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Reduction of semialgebraic constructible functions
by LupwiG BROCKER (Miinster)

In memory of Stanistaw Lojasiewicz (1926-2002)

Abstract. Let R be a real closed field with a real valuation v. A Z-valued semial-
gebraic function on R" is called algebraic if it can be written as the sign of a symmetric
bilinear form over R[Xi,...,X,]. We show that the reduction of such a function with
respect to v is again algebraic on the residue field. This implies a corresponding result for
limits of algebraic functions in definable families.

Introduction. One of the most fundamental results in real algebraic
geometry is the theorem of Tarski-Seidenberg, stating that if S C R" is
semialgebraic and f : R” — R¥ is a polynomial map, then f(S) is also
semialgebraic.

However, if S is algebraic, then in general f(S) is no longer so. The
simplest example is where S = {x € R? | 22 + 23 = 1}, the unit circle in
R?) and f is the projection onto the first coordinate in R?. Then f(S) is
the unit ball {x € R | 22 < 1} in R which is obviously not algebraic. So
the consideration of images is too rough in order to save information on the
algebraicity of S.

Also, let ¢ : R™ — Z be a constructible function, that is, ¢(R™) is finite
and ¢~ !(2) is semialgebraic for all z € Z. Let again f : R* — R* be a
polynomial map. It is not a priori clear how to define the image function
fep: RF — Z, but it turns out that a well behaved definition is

fep@) = | padx,
f=H=)
where the right hand side is the so-called Euler integral, to be explained in
Section 1. This extension of the classical Euler characteristic to constructible
functions appeared in many contexts.
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Now let ¢ = 1g where S is algebraic. Then f, is algebraic in the follow-
ing sense. There exist finitely many polynomials f1,..., fm € R[X1,... X§]
such that f.p(x) = sign fi(z)+- - -+sign fo, () for all 2 € R¥. In the example
where S is the unit circle in R?, we have f.p(z) =2 for 22 < 1, fupo(z) =1
for 22 = 1 and f.p(x) = 0 for 22 > 1. Thus f.¢ = sign fi + sign fo for
f1:1—X2 and ngl.

More generally, a beautiful theorem of Parusinski-Szafraniec [P-S] states
that if ¢ : R™ — Z is algebraic, then so is f.p.

We will show a corresponding result for limits in semialgebraic families,
where one has a similar situation:

Let S C R™ x R* be semialgebraic. For ¢t € R¥ let S; := S NR"™ x {t}.
Let (t,,) € R* be a sequence such that (S;,) tends to T in the Hausdorff
sense. It is known that 7' is again semialgebraic [Brl], [Br2], which holds
correspondingly in the o-minimal context [L-S|, [vdD1], [vdD2|. Again, if S
is algebraic, this need not be the case for T.

For instance, consider the family of ellipses F; C R? where
E; = {x e R? | 23 + %23 = 1},

and let (t,) — oo. Then (E;,) — {z € R? | 22 < 1, 29 = 0}, which is not
algebraic.

So again, Hausdorff limits are not appropriate. In Section 6 we will in-
troduce a different kind of convergence using local Euler integrals, which
extends to constructible functions. Then we will show that the limit of a
sequence of constructible functions in an algebraic family is again algebraic
(Theorem 6.4). The main ingredient is our Theorem 5.1 which expresses the
situation in terms of valuations and reduction maps.

1. Euler integral. Let R be a real closed field and let w be the class of
all semialgebraic sets S C R"™ for some n. A function ¢ : R" — Z is called
constructible if the range of ¢ is finite and p~1(2) is semialgebraic for all
z € L.

