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Redu
tion of semialgebrai
 
onstru
tible fun
tionsby Ludwig Bröcker (Münster)In memory of Stanisªaw �ojasiewi
z (1926�2002)Abstra
t. Let R be a real 
losed �eld with a real valuation v. A Z-valued semial-gebrai
 fun
tion on Rn is 
alled algebrai
 if it 
an be written as the sign of a symmetri
bilinear form over R[X1, . . . , Xn]. We show that the redu
tion of su
h a fun
tion withrespe
t to v is again algebrai
 on the residue �eld. This implies a 
orresponding result forlimits of algebrai
 fun
tions in de�nable families.Introdu
tion. One of the most fundamental results in real algebrai
geometry is the theorem of Tarski�Seidenberg, stating that if S ⊂ R
n issemialgebrai
 and f : R

n → R
k is a polynomial map, then f(S) is alsosemialgebrai
.However, if S is algebrai
, then in general f(S) is no longer so. Thesimplest example is where S = {x ∈ R

2 | x2
1 + x2

2 = 1}, the unit 
ir
le in
R

2, and f is the proje
tion onto the �rst 
oordinate in R
2. Then f(S) isthe unit ball {x ∈ R | x2 ≤ 1} in R whi
h is obviously not algebrai
. Sothe 
onsideration of images is too rough in order to save information on thealgebrai
ity of S.Also, let ϕ : R

n → Z be a 
onstru
tible fun
tion, that is, ϕ(Rn) is �niteand ϕ−1(z) is semialgebrai
 for all z ∈ Z. Let again f : R
n → R

k be apolynomial map. It is not a priori 
lear how to de�ne the image fun
tion
f∗ϕ : R

k → Z, but it turns out that a well behaved de�nition is
f∗ϕ(x) =

\
f−1(x)

ϕdχ,

where the right hand side is the so-
alled Euler integral, to be explained inSe
tion 1. This extension of the 
lassi
al Euler 
hara
teristi
 to 
onstru
tiblefun
tions appeared in many 
ontexts.2000 Mathemati
s Subje
t Classi�
ation: 14P10, 12J25, 28A25.Key words and phrases: limits of semialgebrai
 fun
tions, redu
tion with respe
t to avaluation, Euler integral. [27℄



28 L. Brö
kerNow let ϕ = 1S where S is algebrai
. Then f∗ϕ is algebrai
 in the follow-ing sense. There exist �nitely many polynomials f1, . . . , fm ∈ R[X1, . . .Xk]su
h that f∗ϕ(x) = sign f1(x)+· · ·+sign fm(x) for all x ∈ R
k. In the examplewhere S is the unit 
ir
le in R

2, we have f∗ϕ(x) = 2 for x2 < 1, f∗ϕ(x) = 1for x2 = 1 and f∗ϕ(x) = 0 for x2 > 1. Thus f∗ϕ = sign f1 + sign f2 for
f1 = 1 −X2 and f2 ≡ 1.More generally, a beautiful theorem of Parusi«ski�Szafranie
 [P-S℄ statesthat if ϕ : R

n → Z is algebrai
, then so is f∗ϕ.We will show a 
orresponding result for limits in semialgebrai
 families,where one has a similar situation:Let S ⊂ R
n × R

k be semialgebrai
. For t ∈ R
k let St := S ∩ R

n × {t}.Let (tm) ∈ R
k be a sequen
e su
h that (Stn) tends to T in the Hausdor�sense. It is known that T is again semialgebrai
 [Br1℄, [Br2℄, whi
h holds
orrespondingly in the o-minimal 
ontext [L-S℄, [vdD1℄, [vdD2℄. Again, if Sis algebrai
, this need not be the 
ase for T .For instan
e, 
onsider the family of ellipses Et ⊂ R

