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On gradient at infinity of semialgebraic functions

by DIDIER D’AcunTO (Pisa) and VINCENT GRANDJEAN (Bath)

Abstract. Let f : R™ — R be a C? semialgebraic function and let ¢ be an asymptotic
critical value of f. We prove that there exists a smallest rational number g. < 1 such that
|z| - [V f] and | f(z) — c|?¢ are separated at infinity. If ¢ is a regular value and g, < 1, then
f is a locally trivial fibration over ¢, and the trivialisation is realised by the flow of the
gradient field of f.

1. Introduction. As a consequence of the fundamental paper of Thom
(cf. [Th]) about conditions ensuring the local topological triviality of
a smooth mapping, given a polynomial f : C" — C, there exists a finite
subset of values A C C such that the function f induces a locally trivial fi-
bration from C™\ f~1(A) onto C\ A. The smallest such subset of C, denoted
by B(f), is called the set of bifurcation values of the function f. It contains
the usual critical values of f. Unfortunately, there may exist regular values
that are also bifurcation values. But Thom did not give any way to find these
regular bifurcation values.

A few years later, Pham, in relation to convergence of oscillating integrals,
exhibited a condition ensuring that a complex polynomial f trivialises over a
neighbourhood of a regular value ¢ € C: the Malgrange condition (cf. [Ph]).
Roughly speaking, this condition means that the norm of the gradient is
not too small in a neighbourhood of the germ at infinity of the given level
170,

The set of values at which the Malgrange condition is not satisfied is
actually finite (see [Til]). Moreover the Malgrange condition fails at any
bifurcation value that is also regular. Finally, Parusiniski proved that for a
complex polynomial with isolated singularities at infinity, any regular value
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at which the Malgrange condition fails is a bifurcation value (see [Pal). Yet,
in full generality, we still do not know if this property is true for any complex
polynomial.

Now, let us turn to the case of a real polynomial f. As in the complex
situation, the set of bifurcation values, as defined above, is finite, as also is
the set of values at which the Malgrange condition is not satisfied (see [Ve],
[Til]). Again, no regular bifurcation value satisfies the Malgrange condition.
As in the complex case, this hopefully ensures a fibration theorem outside
these special fibres and the critical fibres. But in the real case, the result
of Parusiniski is no longer true. A regular value of a real plane polynomial
at which the Malgrange condition fails is not necessarily a bifurcation value
(see the King-Tibar-Zaharia and Parusiniski examples in Section 5).

When the Malgrange condition is satisfied at a regular value ¢, the func-
tion is locally trivial over a neighbourhood of ¢. Moreover, this trivialisation
can be realised by the flow of the gradient vector field V f.

At the early stage of this work, we expected that, at least in the real
plane case, trivialising by Vf in a neighbourhood of a regular value ¢ and
having the Malgrange condition satisfied at ¢ were equivalent conditions. But
this belief was erroneous, as shown by the Parusinski example in Section 5.

Nevertheless, these examples have led us to try to understand more
closely the connections between the behaviour of the trajectories of the gra-
dient field V f, the asymptotic geometry of the neighbouring levels of the
level ¢ and the failure of the Malgrange condition at c. We have been par-
ticularly interested in the trajectories leaving any compact subset of R™ and
along which f tends to a finite value c¢ at infinity. We will not explore here
the very difficult problem of the qualitative behaviour of such trajectories,
but they have led us to the discovery of the Kurdyka-t.ojasiewicz exponent
at infinity for ¢ and its corresponding gradient-like inequality in a neighbour-
hood of the level ¢ at infinity, a notion that actually improves the Malgrange
condition considerably, and with a geometric content closely connected to
the foliation by the levels of f.

In this article we will work with C! (or C? depending on the context)
semialgebraic functions, since most of the results we are interested in, orig-
inally stated in the polynomial case, are also available in the semialgebraic
frame.

Conventions. Let u and v be two germs at infinity of single real variable
functions. We write u ~ v to mean that the ratio u/v has a non-zero finite
limit at infinity. We write v ~ v when the limit of u/v at infinity is 1.

