ Y ⊂ Z, and let x0 ∈ X ∩ Y .(i) We have Lx0

(X;Y, Z) ∈ Q, and (#) holds for ν = Lx0
(X;Y, Z), some

C > 0 and a neighbourhood Ω of x0.(ii) If x0 ∈ X \ Z, then Lx0
(X;Y, Z) is attained on an analyti urve,i.e. for any neighbourhood Ω̃ of x0 there exists an analyti urve ϕ :

[0, r) → X ∩ Ω̃ suh that ϕ((0, r)) ⊂ X \Z and ϕ(0) ∈ X ∩ Y , and forsome onstant C1 > 0,
C1̺(ϕ(t), Y ) ≤ ̺(ϕ(t), Z)Lx0

(X;Y,Z) for t ∈ [0, r).The proof of the above theorem will be given in Setion 2. Unfortunately,in Theorems 1.4 and 1.5, we annot require that ϕ(0) = x0 (see Example 2.5).This observation shows that, in the proof of Theorem 1.5, it does not su�eto apply the Curve Seletion Lemma. We have to use another tool, the



�ojasiewiz exponent of subanalyti sets 249notion of Lipshitz strati�ation introdued by T. Mostowski [26℄ (see also[27℄�[29℄).Setions 3 and 4 are devoted to appliations of Theorem 1.5.Let X, Y be subanalyti sets, F : X → Y be a subanalyti mapping and
Γ (F ) be the graph of F . Let Lx0

(F ) := L(x0,y0)(Γ (F );X × {y0}, V × Y ),where x0 ∈ X, y0 = F (x0), and V = F−1(y0). Theorem 1.5 implies that
Lx0

(F ) is the smallest exponent ν satisfying the following fundamental �o-jasiewiz inequality :(�) ̺(F (x), y0) ≥ C̺(x, V )ν , x ∈ X ∩Ω,for some neighbourhood Ω of x0, and C > 0 (Corollary 3.1). The inequality(�) plays an important role in singularity theory ([2℄, [19℄, [22℄, [23℄, [32℄),and in the solution of the division problem in distribution theory ([16℄, [21℄).For two subanalyti mappings F : X → Y , g : X → Z, where X, Y, Zare subanalyti sets, and x0 ∈ X, y0 = F (x0), z0 = g(x0), we show that thenumber Lx0
(F/g) := L(x0,y0,z0)(Γ (F, g);X × {y0} × Z,X × Y × {z0}) is thesmallest exponent ν satisfying

(LT) ̺(F (x), y0) ≥ C̺(g(x), z0)
ν , x ∈ X ∩Ω,in a neighbourhood Ω of x0 for some C > 0, provided F−1(y0) ⊂ g−1(z0)(Corollary 4.1). In partiular, we obtain the Lejeune-Jalabert and Teissierresult stating that in the omplex analyti ase Lx0

(F/g) ∈ Q ([20, Corollary6.4℄, f. [3℄). We ollet some relations between Lx0
(F ) and Lx0

(F/g) inRemark 4.3.If X is a semi-algebrai set and F : X → Rm is a semi-algebrai mapping,then the set {Lx(F ) : x ∈ V } is �nite, where V = F−1(0) (Corollary 2.7). So,the number L(F ) = maxx∈V Lx(F ) is the smallest exponent ν for whih (�)holds at eah x0 ∈ V . In Theorem 3.5 we prove that there exists a rationalnumber l suh that
(JKS) |F (x)|(1 + |x|)l ≥ C̺(x, V )L(F ) in Xfor some onstant C > 0. Moreover, the in�mum l∞(F ) of all suh expo-nents l is also a rational number and satis�es (JKS), provided L(F ) > 0and X \ V is unbounded (if X is ompat, then (JKS) holds for l = 0).Theorem 3.5 is a generalisation of the Ji, Kollár and Shi�man result to thesemi-algebrai ase ([17, Theorem 5 and Corollary 6℄, see also [4℄, [9℄, [10℄,[18℄). In the ase when V is �nite, (JKS) is also important in the polynomialmappings theory (Remark 3.6).In Setion 4 we onsider the notion of separation of two mappings. In par-tiular we give a version of (JKS) for two mappings (Theorem 4.5, f. [12℄).2. Separation of subanalyti sets. We reall some notions. A subsetof a linear spae M is alled semi-algebrai when it is de�ned by a �nite



250 S. Spodziejaalternative of �nite systems of inequalities P > 0 or P ≥ 0, where P arepolynomials on M . A set E ⊂ M is alled semi-analyti if every point of Mhas a neighbourhood Ω suh that E ∩ Ω is de�ned by a �nite alternativeof �nite systems of inequalities f > 0 or f ≥ 0, where f : Ω → R areanalyti funtions. The set E is alled a subanalyti subset of M if everypoint x ∈ M has a neighbourhood Ω suh that E∩Ω is the image under theprojetion map M× Rk → M of a semi-analyti relatively ompat subsetof M×Rk (where k depends on x). For the basi properties of semi-analytiand subanalyti sets see for instane [2℄, [11℄, [15℄, [22℄, [25℄.For A ⊂ M, we denote by ̺( · , A) the distane funtion to A, i.e.
̺(z,A) = infx∈A ̺(z, x) if A 6= ∅, and ̺(z, ∅) = 1.In the remainder of this setion,X, Y, Z are losed subanalyti sets inM.We start with some remarks on Lx0