2 where
Et = {x ∈ R

2 | x2
1 + t2x2

2 = 1},and let (tn) → ∞. Then (Etn) → {x ∈ R
2 | x2

1 ≤ 1, x2 = 0}, whi
h is notalgebrai
.So again, Hausdor� limits are not appropriate. In Se
tion 6 we will in-trodu
e a di�erent kind of 
onvergen
e using lo
al Euler integrals, whi
hextends to 
onstru
tible fun
tions. Then we will show that the limit of asequen
e of 
onstru
tible fun
tions in an algebrai
 family is again algebrai
(Theorem 6.4). The main ingredient is our Theorem 5.1 whi
h expresses thesituation in terms of valuations and redu
tion maps.
1. Euler integral. Let R be a real 
losed �eld and let ω be the 
lass ofall semialgebrai
 sets S ⊂ Rn for some n. A fun
tion ϕ : Rn → Z is 
alled
onstru
tible if the range of ϕ is �nite and ϕ−1(z) is semialgebrai
 for all

z ∈ Z.For any semialgebrai
 set S ⊂ Rn the Euler 
hara
teristi
 (with 
ompa
tsupports) χ(S) is de�ned. If S is semialgebrai
ally isomorphi
 to an open
d-
ell, then χ(S) = (−1)d. For arbitrary S, this allows us to 
ompute χ(S)from a 
ell de
omposition, whi
h always exists, and it turns out that the
omputation of χ(S) does not depend on the de
omposition. One 
an extendthe Euler 
hara
teristi
 to 
onstru
tible fun
tions as follows (
ompare [V℄).Let ϕ =

∑
ai1Si

where the sum is �nite, ai ∈ Z and Rn ⊃ Si is semialgebrai
.Then χ(ϕ) :=
∑
aiχ(Si). Again, this is independent of the representationof ϕ.
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tions 29One also writes
χ(ϕ) =

\
ϕdχ =

\
Rn

ϕ(x) dχ(x),and if T ⊂ Rn is semialgebrai
, then\
T

ϕdχ :=
\

Rn

1T · ϕdχ;this is 
alled Euler integration. This name is justi�ed by the following rules:(i) If ϕ, ψ : Rn → Z are 
onstru
tible, then T(ϕ+ψ)dχ =
T
ϕdχ+

T
ψdχ.(ii) If, moreover, f : Rn → Rm is a 
ontinuous semialgebrai
 map, then\

Rn

ϕ(x) dχ(x) =
\

Rm

( \
f−1(y)

ϕ(x) dχ(x)
)
dχ(y)

(Fubini�Cavalieri).In the situation of (ii) we de�ne f∗ϕ : Rm → Z, y 7→
T
f−1(y) ϕ(x) dχ(x).Thus \

Rn

ϕ(x) dχ(x) =
\

Rm

f∗ϕ(y) dχ(y).

2. Algebrai
 fun
tions. Again, let R be a real 
losed �eld.Definition 2.1. A 
onstru
tible fun
tion ϕ : Rn → Z is 
alled algebrai
if there are �nitely many polynomials p1, . . . , pk ∈ R[X], X = (X1, . . . , Xn),su
h that ϕ(x) = sign(p1(x)) + · · · + sign(pn(x)) for all x ∈ Rn.Example 2.2. Let V ⊂ Rn be a real algebrai
 set. Then 1V is algebrai
.In fa
t, there is a positive polynomial p for V , that is, p(x) > 0 for x /∈ Vand p(x) = 0 for x ∈ V . Now 1V = sign(1) + sign(−p).Remark 2.3. Let ϕ, ψ : Rn → Z be algebrai
. Then(a) ϕ+ ψ and ϕ · ψ are algebrai
.(b) Let V ⊂ Rn be an algebrai
 subset. Then ζ is algebrai
, where ζ(x) =
ϕ(x) for x /∈ V and ζ(x) = ψ(x) for x ∈ V .(
) Let S be a symmetri
 n× n matrix with 
oe�
ients in R[X]. Then
x 7→ signx S (signature of S at x) is algebrai
.Here (a) is obvious, (b) follows easily from (a) and Example 2.2, and (
)follows from (b) by indu
tion on the dimension, sin
e we 
an diagonalize Sover fun
tion �elds, that is, up to algebrai
 sets of smaller dimensions.The fundamental property of algebrai
 fun
tions is (see [P-S℄):Theorem 2.4 (Parusi«ski�Szafranie
). Let f : Rn → Rm be a polyno-mial map. If ϕ : Rn → Z is algebrai
, then so is f∗ϕ : Rm → Z.



