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On gradient at in�nity of semialgebrai
 fun
tionsby Didier D’Acunto (Pisa) and Vincent Grandjean (Bath)Abstra
t. Let f : Rn → R be a C2 semialgebrai
 fun
tion and let c be an asymptoti

riti
al value of f . We prove that there exists a smallest rational number ̺c ≤ 1 su
h that
|x| · |∇f | and |f(x)− c|̺c are separated at in�nity. If c is a regular value and ̺c < 1, then
f is a lo
ally trivial �bration over c, and the trivialisation is realised by the �ow of thegradient �eld of f .1. Introdu
tion. As a 
onsequen
e of the fundamental paper of Thom(
f. [Th℄) about 
onditions ensuring the lo
al topologi
al triviality ofa smooth mapping, given a polynomial f : Cn → C, there exists a �nitesubset of values Λ ⊂ C su
h that the fun
tion f indu
es a lo
ally trivial �-bration from Cn \f−1(Λ) onto C\Λ. The smallest su
h subset of C, denotedby B(f), is 
alled the set of bifur
ation values of the fun
tion f . It 
ontainsthe usual 
riti
al values of f . Unfortunately, there may exist regular valuesthat are also bifur
ation values. But Thom did not give any way to �nd theseregular bifur
ation values.A few years later, Pham, in relation to 
onvergen
e of os
illating integrals,exhibited a 
ondition ensuring that a 
omplex polynomial f trivialises over aneighbourhood of a regular value c ∈ C: the Malgrange 
ondition (
f. [Ph℄).Roughly speaking, this 
ondition means that the norm of the gradient isnot too small in a neighbourhood of the germ at in�nity of the given level
f−1(c).The set of values at whi
h the Malgrange 
ondition is not satis�ed isa
tually �nite (see [Ti1℄). Moreover the Malgrange 
ondition fails at anybifur
ation value that is also regular. Finally, Parusi«ski proved that for a
omplex polynomial with isolated singularities at in�nity, any regular value2000 Mathemati
s Subje
t Classi�
ation: Primary 32Bxx, 34Cxx; Se
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unto and V. Grandjeanat whi
h the Malgrange 
ondition fails is a bifur
ation value (see [Pa℄). Yet,in full generality, we still do not know if this property is true for any 
omplexpolynomial.Now, let us turn to the 
ase of a real polynomial f . As in the 
omplexsituation, the set of bifur
ation values, as de�ned above, is �nite, as also isthe set of values at whi
h the Malgrange 
ondition is not satis�ed (see [Ve℄,[Ti1℄). Again, no regular bifur
ation value satis�es the Malgrange 
ondition.As in the 
omplex 
ase, this hopefully ensures a �bration theorem outsidethese spe
ial �bres and the 
riti
al �bres. But in the real 
ase, the resultof Parusi«ski is no longer true. A regular value of a real plane polynomialat whi
h the Malgrange 
ondition fails is not ne
essarily a bifur
ation value(see the King�Tib r�Zaharia and Parusi«ski examples in Se
tion 5).When the Malgrange 
ondition is satis�ed at a regular value c, the fun
-tion is lo
ally trivial over a neighbourhood of c. Moreover, this trivialisation
an be realised by the �ow of the gradient ve
tor �eld ∇f .At the early stage of this work, we expe
ted that, at least in the realplane 
ase, trivialising by ∇f in a neighbourhood of a regular value c andhaving the Malgrange 
ondition satis�ed at c were equivalent 
onditions. Butthis belief was erroneous, as shown by the Parusi«ski example in Se
tion 5.Nevertheless, these examples have led us to try to understand more
losely the 
onne
tions between the behaviour of the traje
tories of the gra-dient �eld ∇f , the asymptoti
 geometry of the neighbouring levels of thelevel c and the failure of the Malgrange 
ondition at c. We have been par-ti
ularly interested in the traje
tories leaving any 
ompa
t subset of Rn andalong whi
h f tends to a �nite value c at in�nity. We will not explore herethe very di�
ult problem of the qualitative behaviour of su
h traje
tories,but they have led us to the dis
overy of the Kurdyka��ojasiewi
z exponentat in�nity for c and its 
orresponding gradient-like inequality in a neighbour-hood of the level c at in�nity, a notion that a
tually improves the Malgrange
ondition 
onsiderably, and with a geometri
 