(X;Y, Z).Remark 2.1. (a) If x0 ∈ X ∩ Y ⊂ Z and X ∩ Ω ⊂ Z for some neigh-bourhood Ω of x0, then obviously, for any C, ν > 0 the inequality (#) holdsin Ω. So, Lx0
(X;Y, Z) = 0. In order to omit this trivial ase, we will assume

x0 ∈ X \ Z.(b) Obviously, Lx0
(X,Y ) = Lx0

(Y,X). However, we annot require that
Lx0

(X;Y, Z) = Lx0
(Y ;X,Z). Indeed, for X = {(x1, x2) : x2 = 0} and

Y = Z = {(x1, x2) : x1 = x2} we easily obtain L0(X;Y, Z) = 1 and
L0(Y ;X,Z) = 0.Sine the exponent Lx0

(X;Y, Z) has a loal harater, the proof of Theo-rem 1.5 an be arried out in the ase of subanalyti sets in an open set G ofa �nite-dimensional real linear spae M . This exponent does not dependon the hoie of the norm, so we will use the Eulidean norm | · |. Set
B(x0, R) = {x ∈M : |x− x0| < R}, where x0 ∈M and R > 0.Lemma 2.2. Let Z be a losed subanalyti subset of G and x0 ∈ Z. Let
R > 0 be suh that B = B(x0, R) ⊂ G. Then

A = {(x, z) ∈ B × (Z ∩B) : ̺(x, Z ∩B) = |x− z|}is a nonempty ompat and subanalyti set in G × M . Moreover , if Z isa semi-algebrai (and losed) subset of M , then the set {(x, z) ∈ M × Z :
̺(x, Z) = |x− z|} is semi-algebrai.Proof. Sine {(x, z, w) ∈ B × (Z ∩B)× (Z ∩B) : |x− z| > |x−w|} is asubanalyti and relatively ompat subset of G×M2, its projetion

E = {(x, z) ∈ B × (Z ∩B) : ∃w∈Z∩B |x− z| > |x− w|}onto B ×M is subanalyti. Moreover, A = [B × (Z ∩ B)] \ E, and hene,by the Gabrielov Theorem on Complement ([13, Theorem 1℄, [25, IV.4℄), theset A is subanalyti. The proof is analogous when Z is semi-algebrai (byusing the Tarski�Seidenberg Theorem, see [1, Theorem 2.3.4℄).



�ojasiewiz exponent of subanalyti sets 251A urve ϕ : [0, r) → M, where r > 0, is alled analyti if ϕ has ananalyti extension ψ : (r′, r) → M, where r′ < 0. If M = M , then in aneighbourhood of 0, ϕ is the sum of a power series of the form
ϕ(t) = αpt

p + αp+1t
p+1 + · · · , αi ∈M, p ∈ Z, p ≥ 0.If ϕ 6= 0, then we may assume that αp 6= 0. The number p is alled the orderof ϕ and denoted by ordϕ. Additionally we put ord 0 = ∞.Lemma 2.3. Let x0 ∈ X ∩ Y ⊂ Z, where x0 ∈ X \ Z, and let B =

B(x0, R), where R > 0 and B(x0, 2R) ⊂ G. Then there exist analyti urves
ϕ : [0, r) → X ∩ B, ϕ1 : [0, r) → Y , and ψ : [0, r) → Z, where r > 0, suhthat (i) ϕ((0, r)) ⊂ X \ Z,(ii) ϕ(0) = ϕ1(0) = ψ(0),(iii) there exists C > 0 suh that(1) ̺(x, Y ) ≥ C̺(x, Z)ν for x ∈ B ∩X,where(2) ν =

ord(ϕ− ϕ1)

ord(ϕ− ψ)
,(iv) the smallest exponent ν for whih (1) holds is de�ned by (2); more-over , there exist C1 > 0 and t0 ∈ (0, r) suh that(3) ̺(ϕ(t), Y ) ≤ C1̺(ϕ(t), Z)ν for t ∈ [0, t0].Proof. For x ∈ B and E ⊂ G we have ̺(x,E) = ̺(x,E ∩ B(x0, 2R)).Thus we may assume that X ⊂ B and Y, Z ⊂ B(x0, 2R). Let

V = {(x, y, z) ∈ X × Y × Z : ̺(x, Y ) = |x− y| ∧ ̺(x, Z) = |x− z|},

U = {((x, y, z), (a, b, c)) ∈ V × V : |a− c| = |x− z| ∧ |x− y| > |a− b|}.By Lemma 2.2, the sets V and U are subanalyti and relatively ompat in
G×M2 and G×M5, respetively. Then the projetion W ={(x, y, z)∈V :
∃(a,b,c)∈V ((x, y, z), (a, b, c)) ∈ U} of U is a subanalyti set. So, the omple-ment Γ = V \W is subanalyti. Obviously,
Γ = {(x, y, z) ∈ V : ̺(x, Y ) = inf{̺(a, Y ) : a ∈ X∩B ∧ ̺(a, Z) = ̺(x, Z)}}.Sine B and B(x0, 2R) are ompat sets, for any a ∈ (X∩B)\Z there exists
(x, y, z) ∈ Γ suh that ̺(x, Z) = ̺(a, Z). By the assumption x0 ∈ X \ Z,there exists x1 ∈ X ∩Y suh that (x1, x1, x1) is an aumulation point of Γ .Consequently, by the Curve Seletion Lemma ([25, IV.3℄), there exists ananalyti urve (ϕ,ϕ1, ψ) : [0, r) → Γ , where r > 0, suh that ϕ, ϕ1, ψsatisfy (i) and (ii).For ϕ, ϕ1, ψ hosen above, let the number ν be given by (2). Obviously,
ν ∈ Q and ν > 0. By the de�nition of ν, there exist t0 ∈ (0, r) and C1, C2 > 0