For any semialgebraic set S C R™ the Euler characteristic (with compact
supports) x(S) is defined. If S is semialgebraically isomorphic to an open
d-cell, then x(S) = (—1)¢. For arbitrary S, this allows us to compute x(S)
from a cell decomposition, which always exists, and it turns out that the
computation of x(5) does not depend on the decomposition. One can extend
the Euler characteristic to constructible functions as follows (compare [V]).
Let ¢ = > a;1g, where the sum is finite, a; € Z and R™ D S; is semialgebraic.
Then x(¢) := > a;x(S;). Again, this is independent of the representation
of .
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One also writes
x(e) =\pdx = | o(z)dx(),
Rn
and if T C R is semialgebraic, then
{ody:= | 17 pdx;
T R
this is called Fuler integration. This name is justified by the following rules:

(i) If o, : R™ — Z are constructible, then {(¢ +v)dx = { pdx + { vdx.
(ii) If, moreover, f : R™ — R™ is a continuous semialgebraic map, then

| p@dx@ = § (| @ dx@)dxw)
R Rm o f=(y)
(Fubini—Cavalieri).
In the situation of (ii) we define f.p : R™ — Z, y Sf—l(y) o(z) dx(x).
Thus

| @) dx(@) = | fuo(y) dx(v).
Rn Rm

2. Algebraic functions. Again, let R be a real closed field.

DEFINITION 2.1. A constructible function ¢ : R" — Z is called algebraic
if there are finitely many polynomials py,...,px € R[X], X = (X1,...,X,),
such that ¢(x) = sign(pi(z)) + - - - + sign(p,(z)) for all z € R™.

EXAMPLE 2.2. Let V C R"™ be a real algebraic set. Then 1y, is algebraic.
In fact, there is a positive polynomial p for V, that is, p(z) > 0 for x ¢ V
and p(xz) = 0 for x € V. Now 1y = sign(1) + sign(—p).

REMARK 2.3. Let ¢, : R" — Z be algebraic. Then

(a) ¢+ and @ -1 are algebraic.

(b) Let V' C R™ be an algebraic subset. Then ( is algebraic, where ((z) =
o(x) for x ¢ V and ((x) = ¢(z) for x € V.

(c) Let S be a symmetric n X n matrix with coefficients in R[X]. Then
x +— sign, S (signature of S at x) is algebraic.

Here (a) is obvious, (b) follows easily from (a) and Example 2.2, and (c)
follows from (b) by induction on the dimension, since we can diagonalize S
over function fields, that is, up to algebraic sets of smaller dimensions.

The fundamental property of algebraic functions is (see [P-S]):

THEOREM 2.4 (Parusiriski-Szafraniec). Let f : R" — R™ be a polyno-
mial map. If ¢ : R™ — Z is algebraic, then so is f.p : R™ — 7.
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We are going to show a corresponding result for reduction maps. This
requires more preparations (for more details see [B-C-R, Chap. 7|, [A-B-R,
Chap. 2]):

Let V' = Spec(A) be an algebraic variety over R. Then Hom(A, R) =
V(R) is the variety of closed real points in V. We extend V' (R) = Hom(A4, R)
to the space Spec,(4) = {a: A — R,}/~ called the real spectrum of A,
where R, is real closed, « is a homomorphism and ~ is generated by com-
mutative triangles

A Rq

Rg

From the model completeness of the theory of real closed fields it is clear
that elementary objects and properties in V(R) and Spec,(A) correspond
to each other. For instance, a constructible (algebraic) function ¢ on V(R)
extends uniquely to a constructible (algebraic) function ¢ on Spec,(A).

Let a € Spec,(A). Then Ker(a) =: supp(a) (support of «) is a prime
ideal of A. We define dim(«a) := dim(A/supp(«)). One defines Spec,(A)
correspondingly for any commutative ring with unit, and also constructible
and algebraic functions. For instance, if A = K is a field, then Spec,(K) is
the space of all orderings of K. The representation theorem [Be-Br| provides
a criterion for the algebraicity of a constructible function ¢ : Spec,(K) — Z.
For general A one has

Spec,(4) = | J  Spec,(k(p))

pESpec(A)

where k(p) is the residue field of p € Spec(A). This allows us to reduce
questions about V' (R), via Spec,(A), to features and tools of the real algebra
of fields. We will follow this path in the next sections.