2. Asymptotic critical values and the embedding theorem. Let
f :R®™ — R be a C' semialgebraic function. Just as in the introduction,
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the fibres of f exhibit only finitely many topological types ([Ve] or [KOS]).
The values at which the topology changes are called bifurcation values (or
atypical values) of f. Any other value is called a typical value. The set of
atypical values is finite and denoted by B(f). In this set, we distinguish two
sorts of values: the usual critical values, denoted by Ko(f), and Koo (f), the
asymptotic critical values, at which the Malgrange condition fails:

DEFINITION 2.1. The function f satisfies the Malgrange condition (M)
at a value t € R if there exists a constant C' > 0 such that for sufficiently
large x and f(z) sufficiently close to ¢ the following inequality holds:

(M) lz| - |V f(z)] > C.

Equivalently, ¢ € Ko (f) if there exists an unbounded sequence {z,},
€ R" such that f(z,) — cand |z,|- |V f(z,)| — 0.

REMARK 2.2. The previous definition and the notion of critical values
at infinity also make sense for any C'! real function defined on an unbounded
open subset of R”, as well as for complex polynomials.

Let K(f) = Ko(f) U Kxo(f) be the set of generalised critical values.

In the real case, condition (M) ensures the trivialisation via the gradient
field V f. To be more precise, assume that f denotes a C? semialgebraic func-
tion. Let @ be the local flow of V f/|V f|? defined as the mapping satisfying
the following conditions:

dd v
—la,t) = ﬁ o®(z,t) and &(z,0) = z.

Let us begin by stating an embedding theorem, which is fundamental to
this work. Let ¢ be a regular value of f. Let ¢ be any regular value such that

[t,e[ NK(f)=0ift <c,or]e,t]NK(f)=0if ¢t > c. Then we have:

THEOREM 2.3 ([D’A2]). There exists a C' injective open immersion
¢ : f7l(c) — f7Ht). More precisely, the flow of Vf/|Vf|* embeds each

connected component of f~1(c) into a connected component of f~1(t).

REMARK 2.4. The mapping ¢ is in fact the restriction to f~1(c) x {t} of
the mapping @. Such an embedding ¢ maps diffeomorphically the compact
connected components of f~1(c) onto those of f~1(¢).

If the flow of Vf, over a neighbourhood of a regular value ¢, does not
trivialise f, then there is at least a trajectory of V f that never reaches the
level ¢. More precisely, we introduce the following

DEFINITION 2.5. An integral curve of V f, leaving any compact subset
of R™ and such that the function f has a finite limit ¢ along a half-branch at
infinity of this trajectory, is called an integral curve (or trajectory) of infinite
length at c.
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3. Kurdyka—Y.ojasiewicz exponent at infinity for an asymptotic
critical value. The standard Lojasiewicz gradient inequality states that if
f : U — Ris an analytic function in a neighbourhood U of the origin 0 € R"
such that Vf(0) = 0, then there exist Uy C U and positive numbers ¢ and
C such that

V= CIf - £(0)]2 on Uh.

The infimum of the exponents p such that |V f||f — f(0)|7¢ has a positive
limit along any sequence converging to 0 is called the Lojasiewicz exponent
of f and is a rational number lying in |0, 1.

REMARK 3.1. Let f : C" — C be a polynomial. There is already a notion
of Lojasiewicz exponent at infinity, meaningful in this setting (see [Ha|).
Namely, if ¢ is a regular value of f, the Lojasiewicz exponent at infinity for ¢
is the supremum of the real numbers # for which there exists C > 0 such
that for all  with |z| > 1 and |f(z) — ¢| < 1,

IV f(x)] = Clal’.

Let L.(f) be this supremum. It is again a rational number and c¢ is an
asymptotic critical value if and only if L.(f) < —1.

Our purpose is to compare |V f(z)| with |f(z) — ¢| for an asymptotic
critical value ¢ of a semialgebraic function. The following result provides
an analog at infinity of the standard Y.ojasiewicz gradient inequality stated
above. This is the first important result of this article; to the best of our
knowledge, it has not been known before.