252 S. Spodziejasuh that(4) |ϕ(t) − ϕ1(t)| ≤ C1|ϕ(t) − ψ(t)|ν ≤ C2|ϕ(t) − ϕ1(t)| for t ∈ [0, t0].By the de�nition of Γ we see that (4) implies (3).Set ε = ̺(ϕ(t0), Z); we have ε > 0. Take any x ∈ (X \ Z) ∩B suh that
̺(x, Z) < ε. Then there exists t ∈ (0, t0) suh that ̺(x, Z) = ̺(ϕ(t), Z). So,from (3) and the de�nition of Γ ,(5) ̺(x, Y ) ≥ ̺(ϕ(t), Y ) ≥

C1

C2
̺(ϕ(t), Z)ν =

C1

C2
̺(x, Z)ν .Sine {x ∈ X ∩B : ̺(x, Z) ≥ ε} is ompat, by (5), diminishing C = C1/C2if neessary, we obtain (1) for x ∈ X ∩ B. This gives (iii). The remainingondition in (iv) immediately follows from (3) and (4), beause (4) holdsonly for ν given by (2).By a strati�ation of a subset X ⊂ M we mean a deomposition of Xinto a disjoint loally �nite union(6) X =

⋃
Sα,where the subsets Sα are alled strata, suh that eah Sα is a onnetedembedded submanifold of M, and eah (Sα \ Sα) ∩X is the union of somestrata of dimension smaller than dimSα.The set X with strati�ation (6) is alled loally bi-Lipshitz trivial alongeah stratum if for eah stratum Sα and eah x ∈ Sα there exist: a neigh-bourhood U ⊂ M of x, a submanifold N of U transverse to Sα at x andof dimension omplementary to dimSα, and a bi-Lipshitz homeomorphism(i.e. Lipshitz homeomorphism with Lipshitz inverse)(7) Ψ : X ∩ U → (Sα ∩ U) × (N ∩X).In [28℄ and [29℄ Parusi«ski showed the existene of a Lipshitz strati�a-tion of subanalyti sets, and proved that any Lipshitz strati�ation of Xensures loally bi-Lipshitz triviality of X along eah stratum ([28, Theorem1.9℄, and [29, Lipshitz Isotopy Lemma, Theorem 1.6℄). From these resultswe obtain:Lemma 2.4. Let X = X1 ∪ · · · ∪ Xk, where X1, . . . , Xk are ompatsubanalyti subsets of M . Then there exists a strati�ation X =

⋃
Sα of Xsuh that eah X1, . . . , Xk is a union of some strata Sα, and X is loallybi-Lipshitz trivial along eah stratum. In partiular , for eah stratum Sαand any y, z ∈ Sα there exist neighbourhoods Ωy, Ωz of y, z, respetively ,and a bi-Lipshitz homeomorphism Φ : X ∩ Ωy → X ∩ Ωz whih preserves

X1, . . . , Xk, i.e.(8) Φ(Xi ∩Ωy) = Xi ∩Ωz for i = 1, . . . , k.



�ojasiewiz exponent of subanalyti sets 253Proof. By Theorems 1.4 and 1.6 in [29℄ there exists a strati�ation X =⋃
Sα of X suh that eah X1, . . . , Xk is the union of some strata Sα, and Xis loally bi-Lipshitz trivial along eah stratum Sα. Take any stratum Sαwhih ontains at least two points. Let x ∈ Sα and let Ψ be a bi-Lipshitzhomeomorphism of the form (7). One an assume that Ψ is de�ned by aLipshitz �ow obtained by integrating a Lipshitz vetor �eld tangent tostrata of X (see proof of Theorem 1.6 in [29℄ and proof of Proposition 1.1in [26℄). Then Ψ(Xi ∩ U) = (Sα ∩ U) × (N ∩ Xi) for i = 1, . . . , k. Thus,for any y ∈ Sα ∩ U we easily get (8). Sine Sα is onneted, we obtain theassertion.Proof of Theorem 1.5. Without loss of generality we may assume that

x0 ∈ X \ Z. By Lemma 2.4, one an assume that there exists a strati�ation
X ∪ Y ∪ Z =

⋃
α Sα suh that eah of the sets X ∩ Y , X, Y , Z is a unionof some strata Sα, and X ∪ Y ∪ Z is loally bi-Lipshitz trivial along eahstratum.Take any x0 ∈ X ∩ Y and let Sα1

, . . . , Sαk
be all the strata for whih

x0 ∈ Sα. Let R > 0 be suh that B(x0, 2R) ⊂ G and
(X ∪ Y ∪ Z) ∩B(x0, 2R) = (Sα1

∪ · · · ∪ Sαk
) ∩B(x0, 2R).Let ϕ : [0, r) → X ∩ B(x0, R) be an analyti urve for whih there existanalyti urves ϕ1, ψ suh that the assertion of Lemma 2.3 holds. Let ν beas in (2). Then ν is a rational number and satis�es (1). Hene, it su�es toprove that(9) ν = Lx0

(X;Y, Z).In aordane with (1), it su�es to prove that for any 0 < R1 < R thereexists a ontinuous urve κ : [0, ε) → X ∩ B1, where ε > 0 and B1 =
B(x0, R1), suh that κ((0, ε))⊂X \Z, κ(0)∈X∩Y , and for some C1, C2 > 0,(10) C1̺(κ(t), Y ) ≤ ̺(κ(t), Z)ν ≤ C2̺(κ(t), Y ) for t ∈ [0, ε).Take any 0 < R1 < R. Let x = ϕ(0), and let x ∈ Sαi