30 L. Brö
kerWe are going to show a 
orresponding result for redu
tion maps. Thisrequires more preparations (for more details see [B-C-R, Chap. 7℄, [A-B-R,Chap. 2℄):Let V = Spec(A) be an algebrai
 variety over R. Then Hom(A,R) =
V (R) is the variety of 
losed real points in V . We extend V (R) = Hom(A,R)to the spa
e Specr(A) = {α : A → Rα}/∼ 
alled the real spe
trum of A,where Rα is real 
losed, α is a homomorphism and ∼ is generated by 
om-mutative triangles

A
α - Rα

@
@

@
@

@
β

R
�

�
�

�
�

��

RβFrom the model 
ompleteness of the theory of real 
losed �elds it is 
learthat elementary obje
ts and properties in V (R) and Specr(A) 
orrespondto ea
h other. For instan
e, a 
onstru
tible (algebrai
) fun
tion ϕ on V (R)extends uniquely to a 
onstru
tible (algebrai
) fun
tion ϕ̃ on Specr(A).Let α ∈ Specr(A). Then Ker(α) =: supp(α) (support of α) is a primeideal of A. We de�ne dim(α) := dim(A/supp(α)). One de�nes Specr(A)
orrespondingly for any 
ommutative ring with unit, and also 
onstru
tibleand algebrai
 fun
tions. For instan
e, if A = K is a �eld, then Specr(K) isthe spa
e of all orderings of K. The representation theorem [Be-Br℄ providesa 
riterion for the algebrai
ity of a 
onstru
tible fun
tion ϕ : Specr(K) → Z.For general A one has
Specr(A) =

⋃

p∈Spec(A)

Specr(k(p))

where k(p) is the residue �eld of p ∈ Spec(A). This allows us to redu
equestions about V (R), via Specr(A), to features and tools of the real algebraof �elds. We will follow this path in the next se
tions.
3. The redu
tion map. Throughout this se
tion we �x a real 
losed�eld R together with a real valuation v : R → Γ ∪∞, where Γ is the valuegroup. We denote by B ⊂ R the valuation ring, by m the maximal ideal andby R the residue �eld. Note that v is henselian, Γ is divisible and R is againreal 
losed. The residue map ̺ : B → R, b 7→ ̺(b) =: b, admits a se
tion

σ : R → B whi
h we �x in the following. So we 
onsider R as a sub�eld of
R. We denote by ̺ also the map Bn → Rn, xi 7→ ̺(xi), i = 1, . . . , n. Onehas [Br1, Th. 1.7℄
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onstru
tible fun
tions 31Proposition 3.1. Let S ⊂ Bn be de�nable in the language of valuedordered �elds. Then ̺(S) ⊂ Rn is semialgebrai
.Again, we want to extend ̺ to 
onstru
tible fun
tions. For this, let ϕ :
Rn → Z be 
onstru
tible, as in Se
tion 1, and let a ∈ Bn. For λ ∈ R, λ > 0let

D(a, λ) := {x ∈ Rn | (a− x)i < λ for i = 1, . . . , n}and
χ(a, λ)(ϕ) :=

\
D(a,λ)

ϕdχ.