3. The reduction map. Throughout this section we fix a real closed
field R together with a real valuation v : R — I U oo, where I is the value
group. We denote by B C R the valuation ring, by m the maximal ideal and
by R the residue field. Note that v is henselian, I” is divisible and R is again
real closed. The residue map o : B — R, b — o(b) =: b, admits a section
o : R — B which we fix in the following. So we consider R as a subfield of
R. We denote by ¢ also the map B® — R", x; +— o(x;), i = 1,...,n. One
has [Brl, Th. 1.7]
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PropPOSITION 3.1. Let S C B™ be definable in the language of valued
ordered fields. Then o(S) C R™ is semialgebraic.

Again, we want to extend g to constructible functions. For this, let ¢ :
R"™ — Z be constructible, as in Section 1, and let a € B". For A\ € R, A > 0
let

D(a,\):={z e R"|(a—z);<Afori=1,...,n}
and
X, N(p) = | edx
D(a,\)

The map ]0,00] — Z, A — x(a,\)(¢), is constructible. Hence there exist
0 < A < A2, A1 € m, Ay € B\ m, such that x(a,\)(¢) is constant on
JA1, Ao[, so we define

x(a,m)(p):= | wdx:i= | @dx
e~'(@) D(a,))
for A € ]A1, A2 and @ = p(a). Then we get
PROPOSITION 3.2. Let ¢ : R* — Z be constructible. Then so is gy :
R™ — 7, where for a € R",
o-p(@ = | pdx.
e~'(@)
Proof. For all z € Z the set {a € B" | x(a,m)(¢) = z} =: e(z,¢) is

definable in the language of valued fields. By Hardt’s theorem [Ha] it is also
clear that x(a,m)(¢) is bounded for fixed ¢ and a € B™. So we can write

X(a,m) () = zilez )

where the sum is finite. Clearly every function 1., ,) is constant on the
fibers of p. Hence

0e0 = Zily(e(z10))s

which by Proposition 3.1 is constructible. =

4. The reduction map on the real spectrum. In Section 2 we saw
that to every constructible function ¢ : R™ — Z there corresponds a con-
structible function ¢ : Spec,(A) — Z, where A = R[X;,...,X,]. If, in
particular, S is semialgebraic and ¢ = 1g then ¢ = 15, the constructible set
S C Spec,(A) being defined by the same equations as S. The set B" C R"
is not semialgebraic. Nevertheless, we define

B" = {a € Spec,(A) | Vf € A with a(f) > 0 3z € B" with f(z) > 0}.
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We are going to study a reduction
0:B" — Spec,(4),

where A = R[X1,...,X,]. The constructions and results below are taken
from [Brl, §3]. Let @ € B". Recall that « corresponds to an ultrafilter,
say ¢(«), of semialgebraic sets in R™. Then the sets o(S N B™ | S € p(a))
generate a unique ultrafilter ¢’ of semialgebraic sets in R™. So we define g(c)
to be the corresponding element in Spec,(A), that is, ¢’ = ¢(o(a)).

Now let V' C R™ be a closed integral algebraic subvariety with dim(V)
=k, and let V7, ...,V be the irreducible components of cl, o(V N B") (where
cl, denotes the Zariski closure), for which dim V; = k. Foreachi = 1,...,r we
shall define a set v;; of valuations of R(V') which extend the given valuation
v on R in a natural way. For this let

BlV]:={f+I1(V) € R[V]| f € B(X)}
and
pi = {f+1(V)€eR[V]| f € B[X]and f(z) =0 Vx € V;}.

Here X = (X1,...,X,), * = (21,...,2,) and f is the componentwise Te-
duction of f. Then p; is a prime ideal in B[V] and B[V]/p; ~ R[V;]. Let
A; = B[V],, and A the integral closure of A; in R(V'). In general, A; # A;

and also A; is possibly not a valuation ring in R(V'). However, one has

PROPOSITION 4.1. Under the above notations, /L 1is semilocal with mazx-
imal ideals mi;, j = 1,...,s(i), where m;; N B[V] = p;. The localization
(;L)m” is the valuation ring of a valuation v of R(V') extending v. The
residue field of vi; is a finite extension of R(V;) and the value group of v;;
is divisible for j =1,...,s(i).