PROPOSITION 3.2. Let f be a C' semialgebraic function. If ¢ € Im f,
then there exist real numbers C,R,7 > 0 and a smallest rational number
0c < 1 such that for all x € R™ with |x| > R and |f(z) — ¢| < 7, we have

|z - [V f(2)] = C|f(z) — c|*.

Proof. By the curve selection lemma, it suffices to prove this fact on
semialgebraic curves having a half-branch at infinity. For simplicity we will
only consider values t < ¢. Let GG be a semialgebraic half-branch at infinity,
along which f tends to ¢ € R at infinity. We can assume that f is increasing
along G. Let [c —7,¢[2 t — ¢(t) € R" be a semialgebraic parametrisation of
the germ of G at infinity satisfying f o g(¢) =t for each ¢. Then there exist
a rational number 1 > 0 and a positive real number K such that

lg(t)| ~ K|t —c|™" ast—c.
By usual semialgebraic arguments, we get
I/ (1) ~ Knlt — | ast — e

Taking derivatives with respect to ¢, we obtain

(fog)(t)=(VF(g(t),g'®) =1.
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Thus, we deduce
1
Vgt > = |t — 7!
O

and
(3.1) 9(0)] - [V Fg(t)] > % t—d|.

Since the function ¢ +— f(g(t)) is semialgebraic, there exists a rational num-
ber v such that

lg(@®)| - IV f(g(E)] ~ [t —c]”.
From inequality (3.1) we obtain v < 1.
Let o, be the infimum of these exponents v. Define

2 IVE@) e }
E.= €Q: lim —f———— R}, Ilim T)=c,.
‘ {q Q- [f(@) —cl? ™ pftoo i@
We easily verify that F,. is a semialgebraic subset of R contained in @Q, hence
it is finite (for details see [KMP, Proposition 4.2]). Thus g, is rational. m

Since there is yet a Lojasiewicz exponent at infinity (cf. Remark 3.1),
we will refer to g. as the Kurdyka—f.ojasiewicz exponent at infinity of the
function f for the value c.

REMARK 3.3. Let us mention that Proposition 3.2 also holds when f :
V — L is a semialgebraic C'! function, defined on a closed and connected
semialgebraic C'' submanifold V' of R”, equipped with the semialgebraic
Riemannian metric induced from the Euclidean one.

The Malgrange condition corresponds to a value c of the given function
for which the Kurdyka-t.ojasiewicz exponent at infinity for c is less than or
equal to 0. The following proposition is just a rewriting of condition (M):

PROPOSITION 3.4. Let f be a C' semialgebraic function. Let ¢ € Im f.
Then c is an asymptotic critical value of f if and only if the Kurdyka—
Lojasiewicz exponent at infinity of f for c is positive.

Let ¢ € Koo(f) \ Ko(f) and let g, be the Kurdyka-Lojasiewicz exponent
at infinity for c¢. This number contains interesting information about the kind
of value (typical or not) that ¢ could be, as shown by the following

THEOREM 3.5. Let f be a C? semialgebraic function. If o. < 1, then f
18 a locally trivial fibration over c. Moreover, the fibration can be realised by

the flow of V f/|V f|?.

Proof. For simplicity we shall again only work with values ¢ < c. Let
¢p < ¢ be such that [co,c] N K(f) = {c}, and let R,C > 0 be real numbers
such that the assertion of Proposition 3.2 holds in f~!([co,¢[) N {|z| > R}
with constant C. Let xg € f~%(co) N {|z| > R} and let v be a (maximal)
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trajectory of V f parametrised by the levels of f. So « satisfies the differential

equation

(3.2) 7(#) =X(4(1),  (eo) = z0 € [ (o),

where X = V f/|V f|2. Thus, for each ¢ € [cg, c[, we obtain f o~(t) = t.
Integrating (3.2) between ¢ and ¢ < ¢, we obtain

(3.3) [ 7/ (s)ds = | X(+(s)) ds.