. Then Sαi
⊂ X ∩ Yand there exists y0 ∈ Sαi

suh that |y0 − x0| < R1/2. By Lemma 2.4, thereexist neighbourhoods Ω1, Ω2 of x and y0, respetively, where Ω2 ⊂ B1, anda bi-Lipshitz homeomorphism Φ : (X ∪ Y ∪ Z) ∩ Ω1 → (X ∪ Y ∪ Z) ∩ Ω2suh that Φ(X ∩Ω1) = X ∩Ω2 and Φ(Y ∩Ω1) = Y ∩Ω2 and Φ(Z ∩Ω1) =
Z ∩ Ω2. Moreover, there exists 0 < ε < t0 suh that ϕ([0, ε)) ⊂ Ω1. Put
κ(t) = Φ(ϕ(t)) for t ∈ [0, ε). Sine Φ is a bi-Lipshitz homeomorphism,

D1̺(ϕ(t), Y ) ≤ ̺(κ(t), Y ) ≤ D2̺(ϕ(t), Y ),

D1̺(ϕ(t), Z) ≤ ̺(κ(t), Z) ≤ D2̺(ϕ(t), Z)for t ∈ [0, ε) and some D1, D2 > 0. Then by (3) we obtain (10) and, as aonsequene, (9). This gives (i). Assertion (ii) follows from the above andLemma 2.3.



254 S. SpodziejaExample 2.5. In Theorems 1.4 and 1.5(ii), we annot require that ϕ(0)
= x0. Indeed, let x0 = 0 ∈ R3 and
X = {(x1, x2, x3) ∈ R3 : x2

1 = x2x3}, Y = {(x1, x2, x3) ∈ R3 : x2 = 0}.Then X ∩ Y = {(x1, x2, x3) ∈ R3 : x1 = x2 = 0}. Let Z = X ∩ Y .By Theorem 1.1, L0(X,Y ) = L0(X;Y, Z). Note that L0(X;Y, Z) = 2.Indeed, we may use the polyylindri norm in R3. Let Ω = {(x1, x2, x3) ∈
R3 : max{|x1|, |x2|, |x3|} < ε}, 0 < ε < 1. For any x = (x1, x2, x3) ∈ X ∩ Ωwe have ̺(x, Y ) = |x2| and ̺(x, Z) = max{|x1|, |x2|}. If ̺(x, Z) = |x2|, then

̺(x, Y ) = |x2| ≥ |x2|
2 = ̺(x, Z)2.If ̺(x, Z) = |x1|, then

̺(x, Y ) = |x2| ≥ |x2x3| = |x1|
2 = ̺(x, Z)2.So, L0(X;Y, Z) ≤ 2. On the other hand, taking the urve ϕ : [0, ε/2) ∋ t 7→

(t, (2/ε)t2, ε/2) ∈ X ∩Ω, we have
̺(ϕ(t), Y ) =

2

ε
t2 =

2

ε
̺(ϕ(t), Z)2.Hene L0(X;Y, Z) ≥ 2. Summing up, L0(X,Y ) = L0(X;Y, Z) = 2.We shall show that the exponent L0(X,Y ) is not attained on any analytiurve ϕ suh that ϕ(0) = 0. Assume to the ontrary that for some analytiurve ϕ = (ϕ1, ϕ2, ϕ3) : [0, r) → R3, where ϕ(0) = 0, ϕ((0, r)) ⊂ R3 \ Z, wehave ̺(ϕ(t), X)+̺(ϕ(t), Y ) ≤ C̺(ϕ(t), Z)2 for t ∈ [0, r), where C > 0. Then(11) ̺(ϕ(t), X)≤C̺(ϕ(t), Z)2, ̺(ϕ(t), Y )≤C̺(ϕ(t), Z)2 for t∈ [0, r).Sine ̺(ϕ(t), Y ) = |ϕ2(t)|, ̺(ϕ(t), Z) = max{|ϕ1(t)|, |ϕ2(t)|} for t ∈ [0, r),from (11) we may assume ̺(ϕ(t), Z) = |ϕ1(t)| for t ∈ [0, r). So, (11) gives(12) 0 < ordϕ1 <∞ and ordϕ2 ≥ 2 ordϕ1.By (11), the origin is an aumulation point of the subanalyti set

E = {(x1, x2, x3, y1, y2, y3) ∈ R6 : x1 6= 0 ∧ y2
1 = y2y3

∧ max{|x2|, |x1 − y1|, |x2 − y2|, |x3 − y3|} ≤ C|x1|
2}.So, by the Curve Seletion Lemma we may assume that there exists ananalyti urve ψ = (ψ1, ψ2, ψ3) : [0, r) → X suh that ψ(0) = 0 and

(ϕ(t), ψ(t)) ∈ E for t ∈ (0, r). Then
|ϕi(t) − ψi(t)| ≤ C|ϕ1(t)|

2 for t ∈ [0, r),and so ord(ϕi − ψi) ≥ 2 ordϕ1, i = 1, 2. Sine 0 < ordϕ1 < 2 ordϕ1,wee have ordψ1 = ordϕ1. Moreover, ψ2
1 = ψ2ψ3 and ψ(0) = 0, hene

ordψ2 < 2 ordψ1. Therefore, ordϕ2 = ordψ2 <∞. Hene and from (12),
ordϕ2 ≥ 2 ordϕ1 = 2ordψ1 > ordψ2 = ordϕ2.This is impossible.