ontent 
losely 
onne
ted tothe foliation by the levels of f .In this arti
le we will work with C1 (or C2 depending on the 
ontext)semialgebrai
 fun
tions, sin
e most of the results we are interested in, orig-inally stated in the polynomial 
ase, are also available in the semialgebrai
frame.Conventions. Let u and v be two germs at in�nity of single real variablefun
tions. We write u ∼ v to mean that the ratio u/v has a non-zero �nitelimit at in�nity. We write u ≃ v when the limit of u/v at in�nity is 1.2. Asymptoti
 
riti
al values and the embedding theorem. Let
f : Rn → R be a C1 semialgebrai
 fun
tion. Just as in the introdu
tion,



Gradient at in�nity of semialgebrai
 fun
tions 41the �bres of f exhibit only �nitely many topologi
al types ([Ve℄ or [KOS℄).The values at whi
h the topology 
hanges are 
alled bifur
ation values (oratypi
al values) of f . Any other value is 
alled a typi
al value. The set ofatypi
al values is �nite and denoted by B(f). In this set, we distinguish twosorts of values: the usual 
riti
al values, denoted by K0(f), and K∞(f), theasymptoti
 
riti
al values, at whi
h the Malgrange 
ondition fails:Definition 2.1. The fun
tion f satis�es the Malgrange 
ondition (M)at a value t ∈ R if there exists a 
onstant C > 0 su
h that for su�
ientlylarge x and f(x) su�
iently 
lose to t the following inequality holds:(M) |x| · |∇f(x)| ≥ C.Equivalently, c ∈ K∞(f) if there exists an unbounded sequen
e {xν}ν

∈ Rn su
h that f(xν) → c and |xν | · |∇f(xν)| → 0.Remark 2.2. The previous de�nition and the notion of 
riti
al valuesat in�nity also make sense for any C1 real fun
tion de�ned on an unboundedopen subset of Rn, as well as for 
omplex polynomials.Let K(f) = K0(f) ∪ K∞(f) be the set of generalised 
riti
al values.In the real 
ase, 
ondition (M) ensures the trivialisation via the gradient�eld ∇f . To be more pre
ise, assume that f denotes a C2 semialgebrai
 fun
-tion. Let Φ be the lo
al �ow of ∇f/|∇f |2 de�ned as the mapping satisfyingthe following 
onditions:
dΦ

dt
(x, t) =

∇f

|∇f |2
◦ Φ(x, t) and Φ(x, 0) = x.Let us begin by stating an embedding theorem, whi
h is fundamental tothis work. Let c be a regular value of f . Let t be any regular value su
h that

[t, c[ ∩K(f) = ∅ if t < c, or ]c, t] ∩ K(f) = ∅ if t > c. Then we have:Theorem 2.3 ([D'A2℄). There exists a C1 inje
tive open immersion
φ : f−1(c) → f−1(t). More pre
isely , the �ow of ∇f/|∇f |2 embeds ea
h
onne
ted 
omponent of f−1(c) into a 
onne
ted 
omponent of f−1(t).Remark 2.4. The mapping φ is in fa
t the restri
tion to f−1(c)×{t} ofthe mapping Φ. Su
h an embedding φ maps di�eomorphi
ally the 
ompa
t
onne
ted 
omponents of f−1(c) onto those of f−1(t).If the �ow of ∇f , over a neighbourhood of a regular value c, does nottrivialise f , then there is at least a traje
tory of ∇f that never rea
hes thelevel c. More pre
isely, we introdu
e the followingDefinition 2.5. An integral 
urve of ∇f , leaving any 
ompa
t subsetof Rn and su
h that the fun
tion f has a �nite limit c along a half-bran
h atin�nity of this traje
tory, is 
alled an integral 
urve (or traje
tory) of in�nitelength at c.
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unto and V. Grandjean3. Kurdyka��ojasiewi
z exponent at in�nity for an asymptoti