The map ]0,∞[ → Z, λ 7→ χ(a, λ)(ϕ), is 
onstru
tible. Hen
e there exist
0 < λ1 < λ2, λ1 ∈ m, λ2 ∈ B \ m, su
h that χ(a, λ)(ϕ) is 
onstant on
]λ1, λ2[, so we de�ne

χ(a,m)(ϕ) :=
\

̺−1(a)

ϕdχ :=
\

D(a,λ)

ϕdχ

for λ ∈ ]λ1, λ2[ and a = ̺(a). Then we getProposition 3.2. Let ϕ : Rn → Z be 
onstru
tible. Then so is ̺∗ϕ :
Rn → Z, where for a ∈ Rn,

̺∗ϕ(a) :=
\

̺−1(a)

ϕdχ.

Proof. For all z ∈ Z the set {a ∈ Bn | χ(a,m)(ϕ) = z} =: e(z, ϕ) isde�nable in the language of valued �elds. By Hardt's theorem [Ha℄ it is also
lear that χ(a,m)(ϕ) is bounded for �xed ϕ and a ∈ Bn. So we 
an write
χ(a,m)(ϕ) =

∑
zi1e(zi,ϕ)where the sum is �nite. Clearly every fun
tion 1e(zi,ϕ) is 
onstant on the�bers of ̺. Hen
e

̺∗ϕ =
∑

zi1̺(e(zi,ϕ)),whi
h by Proposition 3.1 is 
onstru
tible.4. The redu
tion map on the real spe
trum. In Se
tion 2 we sawthat to every 
onstru
tible fun
tion ϕ : Rn → Z there 
orresponds a 
on-stru
tible fun
tion ϕ̃ : Specr(A) → Z, where A = R[X1, . . . , Xn]. If, inparti
ular, S is semialgebrai
 and ϕ = 1S then ϕ̃ = 1
S̃
, the 
onstru
tible set

S̃ ⊂ Specr(A) being de�ned by the same equations as S. The set Bn ⊂ Rnis not semialgebrai
. Nevertheless, we de�ne
B̃n = {α ∈ Specr(A) | ∀f ∈ A with α(f) > 0 ∃x ∈ Bn with f(x) > 0}.



32 L. Brö
kerWe are going to study a redu
tion
˜̺ : B̃n → Specr(A),where A = R[X1, . . . , Xn]. The 
onstru
tions and results below are takenfrom [Br1, �3℄. Let α ∈ B̃n. Re
all that α 
orresponds to an ultra�lter,say ϕ(α), of semialgebrai
 sets in Rn. Then the sets ̺(S ∩ Bn | S ∈ ϕ(α))generate a unique ultra�lter ϕ′ of semialgebrai
 sets in Rn. So we de�ne ˜̺(α)to be the 
orresponding element in Specr(A), that is, ϕ′ = ϕ(˜̺(α)).Now let V ⊂ Rn be a 
losed integral algebrai
 subvariety with dim(V )

= k, and let V1, . . . , Vr be the irredu
ible 
omponents of clz ̺(V ∩Bn) (where
clz denotes the Zariski 
losure), for whi
h dimVi = k. For ea
h i = 1, . . . , r weshall de�ne a set vij of valuations of R(V ) whi
h extend the given valuation
v on R in a natural way. For this let

B[V ] := {f + I(V ) ∈ R[V ] | f ∈ B(X)}and
pi := {f + I(V ) ∈ R[V ] | f ∈ B[X] and f(x) = 0 ∀x ∈ Vi}.Here X = (X1, . . . , Xn), x = (x1, . . . , xn) and f is the 
omponentwise re-du
tion of f . Then pi is a prime ideal in B[V ] and B[V ]/pi ≃ R[Vi]. Let

Ai = B[V ]pi
and Ã the integral 
losure of Ai in R(V ). In general, Ai 6= Ãiand also Ãi is possibly not a valuation ring in R(V ). However, one hasProposition 4.1. Under the above notations, Ãi is semilo
al with max-imal ideals mij, j = 1, . . . , s(i), where mij ∩ B[V ] = pi. The lo
alization