From (3.3), we get a first inequality
¢

(3-4) ()] < Iy(eo)l + |

co

ds
IVf(v(s)I

Using Proposition 3.2 we have
t

(35) ()] < |y(co)l + |

co

[y (s)]
Cls — |9

Then the Gronwall Lemma gives
t

(3.6) ()] < y(eo)l exp |

co

ds
Cls — clee’

which actually yields

(c—co)l=% — (c—t)t—2
3.7 t)| < |v(co)| exp

Hence |vy(t)| has a finite limit as ¢ tends to c. This implies that the embedding
¢ of Theorem 2.3 is essentially a diffeomorphism from f~1(¢) onto f~!(c).
This ends the proof. =

REMARK 3.6. Note that Theorem 3.5 also holds under the assumptions
of Remark 3.3, provided the C' regularity of f is replaced by C? regularity.

COROLLARY 3.7. If ¢ is a regular value and a bifurcation value, then the
Kurdyka—tL.ojasiewicz at infinity for c is equal to 1.

Proof. Since we cannot trivialise the function f over a neighbourhood
of ¢, from Theorem 3.5, the exponent has to be 1. u

When ¢ belongs to Koo (f) \ B(f), the function f induces a locally trivial
fibration over a neighbourhood of ¢. Moreover, this trivialisation is provided
by the flow of V f/|V f|> when the Kurdyka-F.ojasiewicz exponent at infinity
for ¢ is strictly less than 1. From the view point of Definition 2.5, Theorem
3.5 can be stated in another way:

COROLLARY 3.8. Let I' be a trajectory of Vf of infinite length at c.
Then the Kurdyka—f.ojasiewicz exponent at infinity of ¢ is equal to 1.
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4. Kurdyka—Yt.0ojasiewicz exponent of complex polynomials. Let
f : C" — C be a complex polynomial. As mentioned in Section 2, we can
define the set K (f) of asymptotic critical values, which is a finite subset
of C (|Til]). Again, we write K(f) = Ko(f) U Kx(f), the set of generalised
critical values. If ¢ € C\ K(f) then f is a locally trivial fibration over ¢
(ITit], [Ti2]).

There also exists an analog of the Embedding Theorem 2.3 in the complex

case. Namely, if ¢ € Ko (f) \ Ko(f) and ¢t € C\ K(f) then we have

THEOREM 4.1 ([D’A2]). There exists an embedding ¢er : f~(c) —
).

Let grad f be the polynomial vector field in C* whose components are
(0f(2)/0z1,...,0f(2)/0z1), where z = (z1,...,2y) is a system of coordi-
nates in C". Denote by ||w|| the norm of the complex vector w € C". The
proof of Theorem 4.1 (see [D’A2| for details) combined with the proof of
Proposition 3.2 gives

PROPOSITION 4.2. There exist C' > 0 and a rational number 0 < p < 1
such that for sufficiently large ||z|| and sufficiently small | f(2) — ¢|, we have

121l - [ grad f(2)]| = C1f(2) = ¢]*.

As before, the infimum of such exponents ¢ is positive and rational.
Again, we denote it by o., and call the Kurdyka—fojasiewicz erponent at
infinity of f for c.

The complex situation is much more rigid than the real one. When the
function f has only isolated singularities at infinity, knowing p. decides
whether the regular value c is typical or atypical. Under this hypothesis,
Parusinski proved that any asymptotic critical value is a bifurcation value

[Pa], that is, B(f) = Koo(f) U Ko(f)-

THEOREM 4.3. Let f be a complex polynomial with only isolated singu-
larities at infinity. A regular value ¢ is a bifurcation value if and only if the
Kurdyka—f.ojasiewicz exponent at infinity o. is equal to 1.

Proof. If g.=1, then c is an asymptotic critical value, and by Parusiriski’s
result [Pa, it is necessarily a bifurcation value.

Let ¢ be a regular bifurcation value. So the embedding ¢.; : ) —
f~1(t) is not onto for any typical value t € C.