riti
al value. The standard �ojasiewi
z gradient inequality states that if
f : U → R is an analyti
 fun
tion in a neighbourhood U of the origin 0 ∈ Rnsu
h that ∇f(0) = 0, then there exist U0 ⊂ U and positive numbers ̺ and
C su
h that

|∇f | ≥ C|f − f(0)|̺ on U0.The in�mum of the exponents ̺ su
h that |∇f | |f − f(0)|−̺ has a positivelimit along any sequen
e 
onverging to 0 is 
alled the �ojasiewi
z exponentof f and is a rational number lying in ]0, 1[.Remark 3.1. Let f : Cn → C be a polynomial. There is already a notionof �ojasiewi
z exponent at in�nity, meaningful in this setting (see [Ha℄).Namely, if c is a regular value of f , the �ojasiewi
z exponent at in�nity for cis the supremum of the real numbers θ for whi
h there exists C > 0 su
hthat for all x with |x| ≫ 1 and |f(x) − c| ≪ 1,
|∇f(x)| ≥ C|x|θ.Let Lc(f) be this supremum. It is again a rational number and c is anasymptoti
 
riti
al value if and only if Lc(f) < −1.Our purpose is to 
ompare |∇f(x)| with |f(x) − c| for an asymptoti

riti
al value c of a semialgebrai
 fun
tion. The following result providesan analog at in�nity of the standard �ojasiewi
z gradient inequality statedabove. This is the �rst important result of this arti
le; to the best of ourknowledge, it has not been known before.Proposition 3.2. Let f be a C1 semialgebrai
 fun
tion. If c ∈ Im f ,then there exist real numbers C, R, τ > 0 and a smallest rational number

̺c ≤ 1 su
h that for all x ∈ Rn with |x| > R and |f(x) − c| < τ , we have
|x| · |∇f(x)| ≥ C|f(x) − c|̺c .Proof. By the 
urve sele
tion lemma, it su�
es to prove this fa
t onsemialgebrai
 
urves having a half-bran
h at in�nity. For simpli
ity we willonly 
onsider values t < c. Let G be a semialgebrai
 half-bran
h at in�nity,along whi
h f tends to c ∈ R at in�nity. We 
an assume that f is in
reasingalong G. Let [c− τ, c[∋ t 7→ g(t) ∈ Rn be a semialgebrai
 parametrisation ofthe germ of G at in�nity satisfying f ◦ g(t) = t for ea
h t. Then there exista rational number η > 0 and a positive real number K su
h that
|g(t)| ≃ K|t − c|−η as t → c.By usual semialgebrai
 arguments, we get

|g′(t)| ≃ Kη|t − c|−(1+η) as t → c.Taking derivatives with respe
t to t, we obtain
(f ◦ g)′(t) = 〈∇f(g(t)), g′(t)〉 = 1.
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 fun
tions 43Thus, we dedu
e
|∇f(g(t))| ≥

1

2Kη
|t − c|η+1,and(3.1) |g(t)| · |∇f(g(t))| ≥

1

4η
|t − c|.Sin
e the fun
tion t 7→ f(g(t)) is semialgebrai
, there exists a rational num-ber ν su
h that

|g(t)| · |∇f(g(t))| ∼ |t − c|ν .From inequality (3.1) we obtain ν ≤ 1.Let ̺c be the in�mum of these exponents ν. De�ne
Ec =