(Ãi)mij
is the valuation ring of a valuation vij of R(V ) extending v. Theresidue �eld of vij is a �nite extension of R(Vi) and the value group of vijis divisible for j = 1, . . . , s(i).Quite generally, an ordering α of a �eld K is 
alled 
ompatible with avaluation v of K if the valuation ring of v is 
onvex with respe
t to α.In that 
ase α indu
es an ordering v(α) on the residue �eld. With thesenotations we have moreover:Proposition 4.2. The ordering α ∈ Specr(R(V )) is 
ompatible withone of the valuations vij if and only if α ∈ B̃n and dim(˜̺(α)) = dim(α) =

dim(V ). In that 
ase ˜̺(α) ∈ Specr(R(Vi)) and vij(α) extends ˜̺(α).Finally, in the above situation, we would like to have some information onthe number of those α ∈ Specr(R(V )) for whi
h ˜̺(α) = α ∈ Specr(R(Vi)).Here we haveProposition 4.3. Under the above notations, for i = 1, . . . , r thereexists a nondegenerate quadrati
 form ϕi over R(Vi) su
h that for all α ∈
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Specr(R(Vi)) one has

#{α ∈ Specr(R(V )) | ˜̺(α) = α} = signα(ϕi).In fa
t , ϕi is the tra
e form of Ãi/piÃi over R(Vi).More generally, let g ∈ B[V ] and for x, y ∈ Ãi/piÃi let ϕi(g)(x, y) :=

tr gxy, where tr is again the tra
e of Ãi/piÃi over R(Vi).Proposition 4.4. For α ∈ Specr(R(Vi)) one has
signα(ϕi(g)) = #{α ∈ Specr(R(V )) | ˜̺(α) = α, α(g) > 0}

− #{α ∈ Specr(R(V )) | ˜̺(α) = α, α(g) < 0}.Remark 4.5. Propositions 4.3 and 4.4 also hold if V is not ne
essarilyintegral, but merely redu
ed. Consider the following situation: W ⊂ Rn isan irredu
ible variety. If we �x a se
tion R →֒ R, then W 
orresponds toa subvariety W , again irredu
ible, of Rn. Consider R ×W ⊂ Rn (possiblyrepla
e n by n+1), let f ∈ R[R×W ] and let V = Z(f) be the zero set of f .Assume that W 
oin
ides with one of the Vi, say W = V1. Assume further,for simpli
ity, that f , regarded as a polynomial over R(W ), is separable. Nowlet α ∈ Specr(R(W )). There is a unique α ∈ Specr(R(W )) with ˜̺(α) = α.Consider the 
orresponding real 
losed �eld Rα ⊃ R(W ) and the valuationring Bα ⊂ Rα where
Bα = {x ∈ Rα | ∃b ∈ B : x ≤ b}.Also let mα be the 
orresponding maximal ideal. Then the zeros of f in Bα
orrespond to those α ∈ Specr(R(V )) whi
h are 
ompatible with a valuation

vij and for whi
h ˜̺(α) = α. Moreover, α ∈ mα if and only if α is 
ompatiblewith a valuation v1j .5. Redu
tion of algebrai
 fun
tions. In this se
tion we show ourmain result:Theorem 5.1. Let ϕ : Rn → Z be algebrai
. Then so is ̺∗ϕ : Rn → Z.Here we use the notations of Se
tion 3. For the proof we will need severalsteps and the lemma below whi
h is essentially [P-S, Lemma 6℄, but note thatunlike that arti
le we always 
onsider the Euler 
hara
teristi
 with 
ompa
tsupports.Lemma 5.2. Let R be a real 
losed �eld , a < b ∈ R and f = adX
d + · · ·

+a0, ad 6= 0, a polynomial su
h that f(a), f(b) 6= 0. Moreover , for 2 ≤ k ≤ dlet
Vk := {x ∈ R | f(x) = · · · = f (k−1)(x) = 0}and