�ojasiewiz exponent of subanalyti sets 255Corollary 2.6. Let X, Y, Z be ompat subanalyti subsets of a �nite-dimensional real linear spae M suh that X ∩ Y ⊂ Z. Then there exists astrati�ation(13) X ∩ Y =
⋃
Sαsuh that for eah stratum Sα, the funtion(14) Sα ∋ x 7→ Lx(X;Y, Z)is onstant. In partiular , the funtion X ∩ Y ∋ x 7→ Lx(X;Y, Z) is uppersemi-ontinuous.Proof. By Lemma 2.4, one an assume that there exists a strati�ation

X ∪ Y ∪ Z =
⋃

α Sα suh that eah of X ∩ Y , X, Y , Z is a union of somestrata Sα, and X ∪ Y ∪ Z is loally bi-Lipshitz trivial along eah stratum.Let Sα ⊂X∩Y . Take any z, w ∈ Sα. Then there exist neighbourhoods Ω1,
Ω2 of z, w respetively and a bi-Lipshitz homeomorphism Φ : (X ∪ Y ∪ Z)
∩Ω1 → (X∪Y ∪Z)∩Ω2 suh that Φ(X∩Ω1) = X∩Ω2, Φ(Y ∩Ω1) = Y ∩Ω2and Φ(Z ∩ Ω1) = Z ∩ Ω2. If X ∩ Ω ⊂ Z for some neighbourhood Ω of z,then X ∩ Φ(Ω ∩ Ω1) ⊂ Z, so Lz(X;Y, Z) = Lw(X;Y, Z) = 0. Assume that
z, w ∈ X \ Z. By Theorem 1.5, one an assume that

̺(x, Y ) ≥ C1̺(x, Z)Lz(X;Y,Z) for x ∈ X ∩Ω1,

̺(x, Y ) ≥ C2̺(x, Z)Lw(X;Y,Z) for x ∈ X ∩Ω2,where C1, C2 > 0 are some onstants. Sine Φ is a bi-Lipshitz homeomor-phism, we have Lz(X;Y, Z) = Lw(X;Y, Z), and so the funtion (14) isonstant.Corollary 2.7. For any losed semi-algebrai subsets X, Y, Z of a lin-ear spae M suh that X ∩ Y ⊂ Z, the set {Lx(X;Y, Z) : x ∈ X ∩ Y } is�nite.Proof. Let B = {z ∈M : |z| < 1}. The mapping
H : B ∋ z 7→

z

1 − |z|2
∈Mis a di�eomorphism. The inverse of H is of the form

H−1(w) = w
2

1 +
√

1 + 4|w|2
.Moreover, H and H−1 are semi-algebrai and loally bi-Lipshitz homeomor-phisms. Let E = H−1(X), W = H−1(Y ), V = H−1(Z). Then E ∪W ∪ V isa semi-algebrai set, and in onsequene, A = E ∪W ∪V is a ompat semi-algebrai set. By Corollary 2.6, there exists a strati�ation E ∩W =

⋃
Sαsuh that for eah stratum Sα the funtion Sα∩B ∋ z 7→ Lz(E;W,V ) is on-stant, and the number of strata Sα is �nite. Sine X = H(E), Y = H(W ),
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Z = H(V ), X ∩ Y = H(E ∩ W ) =

⋃
H(Sα ∩ B) and H is loally bi-Lipshitz homeomorphism, it follows that for any H(Sα ∩ B) 6= ∅ the map-ping H(Sα ∩B) ∋ x 7→ Lx(X;Y, Z) is onstant. This gives the assertion.By the i-th skeleton of the strati�ation (6) we mean X i =

⋃
dim Sα≤i Sα.The strati�ation (6) of a omplex analyti subset X of a omplex analytimanifold M is alled omplex analyti if all the skeletons X i are omplexanalyti subsets of M. The strati�ation (6) of a omplex algebrai subset

X of a omplex linear spae M is alled omplex algebrai if all the skeletons
X i are omplex algebrai subsets ofM and the number of strata Sα is �nite.Remark 2.8. Parusi«ski (in [28, Theorems 2.4 and 2.6℄) proved thatfor a omplex analyti set X, we may require that the loally Lipshitzstrati�ation (6) is omplex analyti, and for a omplex algebrai set, we mayrequire that the strati�ation is omplex algebrai. Hene, in Corollary 2.6,for omplex analyti sets X, Y, Z, we may require that the strati�ation (13)is omplex analyti, and for omplex algebrai sets X, Y, Z, we may requirethat it is omplex algebrai.Remark 2.9. Let X, Y, Z be losed subanalyti subsets of an open sub-set G ⊂ Rn suh that X ∩ Y ⊂ Z. Under a given loally Lipshitz strati�a-tion

X ∪ Y ∪ Z =
⋃
Sαsuh that X ∩ Y is a union of some strata Sα, for any x0 ∈ X ∩ Y suhthat x0 ∈ X \ Z, we may determine a neighbourhood Ω of x0 on whih theinequality (#) holds for ν = Lx0

(X;Y, Z).Indeed, let Sα1
, . . . , Sαk

be all the strata for whih x0∈Sα. Take any R>0suh that B = B(x0, R) ⊂ G and (X ∪ Y ∪ Z) ∩B = (Sα1
∪ · · · ∪ Sαk

) ∩B.Put Ω = {x ∈ Rn : |x − x0| < R/2}. Under the notation of the proof ofTheorem 1.5, we obtain (1) for ν = Lx0
(X;Y, Z). For x ∈ X suh that

|x − x0| < R/2, we have ̺(x, Y ) = ̺(x, Y ∩ B) and ̺(x, Z) = ̺(x, Z ∩ B).Thus, by (1), we obtain ̺(x, Y ) ≥ C̺(x, Z)Lx0
(X;Y,Z) for x ∈ X ∩Ω.3. �ojasiewiz exponent of a mapping. Let X, Y be losed suban-alyti subsets of M, and let F : X → Y be a subanalyti mapping , i.e. aontinuous mapping with subanalyti graph Γ (F ).From Theorem 1.5 we get (f. [3, Corollary 1℄, [20, Corollary 6.4℄):Corollary 3.1. Let x0 ∈ X, y0 = F (x0), and V = F−1(y0). Thenumber Lx0