{

q ∈ Q : lim
|x|→+∞

|x| · |∇f(x)|

|f(x) − c|q
∈ R∗

+, lim
|x|→+∞

f(x) = c

}

.We easily verify that Ec is a semialgebrai
 subset of R 
ontained in Q, hen
eit is �nite (for details see [KMP, Proposition 4.2℄). Thus ̺c is rational.Sin
e there is yet a �ojasiewi
z exponent at in�nity (
f. Remark 3.1),we will refer to ̺c as the Kurdyka��ojasiewi
z exponent at in�nity of thefun
tion f for the value c.Remark 3.3. Let us mention that Proposition 3.2 also holds when f :
V → L is a semialgebrai
 C1 fun
tion, de�ned on a 
losed and 
onne
tedsemialgebrai
 C1 submanifold V of Rn, equipped with the semialgebrai
Riemannian metri
 indu
ed from the Eu
lidean one.The Malgrange 
ondition 
orresponds to a value c of the given fun
tionfor whi
h the Kurdyka��ojasiewi
z exponent at in�nity for c is less than orequal to 0. The following proposition is just a rewriting of 
ondition (M):Proposition 3.4. Let f be a C1 semialgebrai
 fun
tion. Let c ∈ Im f .Then c is an asymptoti
 
riti
al value of f if and only if the Kurdyka��ojasiewi
z exponent at in�nity of f for c is positive.Let c ∈ K∞(f) \K0(f) and let ̺c be the Kurdyka��ojasiewi
z exponentat in�nity for c. This number 
ontains interesting information about the kindof value (typi
al or not) that c 
ould be, as shown by the followingTheorem 3.5. Let f be a C2 semialgebrai
 fun
tion. If ̺c < 1, then fis a lo
ally trivial �bration over c. Moreover , the �bration 
an be realised bythe �ow of ∇f/|∇f |2.Proof. For simpli
ity we shall again only work with values t < c. Let
c0 < c be su
h that [c0, c] ∩ K(f) = {c}, and let R, C > 0 be real numberssu
h that the assertion of Proposition 3.2 holds in f−1([c0, c[) ∩ {|x| > R}with 
onstant C. Let x0 ∈ f−1(c0) ∩ {|x| > R} and let γ be a (maximal)
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unto and V. Grandjeantraje
tory of ∇f parametrised by the levels of f . So γ satis�es the di�erentialequation(3.2) γ′(t) = X(γ(t)), γ(c0) = x0 ∈ f−1(c0),where X = ∇f/|∇f |2. Thus, for ea
h t ∈ [c0, c[, we obtain f ◦ γ(t) = t.Integrating (3.2) between c0 and t < c, we obtain(3.3) t\
c0

γ′(s) ds =

t\
c0

X(γ(s)) ds.From (3.3), we get a �rst inequality(3.4) |γ(t)| ≤ |γ(c0)| +
t\
c0

ds

|∇f(γ(s))|
.Using Proposition 3.2 we have(3.5) |γ(t)| ≤ |γ(c0)| +

t\
c0

|γ(s)|

C|s − c|̺c
ds.Then the Gronwall Lemma gives(3.6) |γ(t)| ≤ |γ(c0)| exp

t\
c0

ds

C|s − c|̺c
,whi
h a
tually yields(3.7) |γ(t)| ≤ |γ(c0)| exp

(c − c0)
1−̺c − (c − t)1−̺c

C(1 − ̺c)
.Hen
e |γ(t)| has a �nite limit as t tends to c. This implies that the embedding