Zk,a,b :=
∑

x∈Vk, a<x<b

sign(f (k)(x)).
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kerThen \
]a,b[

sign(f)dχ = −
1

2
(sign(f(a)) + sign(f(b))) −

∑

2≤2k≤d

Z2k,a,b.Proof of Theorem 5.1. First of all, we may assume that ϕ(x) = sign(f(x))for all x ∈ Rn, where f is a polynomial ∈ R[X1, . . . , Xn].1. Without 
hanging ϕ = sign(f) we may assume that f ∈ B[X1, . . . , Xn],but f /∈ m[X1, . . . , Xn]. Let f ∈ R[X1, . . . , Xn] be the 
omponentwise redu
-tion of f , so f 6= 0. Clearly, ̺∗ϕ(y) = sign f(y) for all those y ∈ Rn for whi
h
f(y) 6= 0. In other words, ̺∗ϕ is algebrai
 up to a set of smaller dimension.2. Now let W ′ ⊂ Rn be an algebrai
 variety su
h that the following hold:

• There is an algebrai
 fun
tion ϕ′ : Rn → Z with ̺∗ϕ = ϕ′ on Rn\W ′.
• W ′ is of minimal dimension and has a minimal number of 
omponentssubje
t to the above property.We want to show that W ′ = ∅. Assume W ′ 6= ∅. So let W be a 
omponentof W ′ with dimW = dimW ′. We will show3. ̺∗ϕ is generi
ally algebrai
 on W (algebrai
 up to a set of smallerdimension). By Remark 2.3 this would 
ontradi
t W ′ 6= ∅. As before, we �xa se
tion R →֒ B. Thus W 
orresponds to a subvariety W of Rn. Let N bethe normal bundle of W in Rn:

N = {(x, a) | x ∈ Rn, a ∈W, x⊥ TaW}.Here TaW is the tangent spa
e of W at a. (If a is a singular point, then
TaW = Rn.) Similarly, we have

N = {(y, b) | y ∈ Rn, b ∈W, y ⊥ TbW}.Let r : W → R be a polynomial map su
h that r(b) > 0 if b is nonsingularand r(b) = 0 if b is singular. Let
U r := {(y, b) ∈ N | 〈y, y〉 < r(b)},

Ur := {(x, a) ∈ N | 〈x, x〉 < r(a)},where 〈 , 〉 denotes the usual s
alar produ
t and where, by the identi�
ationof R with a sub�eld of R, we may 
onsider r as a polynomial map r on W .Let
π : N → Rn, (x, a) 7→ x+ a,

π : N → Rn, (y, b) 7→ y + b.We may 
hoose r in su
h a way that π and π map U = Ur (and U = Ur)isomorphi
ally onto a neighbourhood of Wreg (and W reg respe
tively). Wehave
r∗ϕ(y) =

\
r−1(y)

ϕdχ =
\

π−1r−1(y)∩U

π∗ϕdχ for y ∈W.
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tions 35Next, 
onsider the map
d : N → R×W, (x, a) 7→ (〈x, x〉, a).By [P-S℄ (
f. Theorem 2.4) the fun
tion d∗π

∗ϕ is algebrai
. Therefore, weare redu
ed to the situation that ϕ lives on R×W , and it remains to showthat r∗ϕ is generi
ally algebrai
 on W .4. As before, we also 
onsider R×W . We may assume that ϕ = sign(f)with f ∈ R[W ][X]. Sin
e we need only show that r∗ϕ is generi
ally algebrai
on W , instead of looking at real points on W we look at orderings α ∈
Specr(R(W )), that is, we will show that r∼∗ ϕ| Spec(R(W )) is algebrai
. Asin step 1 we take f to be de�ned over B but with 
oe�
ients not all in m,and 
onsider f ∈ R[W ][X]. We write f = Xkg su
h that g does not vanishidenti
ally on W . If f = g, then r∗ϕ = sign(g) on W , up to a set of smallerdimension. So, in this 
ase, we are done. Now, if k > 0, 
onsider an ordering
α ∈ Specr(R(W )). Re
all the situation of Remark 4.5. There is a uniqueordering α ∈ Specr(R(W )) su
h that ˜̺(α) = α. Consider the �eld Rα ⊃ Rand its valuation ring