(F ) = L(x0,y0)(Γ (F );X × {y0}, V × Y ) is the smallest exponent
ν satisfying (�) for some C > 0 and a neighbourhood Ω of x0.Proof. For any x ∈ X we have ̺(F (x), y0) = ̺((x, F (x)), X × {y0})and ̺(x, V ) = ̺((x, F (x)), V × Y ). So, ondition (�) is equivalent to the



�ojasiewiz exponent of subanalyti sets 257inequality ̺(z,X × {y0}) ≥ C̺(z, V × Y )ν , z ∈ Γ (F ) ∩ ∆, where ∆ is aneighbourhood of (x0, y0). Thus, Theorem 1.5 gives the assertion.The number Lx0
(F ) is alled the �ojasiewiz exponent of F at x0. FromCorollaries 3.1 and 2.6, we immediately obtainCorollary 3.2. Let V = F−1(y0), where y0 ∈ Y . The funtion V ∋

x 7→ Lx(F ) is upper semi-ontinuous.Remark 3.3. Let V = F−1(F (x0)) and let x0 ∈ X \ V . By Corollary 3.1and Theorem 1.5, the exponent Lx0
(F ) is attained on an analyti urve,i.e. for any neighbourhood Ω of x0 there exist C1 > 0 and an analytiurve ϕ : [0, r) → X ∩ Ω suh that ϕ(0) ∈ V , ϕ((0, r)) ⊂ X \ V and

̺(F (ϕ(t)), y0) ≤ C1̺(ϕ(t), V )Lx0
(F ) for t ∈ [0, r). We annot require that

ϕ(0) = x0. Indeed, it su�es to onsider the set X from Example 2.5 andthe projetion map F (x1, x2, x3) = x2.In the remainder of this setion, F : X → Rm is a semi-algebrai mapping,i.e. a ontinuous mapping de�ned on a semi-algebrai set X ⊂ Rn with semi-algebrai graph Γ (F ). We assume that X is losed. Let V = F−1(0).Aording to Corollaries 2.7 and 3.1, the set {Lx(F ) : x ∈ V } is �nite,so we may de�ne a speial regular separation exponent of F ,
L(F ) = max{Lx(F ) : x ∈ V } if V 6= ∅.Additionally, we put L(F ) = 0 if V = ∅.Remark 3.4. (a) Obviously, L(F ) = 0 if and only if for eah onnetedomponent W of X either V ∩W = W or V ∩W = ∅.(b) From the de�nition of L(F ), it follows that if X is a ompat set,then there exists C > 0 suh that |F (x)| ≥ C̺(x, V )L(F ) for x ∈ X.In the onsiderations at in�nity we will use the notion of urves mero-morphi at in�nity instead of analyti urves. A urve ϕ : [a,∞) → Rk,where a ∈ R, is alled meromorphi at in�nity if ϕ is the sum of a Laurentseries of the form

ϕ(t) = αpt
p + αp−1t

p−1 + · · · , αi ∈ Rk, p ∈ Z.If ϕ 6= 0, then we may assume that αp 6= 0. The number p is alled the degreeof ϕ and denoted by degϕ. Additionally, we put deg 0 = −∞.Theorem 3.5. If X \ V is an unbounded set , then for any ν ∈ Q suhthat ν ≥ L(F ), there exists a unique l ∈ Q suh that for some onstant
C > 0,(15) |F (x)|(1 + |x|)l ≥ C̺(x, V )ν for x ∈ X,



258 S. Spodziejaand for some urve ϕ : [a,∞) → X \ V meromorphi at in�nity , with
degϕ>0,(16) |F (ϕ(t))|(1 + |ϕ(t)|)l ≤ C ′̺(ϕ(t), V )ν , t ∈ [a,∞),where C ′ > 0 is a onstant.Proof. For any r > 0, the set {x ∈ X : |x| ≤ r} is ompat, so thereexists Cr > 0 suh that(17) Cr̺(x, V )ν ≤ |F (x)| for x ∈ X, |x| ≤ r.Observe that the set
W = {w ∈ X \ V : ∀x∈X (|w| = |x| ⇒ 2̺(w, V )ν |F (x)| ≥ ̺(x, V )ν |F (w)|)}is unbounded. Indeed, sine X \ V is unbounded, for any su�iently large
r > 0 the set

A = {̺(x, V )ν/|F (x)| : |x| = r ∧ x ∈ X \ V }is nonempty, and A ⊂ (0,∞). Thus, from (17) we get 0 < supA ≤ 1/Cr,and therefore, there exists w ∈ X \ V suh that |w| = r and
̺(w, V )ν

|F (w)|
>

1

2
supA.This implies that w ∈W . In onsequene, W is an unbounded set.Sine ν is a rational number, by Lemma 2.2 and the Tarski�SeidenbergTheorem we onlude that W is a semi-algebrai set. Moreover, W is un-bounded, thus, by the Curve Seletion Lemma at in�nity, there exists a urve