φ of Theorem 2.3 is essentially a di�eomorphism from f−1(t) onto f−1(c).This ends the proof.Remark 3.6. Note that Theorem 3.5 also holds under the assumptionsof Remark 3.3, provided the C1 regularity of f is repla
ed by C2 regularity.Corollary 3.7. If c is a regular value and a bifur
ation value, then theKurdyka��ojasiewi
z at in�nity for c is equal to 1.Proof. Sin
e we 
annot trivialise the fun
tion f over a neighbourhoodof c, from Theorem 3.5, the exponent has to be 1.When c belongs to K∞(f)\B(f), the fun
tion f indu
es a lo
ally trivial�bration over a neighbourhood of c. Moreover, this trivialisation is providedby the �ow of ∇f/|∇f |2 when the Kurdyka��ojasiewi
z exponent at in�nityfor c is stri
tly less than 1. From the view point of De�nition 2.5, Theorem3.5 
an be stated in another way:Corollary 3.8. Let Γ be a traje
tory of ∇f of in�nite length at c.Then the Kurdyka��ojasiewi
z exponent at in�nity of c is equal to 1.
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 fun
tions 454. Kurdyka��ojasiewi
z exponent of 
omplex polynomials. Let
f : Cn → C be a 
omplex polynomial. As mentioned in Se
tion 2, we 
ande�ne the set K∞(f) of asymptoti
 
riti
al values, whi
h is a �nite subsetof C ([Ti1℄). Again, we write K(f) = K0(f)∪K∞(f), the set of generalised
riti
al values. If t ∈ C \ K(f) then f is a lo
ally trivial �bration over t([Ti1℄, [Ti2℄).There also exists an analog of the Embedding Theorem 2.3 in the 
omplex
ase. Namely, if c ∈ K∞(f) \ K0(f) and t ∈ C \ K(f) then we haveTheorem 4.1 ([D'A2℄). There exists an embedding ϕc,t : f−1(c) →
f−1(t).Let grad f be the polynomial ve
tor �eld in Cn whose 
omponents are
(∂f(z)/∂z1, . . . , ∂f(z)/∂z1), where z = (z1, . . . , zn) is a system of 
oordi-nates in Cn. Denote by ‖w‖ the norm of the 
omplex ve
tor w ∈ Cn. Theproof of Theorem 4.1 (see [D'A2℄ for details) 
ombined with the proof ofProposition 3.2 givesProposition 4.2. There exist C > 0 and a rational number 0 < ̺ ≤ 1su
h that for su�
iently large ‖z‖ and su�
iently small |f(z) − c|, we have

‖z‖ · ‖ grad f(z)‖ ≥ C|f(z) − c|̺.As before, the in�mum of su
h exponents ̺ is positive and rational.Again, we denote it by ̺c, and 
all the Kurdyka��ojasiewi
z exponent atin�nity of f for c.The 
omplex situation is mu
h more rigid than the real one. When thefun
tion f has only isolated singularities at in�nity, knowing ̺c de
ideswhether the regular value c is typi
al or atypi
al. Under this hypothesis,Parusi«ski proved that any asymptoti
 
riti
al value is a bifur
ation value[Pa℄, that is, B(f) = K∞(f) ∪ K0(f).Theorem 4.3. Let f be a 
omplex polynomial with only isolated singu-larities at in�nity. A regular value c is a bifur
ation value if and only if theKurdyka��ojasiewi
z exponent at in�nity ̺c is equal to 1.Proof. If ̺c =1, then c is an asymptoti
 