Bα := {x ∈ Rα | ∃b ∈ B : x ≤ b}.Let mα be the 
orresponding maximal ideal. Let f = f1f
2
2 , where f1, f2are mutually prime and square free (as elements of R(W )[X]). With thesenotations we have

(−1)dim(W )̺∼∗ ϕ(α) =
\

mα

sign(f1) dχ− #{x ∈ mα | f2(x) = 0}.By Proposition 4.3 and Remark 4.5 the se
ond summand is algebrai
 on
Specr(R(W )). For the �rst summand, we assume that f = f1 and write
f = Xkg as above. Then, by Lemma 5.2,\

mα

sign(f) dχ = −g(α) −
∑

2≤2k≤deg(f)

Z2k,α,where
Zi,α :=

∑

x∈mα∩Vk,α

sign(f (i)(x)),

Vk,α := {x ∈ Rα | f(x) = · · · = f (k−1)(x) = 0}.Now 
learly g(α) is algebrai
 on Specr(R(W )) and by Proposition 4.4 andRemark 4.5 this also holds for the fun
tions α 7→ Z2k,α.6. Limits. For x ∈ R
n and r ∈ R, r > 0, let Bn(x, r) := {y ∈ R

n |
‖y − x‖ < r}, where ‖ ‖ denotes the eu
lidean norm.Notation 6.1. For a 
onstru
tible fun
tion ϕ : R

n → Z we denote by
ϕ̂ : R

n → Z the fun
tion
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x 7→ lim

r→0

\
Bn(x,r)

ϕdχ.

Clearly, ϕ̂ is again 
onstru
tible. Moreover, it is well known that ̂̂ϕ = ϕ (see[Br3℄) and if ϕ is algebrai
, then so is ϕ̂. The latter follows, for instan
e,from [P-S℄ and Hardt's Theorem [Ha℄ (see also [MC-P℄). Now let (ϕm)m∈Nbe a sequen
e of 
onstru
tible fun
tions ϕm : R
n → Z.Definition 6.2. We say that (ϕm) tends to ψ : R

n → Z and write
(ϕm) → ψ if for all x ∈ R

n one has
ψ̂(x) = lim

r→0
lim

m→∞

\
Bn(x,p)

ϕm dχ.

For 
hara
teristi
 fun
tions of 
losed 
onvex sets this is the same as Haus-dor� 
onvergen
e, but in general, this is not true.Example 6.3. Consider the sequen
e of ellipses
Em = {x ∈ R

2 | x2
1 +m2x2

2 = 1},whi
h get more and more �at for in
reasing m. The Hausdor� limit of (Em)is the interval I = {x ∈ R
2 | x2

1 ≤ 1, x2 = 0}. Now let ϕm = 1Em
. Then

(ϕm) → ψ where
ψ(x) =





2 for x2
1 < 1, x2 = 0,

1 for x2
1 = 1, x2 = 0,

0 else.Note that the ϕm are algebrai
 and so is ψ, but 1I is not algebrai
. This isa spe
ial 
ase of a general result.Consider R
n+k = R