Quite generally, an ordering « of a field K is called compatible with a
valuation v of K if the valuation ring of v is convex with respect to «.
In that case « induces an ordering v(a) on the residue field. With these
notations we have moreover:

PROPOSITION 4.2. The ordering o € Spec,(R(V')) is compatible with
one of the valuations v;; if and only if « € B" and dim(o(«)) = dim(a) =

dim(V). In that case g(a) € Spec,(R(V;)) and vij() extends o(cv).

Finally, in the above situation, we would like to have some information on

the number of those o € Spec,(R(V)) for which g(a) = @ € Spec, (R(V;)).
Here we have

PROPOSITION 4.3. Under the above mnotations, for i = 1,...,r there
exists a nondegenerate quadratic form o; over R(V;) such that for all @ €
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Spec,(R(V;)) one has
#{o € Spec,(R(V)) | o(a) = @} = signg(i).
In fact, o; is the trace form of gz/ngz over R(V;).

More generally, let g € B[V] and for z,y € A;/piA; let i(g)(z,y) :=
tr gry, where tr is again the trace of A;/p;A; over R(V;).

PROPOSITION 4.4. For @ € Spec,(R(V;)) one has
signg(i(9)) = #{a € Spec,(R(V)) | o(a) = @, a(g) > 0}
— #{a € Spec,(R(V)) | ¢(a) =@, a(g) < 0}.

REMARK 4.5. Propositions 4.3 and 4.4 also hold if V' is not necessarily
integral, but merely reduced. Consider the following situation: W C R™ is
an irreducible variety. If we fix a section R — R, then W corresponds to
a subvariety W, again irreducible, of R"™. Consider R x W C R™ (possibly
replace n by n+1), let f € R[Rx W] and let V' = Z(f) be the zero set of f.
Assume that W coincides with one of the V;, say W = V. Assume further,
for simplicity, that f, regarded as a polynomial over R(W), is separable. Now
let @ € Spec,(R(W)). There is a unique o € Spec,(R(W)) with g(a) = @,
Consider the corresponding real closed field R, D R(W) and the valuation
ring B, C R, where

By ={r € Ry|3be B:x<b}.

Also let m,, be the corresponding maximal ideal. Then the zeros of f in B,
correspond to those o € Spec,(R(V')) which are compatible with a valuation
v;; and for which p(a)) = @. Moreover, o € m,, if and only if « is compatible
with a valuation vy;.

5. Reduction of algebraic functions. In this section we show our
main result:

THEOREM b5.1. Let ¢ : R" — 7Z be algebraic. Then so is o+ : R" — 7Z.

Here we use the notations of Section 3. For the proof we will need several
steps and the lemma below which is essentially [P-S, Lemma 6|, but note that
unlike that article we always consider the Euler characteristic with compact
supports.

LEMMA 5.2. Let R be a real closed field, a <b € R and f = ag X%+ ---
+agp, ag # 0, a polynomial such that f(a), f(b) # 0. Moreover, for 2 < k <d
let

Vi={zeR|flz)=-=f*D@)=0}
and

Zhap = Z sign(f®(z)).

z€V), a<x<b
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Then

[ sign(f)dx = 3 (sign(/(a)) +sign(/0) = Y Zopa

Ja,b] 2<2k<d

Proof of Theorem 5.1. First of all, we may assume that ¢(z) = sign(f(x))
for all x € R"™, where f is a polynomial € R[X7,..., X,].

1. Without changing ¢ = sign(f) we may assume that f € B[X1,..., Xy,
but f ¢ m[Xy,..., Xy]. Let f € R[Xq,..., X;] be the componentwise reduc-
tion of f, so f # 0. Clearly, 0. (y) = sign f(y) for all those y € R™ for which

f(y) # 0. In other words, o*p is algebraic up to a set of smaller dimension.
2. Now let W/ C R™ be an algebraic variety such that the following hold:

e There is an algebraic function ¢’ : R" — Z with g, = ¢’ on R"\W".
e W' is of minimal dimension and has a minimal number of components
subject to the above property.