(ϕ,ϕ1) : [a,∞) → Γ (F |W ) meromorphi at in�nity suh that degϕ > 0,
ϕ1 = F (ϕ), degϕ1 ∈ Z. If V 6= ∅, then by Lemma 2.2 we may assume that
̺(ϕ(t), V ) = |ϕ(t) − ψ(t)| for t ∈ [a,∞), where ψ : [a,∞) → V is a urvemeromorphi at in�nity. If V = ∅, we put ψ = ϕ+ 1. Let

l =
ν deg(ϕ− ψ) − degF (ϕ)

degϕ
.Obviously l ∈ Q. Moreover, there exist C ′, C ′′ > 0 and R > 0, where R =

|ϕ(t0)| for some t0, suh that for any t ∈ [a,∞) satisfying |ϕ(t)| > R, wehave(18) 2C ′′ ̺(ϕ(t), V )ν

|F (ϕ(t))|
≤ (1 + |ϕ(t)|)l ≤ C ′ ̺(ϕ(t), V )ν

|F (ϕ(t))|
.Take any x ∈ X \V suh that |x| > R. Sine degϕ > 0, we have |x| = |ϕ(t)|for some t ∈ [a,∞). By the de�nition of W and from (18),(19) C ′′ ̺(x, V )ν

|F (x)|
≤ 2C ′′ ̺(ϕ(t), V )ν

|F (ϕ(t))|
≤ (1 + |ϕ(t)|)l = (1 + |x|)l.Let C = min{C ′′, CR min{1, (1+R)l}}. Then (19) gives (15) for x ∈ X suhthat |x| > R. Sine (1 + |x|)l ≥ min{1, (1 +R)l} for |x| ≤ R, (17) gives (15)



�ojasiewiz exponent of subanalyti sets 259for x ∈ X suh that |x| ≤ R. Summing up, (15) holds in X. Moreover, (16)immediately follows from (18).For any ν ∈ Q suh that ν ≥ L(F ), we denote by l∞(F, ν) the uniquenumber l ∈ Q satisfying (15) and (16) of the assertion of Theorem 3.5. If
ν = L(F ), then for simpliity we write l∞(F ) instead of l∞(F,L(F )).Remark 3.6. In the ase when V is �nite, the �ojasiewiz exponent of
F at in�nity L∞(F ) has been investigated, where

L∞(F ) = sup{ν ∈ R : ∃C,R>0 ∀x∈X (|x| ≥ R⇒ |F (x)| ≥ C|x|ν)}.It is easy to see that, in this ase, we have L∞(F ) = L(F ) − l∞(F ).This exponent has been applied in many problems onerning polynomialmappings (see for instane [5℄�[8℄, [14℄, [16℄, [18℄, [30℄, [31℄, [33℄, [34℄).In the ase of polynomial mappings F : Rn → Rm, estimations fromabove of Lx0
(F ) are very interesting. In the omplex ase this has been done([4℄, [9℄, [10℄, [17℄, [18℄). The real ase is more di�ult. We have the following:Proposition 3.7. Let F = (f1, . . . , fm) : Rn → Rm be a polynomialmapping , FC : Cn → Cm be the omplexi�ation of F , V = F−1(0) and

VC = F−1
C

(0). Then, for any x0 ∈ V ,(20) Lx0
(F ) ≤ Lx0

(FC)Lx0
(VC,R

n).Moreover , if d = max1≤j≤m deg fj > 0, then(21) Lx0
(F ) ≤ dLx0

(WC,R
n),where WC ⊂ Cn is the zero-set of the omplexi�ation of g = f2

1 + · · · + f2
m.Proof. The inequality (20) follows immediately from the de�nition.It is easy to observe that Lx0

(F ) = 1
2Lx0

(g). As the degree of Γ (gC) isequal to 2d, by Theorem 4.2 in [10℄ we obtain Lx0
(gC) ≤ 2d. Hene and from(20) we get (21).Example 3.8. For a polynomial funtion g : Rn → R, and its omplexzero-set WC = g−1

C
(0), the exponent Lx0

(WC,R
n) for x0 ∈ Rn ∩WC an belarge.Indeed, we take the Masser and Philippon example ([17, Example 15℄).Let f1(x) = x2 − xd

1, f2(x) = x3 − xd
2, . . . , fn−1(x) = xn − xd

n−1, fn(x) = xd
n,and g = f2

1 + · · ·+ f2
n, for x = (x1, . . . , xn). Let F = (f1, . . . , fn) : Rn → Rn.Then L0(F ) ≥ dn, and by (21), dn ≤ dL0(WC,R

n), i.e. L0(WC,R
n) ≥ dn−1.4. Remarks on separation of two mappings. Let X,Y, Z be losedsubanalyti sets and let F : X → Y and g : X → Z be subanalyti mappings,

x0 ∈ X, y0 = F (x0), V = F−1(y0) ⊂ g−1(z0), where z0 ∈ Z. From Theorem1.5 and Corollary 2.6, we easily obtain



260 S. SpodziejaCorollary 4.1. Lx0
(F/g) = L(x0,y0,z0)(Γ (F, g);X × {y0} × Z,X × Y

× {z0}) is the smallest exponent ν satisfying (LT) for some C > 0 anda neighbourhood Ω of x0. Moreover , the funtion V ∋ x 7→ Lx(F/g) is uppersemi-ontinuous.Remark 4.2. If g−1(z0) ∩Ω = V ∩Ω for some neighbourhood Ω of x0,then Lx0
(F ) ≤ Lx0

(F/g)Lx0
(g).Indeed, ̺N (F (x), y0) ≥ D̺N (g(x), z0)

Lx0
(F/g) ≥ D′̺(x, V )Lx0

(F/g)Lx0
(g)in a neighbourhood of x0 for some onstants D,D′ > 0.Remark 4.3. Let F : M → Rk and g : M → Rm be analyti mappings,

V = F−1(0) ⊂ g−1(0), and let x0 ∈ V .(a) We have Lx0
(F ) ≥ Lx0

(F/g). Indeed, g is a loally Lipshitz mapping,so |g(x)|Lx0
(F ) ≤ C̺(x, g−1(0))Lx0

(F ) ≤ C̺(x, V )Lx0
(F ) ≤ C ′|F (x)| in aneighbourhood of x0 for some C,C ′ > 0.(b) If x0 is a smooth point of V , then Lx0