n × R
k as a family of spa
es R

n with parametersin R
k. We denote the variables in R

n by X = (X1, . . . , Xn) and those in
R

k by T = (T1, . . . , Tk). For t ∈ R
k let R

n
t := R

n × {t} ⊂ R
n+k. Nowlet ϕ : R

n × R
k → Z be 
onstru
tible. Again we 
onsider ϕ as a family

{ϕt | t ∈ R
k} of 
onstru
tible fun
tions R

n → Z where ϕt(x) := ϕ(x, t).More generally, let α ∈ Specr(R[T ]). Re
all that we may represent α by ahomomorphism α : R[T ] → Rα where R ⊂ Rα is a real 
losed �eld. By model
ompleteness of the theory of real 
losed �elds, ϕ indu
es a 
onstru
tiblefun
tion ϕα : Rn
α → Z.It may be helpful to �visualize� this. It is well known and used before thatto α there 
orresponds an ultra�lter A of semialgebrai
 sets S ⊂ R

n. Then
Rα is represented by semialgebrai
 fun
tions f̃ : S → R for S ∈ A where twosu
h fun
tions f̃ and g̃ are identi�ed if they 
oin
ide on some T ∈ A. Now,
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tible fun
tions 37given ϕ : R
n × R

k → Z it is 
lear that ϕ assigns eventually a well de�nedvalue to an n-tuple f = (f1, . . . , fn) ∈ Rn
α.The 
anoni
al valuation ring Bα of Rα is represented by those f̃ whi
hare bounded on some T ∈ A, and the maximal ideal mα by those f̃ whi
hare arbitrarily small on some T ∈ A. We may also write

Bα = {f ∈ Rα | ∃r ∈ R : |f | ≤ r},

mα = {f ∈ Rα | ∀r ∈ R, r > 0 : |f | ≤ r}.Note that the residue �eld is isomorphi
 to R.Now let (tm) be a sequen
e in R
k. Then we get a sequen
e (ϕm) := (ϕtm)of 
onstru
tible fun
tions ϕm : R

n → Z. So this is a sequen
e of 
onstru
tiblefun
tions in the family R
n × R

k. In this situation we haveTheorem 6.4.(a) There is an element α ∈ Specr(R[T ]) with 
orresponding ultra�lter
A su
h that for all semialgebrai
 sets S ∈ A one has tm ∈ S forin�nitely many m.(b) Assume that (ϕm) → ψ and let α be as in (a). Then ψ̂ = ̺∗ϕα, where
̺ is the redu
tion map a

ording to the real 
losed �eld Rα with thevaluation ring Bα. In parti
ular , ψ is 
onstru
tible.(
) If ϕ is algebrai
, then so is ψ.Proof. (a) The 
olle
tion of all semialgebrai
 sets S ⊂ R

k for whi
h
tm ∈ S for almost all m ∈ Z forms a �lter F . Let A ⊃ F be any ultra�lterof semialgebrai
 sets in R

k and α the 
orresponding element in Specr(R[T ]).Then 
learly α has the required property.(b) Let x ∈ R
n and f ∈ Rα. Then f − x ∈ mα if and only if for all

r > 0, all S ∈ A and all representatives f̃i : S → R for fi there exists T ⊂ Swith T ∈ A su
h that f̃(t) ∈ B(x, r) for all t ∈ T . In parti
ular, there arein�nitely many tm su
h that f̃(tm) ∈ B(x, r). We have
̺∗ϕ(x) =

\
f−x∈mα

ϕα(f) dχ.We may 
ompute the right hand side by a �nite pro
edure, say, a 
ell de-
omposition whi
h still works on representatives de�ned over some T ∈ A. Ifwe spe
ialize the 
omputation at some t ∈ T we get the same value ̺∗ϕ(x)for the Euler integral on the one hand, but on the other hand, sin
e thereare in�nitely many tm ∈ T for all T ∈ A we get the value
lim
r→0

lim
m→∞

\
Bn(x,r)

ϕm dχ.Thus ̺∗ϕ(x) = ψ̂(x).(
) This follows from (b) and Theorem 5.1.
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kerRemark 6.5. In the pre
eding theorem, the statement that the limit ψof the sequen
e ϕn is again 
onstru
tible should also be true in the o-minimal
ontext.
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