riti
al value, and by Parusi«ski'sresult [Pa℄, it is ne
essarily a bifur
ation value.Let c be a regular bifur
ation value. So the embedding ϕc,t : f−1(c) →
f−1(t) is not onto for any typi
al value t ∈ C.We identify C with R2 and write f = P + iQ, where P and Q arerespe
tively the real and imaginary parts of f . We equip Cn, when identi�edwith R2n, with the usual Eu
lidean stru
ture. Then ‖grad f‖ = |∇P | =
|∇Q|.Assume now that ̺c < 1. Let c0 be a typi
al value of f su
h that the realline L ⊂ R2 through c and c0 passes through no other generalised 
riti
al
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unto and V. Grandjeanvalue, that is, L ∩ K(f) = {c}. Let VL = f−1(L). This is a smooth realalgebrai
 hypersurfa
e of R2n. Let fL be the restri
tion of f to VL. Thefun
tion fL is thus a smooth semialgebrai
 fun
tion, so K∞(fL) is �nite. Byde�nition, fL is a submersion.We endow VL with the Riemannian stru
ture indu
ed by the Eu
lideanstru
ture of R2n and denote by ∇VL
the gradient with respe
t to the metri
indu
ed on VL. After a rotation in C = R2, we 
an assume, writing c = a+ib,that the line L is {y = b}, where (x, y) is a system of 
oordinates of R2. Thenobviously VL = Q−1(b), and sin
e ∇P and ∇Q are orthogonal ve
tor �eldsin R2n, we dedu
e that

∇VL
fL = ∇VL

(P|VL
) = (∇P )|VL

, so ‖grad f(v)‖ = |∇VL
fL(v)|, ∀v ∈ VL.From Remark 3.3, the Kurdyka��ojasiewi
z exponent of fL at in�nity for c,denoted by ̺L

c , is well de�ned, and we have just proved that ̺L
c ≥ ̺c. If

̺c < 1, by Remark 3.6, the �bre f−1
L (c) is di�eomorphi
 to f−1

L (c0). Thus
f−1(c) is also di�eomorphi
 to f−1(c0), whi
h is impossible sin
e c is abifur
ation value. Hen
e ̺c = 1.5. Examples. In this se
tion we produ
e some examples that illustratethe results stated before. All the polynomials presented below have oneasymptoti
 
riti
al value. Ea
h example des
ribes a di�erent phenomenon.Example 5.1 (Broughton example). Let

f(x, y) = y(xy − 1).We immediately �nd that f has no 
riti
al point. The set {∂yf = 0} is the al-gebrai
 
urve {2xy−1 = 0} and f(x, 1/2x) → 0 as x → ∞, and 0 ∈ K∞(f).Estimating the fun
tion |x| · |∇f(x)| along this half-bran
h at in�nity showsthat the Kurdyka��ojasiewi
z exponent at in�nity ̺0 is equal to 1.Sin
e0 is theonlygeneralised
riti
al value,wededu
eB(f)=K∞(f)={0}.Denoting by φt the embedding of Theorem 2.3, we observe that the 
om-plement of φt(f
−1(0)) in f−1(t) is non-empty for all t > 0. Taking −f insteadof f , we have a similar result for all t < 0.In this example the following is true: in the upper half-plane, there is aunique integral 
urve of ∇f whi
h is of in�nite length at 0.

{f=t}

PC

Fig. 1. Phase portrait of ∇f
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 fun
tions 47Example 5.2 (King, Tib r & Zaharia example). Let
g(x, y) = −y(2x2y2 − 9xy + 12).This fun
tion indu
es a smooth lo
ally trivial �bration (see [TZ, Proposition2.6℄).We obtain K(g) = K∞(g) = {0}, and B(g) is empty. Any level {−y(2x2y2

− 9xy + 12) = t} is homeomorphi
 to a line.We 
ompa
tify R2 to RP2, with 
oordinates [x : y : z]. The point [1 : 0 : 0]is the unique point at in�nity of ea
h �bre of g, and {∂yg = 0} is the unionof the algebrai
 
urves PC1 := {xy − 1 = 0} and PC2 := {xy − 2 = 0}. Asin the Broughton example, estimating the fun
tion |x| · |∇f(x)| along PC1(or PC2) shows that the Kurdyka��ojasiewi
z exponent at in�nity for 0 isequal to 1.For this fun
tion, there are in�nitely many traje
tories of in�nite lengthat 0, meaning the trivialisation by the gradient near the value 0 is impossible.Let PCv = {4xy − 9 = 0} be the polar 
urve in the verti
al dire
tion.These three polar 
urves give enough information on the dynami
s at in�nityof the gradient �eld. A traje
tory has at most one interse
tion point withea
h of the polar 
urves PC∗ (with ∗ = 1, 2, v). The phase portrait of ∇gis organised around two spe
ial integral 
urves (one between the x-axis and
PC1, the other one between PC2 and PCv), whi
h a
tually are bran
hingpoints of the spa
e of leaves of the foliation by ∇g. For any level t > 0, thesame kind of phenomenon o