(F/g) = Lx0
(F ), provided theomponents of g generate the ideal of the germ of V at x0. In partiular

Lx0
(F ) = suph Lx0

(F/h), where h runs through all analyti mappings suhthat V ∩Ω ⊂ h−1(0) for some neighbourhood Ω of x0. Indeed, it is easy tosee that Lx0
(g) = 1, and then (a) and Remark 4.2 give the assertion.() If x0 is a singular point of V , then we an require neither Lx0

(F ) =
suph Lx0

(F/h) nor Lx0
(F ) > suph Lx0

(F/h).Indeed, for F (x, y) = xy, (x, y) ∈ R2, we have L0(F ) = 2. Moreover,for any nonzero analyti mapping h suh that h(x, y) = 0 for xy = 0 in aneighbourhood of 0, we have |h(x, y)| = |F (x, y)| |h1(x, y)|, where h1 is ananalyti mapping. Thus, L0(F/h) ≤ 1 < 2 = L0(F ).On the other hand, for F (x, y, z) = (x2, yz) and g(x, y, z) = (x, yz), wehave V = F−1(0, 0) = ({0} × R × {0}) ∪ ({0, 0} × R), and in the poly-ylindri norm, ̺((x, y, z), V ) = min{max{|x|, |y|}, max{|x|, |z|}}. Then weeasily dedue that L0(F ) = 2 = L0(F/g).Let F : X → Rk and g : X → Rm be semi-algebrai mappings, V =
F−1(0), and let V ⊂ g−1(0). By Corollaries 2.7 and 4.1, the set {Lx(F/g) :
x ∈ V } is �nite. Then we may de�ne

L(F/g) = max{Lx(F/g) : x ∈ V } if V 6= ∅.Additionally we put L(F/g) = 0 if V = ∅.Remark 4.4. (a) Obviously, L(F/g) = 0 if and only if for eah on-neted omponent W of X either W ⊂ g−1(0) or V ∩W = ∅.(b) From the de�nition of L(F/g) it follows that if X is a ompat set,then there exists C > 0 suh that |F (x)| ≥ C|g(x)|L(F/g) for x ∈ X.Repeating the proof of Theorem 3.5 (by onsidering |g(x)| instead of
̺(x, V )) we obtain



�ojasiewiz exponent of subanalyti sets 261Theorem 4.5. If X \ V is an unbounded set , then for any ν ∈ Q suhthat ν ≥ L(F/g), there exists a unique l ∈ Q suh that for some onstant
C > 0,(22) |F (x)|(1 + |x|)l ≥ C|g(x)|ν for any z ∈ X,and for some urve ϕ : [r,∞)→X\V meromorphi at in�nity , with degϕ> 0,(23) |F (ϕ(t))|(1 + |ϕ(t)|)l ≤ C ′|g(ϕ(t))|ν, t ∈ [r,∞),where C ′ > 0 is a onstant.For any ν ∈ Q suh that ν ≥ L(F/g), the unique number l ∈ Q satisfyingthe assertion of Theorem 4.5 is denoted by l∞(F/g, ν). If ν = L(F/g), then,for simpliity, we write l∞(F/g).In the ase of polynomial mappings F : Rn → Rk and g : Rn → Rm, wehave the following onnetion between l∞(F/g, ν), l∞(F, ν) and L(F ).Corollary 4.6. Let g1, . . . , gm be the omponents of g, and d =
max1≤j≤m deg gj. If V 6= ∅ and d > 0, then(24) l∞(F/g, ν) ≤ l∞(F, ν) + (d− 1)ν for any ν ∈ Q, ν ≥ L(F ).The proof will be preeded by a lemma.Lemma 4.7. Let h ∈ R[x1, . . . , xn], d = deg h > 0, and S = h−1(0). If
S 6= ∅, then there exists C > 0 suh that C|h(x)| ≤ ̺(x, S)(1 + |x|d−1) forany x ∈ Rn.Proof. It is well known that there exist polynomials h1, . . . , hn ∈ R[x, y],where x = (x1, . . . , xn), y = (y1, . . . , yn), suh that deg h1, . . . ,deg hn ≤ d−1and(25) h(x) − h(y) =

n∑

j=1

(xj − yj)hj(x, y).Let z ∈ S. Then there exists D > 0 suh that for any j = 1, . . . , n,(26) |hj(x, y)| ≤ D(1 + |x|d−1) for x, y ∈ Rn suh that |y| ≤ |z| + 2|x|.Take any x ∈ Rn, and let y ∈ S be suh that ̺(x, S) = |x − y|. Sine
̺(x, S) ≤ |x− z|, we have |y| ≤ |z| + 2|x|. So, by (25) and (26),

|h(x)| ≤
n∑

j=1

|xi − yj | |hj(x, y)| ≤ n|x− y|D(1 + |x|d−1).

Then, for C = 1/nD, we obtain the assertion.Proof of Corollary 4.6. By Lemma 4.7, there exists C1 > 0 suh that(27) C1|g(x)| ≤ ̺(x, V )(1 + |x|d−1) for x ∈ Rn.



262 S. SpodziejaThen for ν ∈ Q with ν ≥ L(F ), by Theorem 3.5, there exists C2 > 0 suhthat
Cν

1C2|g(x)|
ν ≤ C2̺(x, V )ν(1 + |x|d−1)ν ≤ |F (x)|(1 + |x|)l∞(F,ν)(1 + |x|d−1)νfor any x ∈ Rn. Hene, by Theorem 4.5, we easily obtain (24).Aknowledgements. I am deeply grateful to Jaek Ch¡dzy«ski,Tadeusz Krasi«ski and Tadeusz Mostowski for their valuable omments andadvie.
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