We want to show that W' = ). Assume W' # 0. So let W be a component
of W with dim W = dim W’. We will show

3. 0.y is generically algebraic on W (algebraic up to a set of smaller
dimension). By Remark 2.3 this would contradict W’ # ). As before, we fix
a section R < B. Thus W corresponds to a subvariety W of R". Let N be
the normal bundle of W in R™:

N={(z,a) |z e R",ac W,z LT,W}.
Here T, W is the tangent space of W at a. (If a is a singular point, then
T,W = R™.) Similarly, we have
N={(yb)|ye R", be W,y L T,W}.
Let 7 : W — R be a polynomial map such that 7(b) > 0 if b is nonsingular
and 7(b) = 0 if b is singular. Let
Ur = {(y,b) € N | {y,y) <T(0)},
Ur:={(z,a) € N| (z,z) <r(a)},
where () denotes the usual scalar product and where, by the identification

of R with a subfield of R, we may consider 7 as a polynomial map r on W.

Let
7:N—R" (x,a)— z+a,

7:N—R" (y,b)—~y+b.
We may choose 7 in such a way that 7 and ® map U = U, (and U = U,)

isomorphically onto a neighbourhood of Wyes (and Wyeg respectively). We
have

rpy)= | pdx= | 7pdx foryeW.
r=1(y) = lr=1(y)NU
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Next, consider the map
d:N—-RxW, (x,a)— ((z,z),a).

By [P-S] (cf. Theorem 2.4) the function d.7*p is algebraic. Therefore, we
are reduced to the situation that ¢ lives on R x W, and it remains to show
that .y is generically algebraic on W.

4. As before, we also consider R x W. We may assume that ¢ = sign(f)
with f € R[W][X]. Since we need only show that r,¢ is generically algebraic
on W, instead of looking at real points on W we look at orderings @ €
Spec,(R(W)), that is, we will show that 7’| Spec(R(W)) is algebraic. As
in step 1 we take f to be defined over B but with coefficients not all in m,
and consider f € R[W]|[X]. We write f = X*g such that g does not vanish
identically on W. If f = g, then r.¢ = sign(g) on W, up to a set of smaller
dimension. So, in this case, we are done. Now, if k£ > 0, consider an ordering
@ € Spec,(R(W)). Recall the situation of Remark 4.5. There is a unique
ordering a € Spec,(R(W)) such that g(«) = @. Consider the field R, D R
and its valuation ring

B, :={r€R,|3be B:x<b}.

Let m, be the corresponding maximal ideal. Let f = fif2, where f1, fo
are mutually prime and square free (as elements of R(W)[X]). With these
notations we have

(—1) W grp(a) = | sign(f1) dx — #{z € ma | fo(z) = 0}.
Ma
By Proposition 4.3 and Remark 4.5 the second summand is algebraic on

Spec, (R(W)) For the first summand, we assume that f = f; and write
f = X*g as above. Then, by Lemma 5.2,

S sign(f) dx = —g(a) — Z Lok,
Ma 2<2k<deg(f)

where '
Ziai= 3 sign(f9()),
meaﬁVha

Via :={z € Ra | f(z) = f ():0}~

Now clearly g(«) is algebraic on Spec,(R(W)) and by Proposition 4.4 and
Remark 4.5 this also holds for the functions a +— Zy; o. =

6. Limits. For x € R” and r € R, r > 0, let B"(z,r) := {y € R" |
lly — z|| < r}, where || || denotes the euclidean norm.

NOTATION 6.1. For a constructible function ¢ : R® — Z we denote by
» : R"™ — Z the function
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xn—>}1_r)% S pdx.
B (z,r)

Clearly, ¢ is again constructible. Moreover, it is well known that é = ¢ (see
[Br3]) and if ¢ is algebraic, then so is @. The latter follows, for instance,
from [P-S| and Hardt’s Theorem [Ha| (see also [MC-P]). Now let (¢m)men
be a sequence of constructible functions ¢, : R" — Z.