urs be
ause of the symmetry of g.A qui
k study of the signs of ∂xg and ∂yg, and the study of the in�e
tionpoints of the traje
tories give enough information to draw the phase portraitof Fig. 2.

∇f

γ

PC1

PC2

PCv

{g=t}

{g=0}

Fig. 2. Phase portrait of ∇g



48 D. D'A
unto and V. GrandjeanExample 5.3 (Parusi«ski example). Let
h(x, y) = y11 + (1 + (1 + x2)y)3.Ea
h �bre of this fun
tion is homeomorphi
 to a line. Hen
e, by [TZ, Propo-sition 2.6℄, h is a lo
ally trivial �bration. On the 
urve PCv := {∂xh = 0} =

{1 + (1 + x2)y = 0}, we see that 0 belongs to K∞(h). Moreover we �nd that
K(h) = K∞(h) = {0}.We 
ompa
tify R2 to RP2, with 
oordinates [x : y : z]. Ea
h �bre of hadmits [1 : 0 : 0] as a unique point at in�nity.In this example, the gradient �eld realises the trivialisation.The gradient ve
tor �eld of h is given by
∇h(x, y) = 6xy(1 + y + x2y)2

∂

∂x
+ (11y10 + 3(1 + x2)(1 + y + x2y)2)

∂

∂y
.Note that any level h−1(t), with |t| ≪ 1, is a
tually the graph of somefun
tion xt of y, and we have

xt(y) =

√

t1/3 − 1 − y

y
+ h.o.t. ≃ k(t)

y1/2
,with k(t) < 0.Let ̺0 be the Kurdyka��ojasiewi
z exponent at in�nity for 0. Let G beany semialgebrai
 
urve along whi
h h is negative and tends to 0. The 
urve

G is the graph of a fun
tion, say κ, of the variable x. Thus we must have
κ(x) ∼ −xν for a rational number ν < 1. We assume x ≫ 1.If ν 6= −2, it is easy to verify that

|(x, κ(x))| · |∇h(x, κ(x))| ≥ x3.Thus the Kurdyka��ojasiewi
z exponent along any su
h 
urve is non-positive.Assume ν = −2. Then we dedu
e κ(x) ≃ −x−2. So there exists η > 1su
h that ∂xh(x, κ(x)) ∼ x−η, thus ∂yh(x, κ(x)) ≥ 3x3−η, and so
|(x, κ(x))| · |∇h(x, κ(x))| ≃ x∂yh(x, κ(x)).We 
an verify that there is a positive 
onstant C su
h that:(1) if η ≥ 23 then

x∂yh(x, κ(x)) ≥ C|h(x, κ(x))|19/22;(2) if η ∈ ]47/3, 23[ then
x∂yh(x, κ(x)) ≥ C|f(x, κ(x))|(4−η)/22 ≥ C|h(x, κ(x))|19/22;(3) if η ∈ ]1, 47/3] then

x∂yh(x, κ(x)) ≥ C|f(x, κ(x))|(8−2η)/(3−3η) ≥ C|h(x, κ(x))|2/3.
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tions 49Taking κ(x) := −(1 + x2)−1, we 
an verify that along y = κ(x),
x∂yh(x, κ(x)) ∼ |h(x, κ(x))|19/22,and thus ̺0 = 19/22. So the �ow of ∇h/|∇h|2 realises the trivialisation.Thanks. The authors would like to thank the geometry team of Univer-sity of Savoie, espe
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