DEFINITION 6.2. We say that (¢,,) tends to ¢ : R” — 7Z and write
(¢om) — 1 if for all x € R™ one has
{ﬂ\(x) = lim lim S Om dx.
r—0m—oo
B"(z,p)
For characteristic functions of closed convex sets this is the same as Haus-
dorff convergence, but in general, this is not true.

EXAMPLE 6.3. Consider the sequence of ellipses
E, = {z € R* | 2} + m%3 = 1},

which get more and more flat for increasing m. The Hausdorff limit of (E,,)
is the interval I = {x € R? | 22 < 1, 29 = 0}. Now let ¢, = 1g, . Then
(¢om) — ¥ where
2 forz? <1,29=0,
P(r)=<¢1 for x% =1, zo =0,
0 else.

Note that the ¢, are algebraic and so is 1, but 1; is not algebraic. This is
a special case of a general result.

Consider R*"™* = R™ x R* as a family of spaces R" with parameters
in R¥. We denote the variables in R” by X = (Xj,...,X,) and those in
R* by T = (Ty,...,T}). For t € RF let R} := R™ x {t} C R""*. Now
let ¢ : R® x R*¥ — 7Z be constructible. Again we consider ¢ as a family
{p¢ | t € RF} of constructible functions R™ — Z where ¢;(z) := p(z, t).

More generally, let o € Spec,(R[T7]). Recall that we may represent « by a
homomorphism « : R[T] — R, where R C R,, is a real closed field. By model
completeness of the theory of real closed fields, ¢ induces a constructible
function ¢, : R} — Z.

It may be helpful to “visualize” this. It is well known and used before that
to o there corresponds an ultrafilter A of semialgebraic sets S C R™. Then
R, is represented by semialgebraic functions f : S — R for S € A where two
such functions f and ¢ are identified if they coincide on some T' € A. Now,
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given ¢ : R” x RF — Z it is clear that ¢ assigns eventually a well defined
value to an n-tuple f = (fi1,..., fn) € R..

The canonical valuation ring B, of R, is represented by those ]?Which
are bounded on some T" € A, and the maximal ideal m,, by those fwhich
are arbitrarily small on some T € A. We may also write

By={f€Ry|TIreR:|f| <7},
Mo ={f €ERa |VreRr>0:|f <r}

Note that the residue field is isomorphic to R.

Now let (t,,) be a sequence in R¥. Then we get a sequence (¢.,) := (¢t,,)
of constructible functions ¢,, : R® — Z. So this is a sequence of constructible
functions in the family R™ x R¥. In this situation we have

THEOREM 6.4.

(a) There is an element o € Spec,(R[T]) with corresponding ultrafilter
A such that for all semialgebraic sets S € A one has t,, € S for
infinitely many m. N

(b) Assume that (o) — ¥ and let o be as in (a). Then ¥ = 0.pq, where
o s the reduction map according to the real closed field R, with the
valuation ring By. In particular, v is constructible.

(c) If ¢ is algebraic, then so is ).

Proof. (a) The collection of all semialgebraic sets S C R for which
tym € S for almost all m € Z forms a filter F'. Let A D F be any ultrafilter
of semialgebraic sets in R* and « the corresponding element in Spec, (R[T7]).
Then clearly « has the required property.

(b) Let x € R™ and f € R,. Then f —x € m, if and only if for all
r >0, all S € A and all representatives ﬁ 1S — R for f; there exists T'C S

with T € A such that f(t) € B(x,r) for all ¢ € T. In particular, there are

infinitely many t,, such that f(t,,) € B(z,r). We have
op(@)= | walf)dx.

f—iL‘Ema
We may compute the right hand side by a finite procedure, say, a cell de-
composition which still works on representatives defined over some T € A. If
we specialize the computation at some ¢ € T we get the same value g.¢(x)
for the Euler integral on the one hand, but on the other hand, since there
are infinitely many t,, € T for all T' € A we get the value
lim lim S ©Om dX.
r—0m—oo
B (z,r)

Thus o.p(x) = ().
(c) This follows from (b) and Theorem 5.1. =
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REMARK 6.5. In the preceding theorem, the statement that the limit
of the sequence ¢, is again constructible should also be true in the o-minimal
context.
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