We identify C with R? and write f = P + iQ, where P and Q are
respectively the real and imaginary parts of f. We equip C", when identified
with R?", with the usual Euclidean structure. Then ||grad f|| = |VP| =
vaQl

Assume now that o, < 1. Let ¢y be a typical value of f such that the real
line L ¢ R? through ¢ and cg passes through no other generalised critical
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value, that is, L N K(f) = {c}. Let V, = f~(L). This is a smooth real
algebraic hypersurface of R?". Let f; be the restriction of f to Vz. The
function fr, is thus a smooth semialgebraic function, so K (fr) is finite. By
definition, f; is a submersion.

We endow V, with the Riemannian structure induced by the Euclidean
structure of R?" and denote by Vy, the gradient with respect to the metric
induced on V7. After a rotation in C = R?, we can assume, writing ¢ = a+ib,
that the line L is {y = b}, where (z, y) is a system of coordinates of R?. Then
obviously V7 = Q~!(b), and since VP and V(Q are orthogonal vector fields
in R?", we deduce that

Vvl = Vv, (Fry) = (VP)py,  so lgrad f(v)|| = [V, fo(v)], Vo € VL.

From Remark 3.3, the Kurdyka—t.0jasiewicz exponent of f; at infinity for c,
denoted by oZ, is well defined, and we have just proved that ol > o.. If
0c < 1, by Remark 3.6, the fibre fL_l(c) is diffeomorphic to fL_l(co). Thus
f~1(c) is also diffeomorphic to f~!(c), which is impossible since ¢ is a
bifurcation value. Hence o, = 1.

5. Examples. In this section we produce some examples that illustrate
the results stated before. All the polynomials presented below have one
asymptotic critical value. Each example describes a different phenomenon.

EXAMPLE 5.1 (Broughton example). Let
[z y) = yley = 1).

We immediately find that f has no critical point. The set {9, f = 0} is the al-
gebraic curve {22y —1 =0} and f(z,1/2z) — 0 as x — oo, and 0 € K (f).
Estimating the function |z|-|V f(x)| along this half-branch at infinity shows
that the Kurdyka—t.ojasiewicz exponent at infinity gg is equal to 1.

Since 0is the only generalised critical value, we deduce B(f) = Ko (f) ={0}.

Denoting by ¢; the embedding of Theorem 2.3, we observe that the com-
plement of ¢;(f~1(0)) in f~1(¢) is non-empty for all t > 0. Taking — f instead
of f, we have a similar result for all ¢t < 0.

In this example the following is true: in the upper half-plane, there is a
unique integral curve of V f which is of infinite length at 0.

P

{f=t}

Fig. 1. Phase portrait of V f
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ExAMPLE 5.2 (King, Tibar & Zaharia example). Let
g(@,y) = —y(2e*y® — 9y + 12).

This function induces a smooth locally trivial fibration (see [TZ, Proposition
2.6]).

We obtain K(g) = Koo (g) = {0}, and B(g) is empty. Any level {—y(222%y>
— 9zy + 12) = t} is homeomorphic to a line.

We compactify R? to RP?, with coordinates [z : y : z]. The point [1: 0 : 0]
is the unique point at infinity of each fibre of g, and {Jyg = 0} is the union
of the algebraic curves PCy := {xy — 1 =0} and PCs := {zy — 2 = 0}. As
in the Broughton example, estimating the function |z| - |V f(x)| along PCy
(or PCs) shows that the Kurdyka—t.ojasiewicz exponent at infinity for 0 is
equal to 1.

For this function, there are infinitely many trajectories of infinite length
at 0, meaning the trivialisation by the gradient near the value 0 is impossible.

Let PC, = {42y — 9 = 0} be the polar curve in the vertical direction.
These three polar curves give enough information on the dynamics at infinity
of the gradient field. A trajectory has at most one intersection point with
each of the polar curves PC, (with x = 1,2,v). The phase portrait of Vg
is organised around two special integral curves (one between the z-axis and
PC;y, the other one between PCy and PC,), which actually are branching
points of the space of leaves of the foliation by Vg. For any level ¢ > 0, the
same kind of phenomenon occurs because of the symmetry of g.

A quick study of the signs of d,¢ and 0,g, and the study of the inflection
points of the trajectories give enough information to draw the phase portrait
of Fig. 2.

PC,

{g=t}
{9=0}

Fig. 2. Phase portrait of Vg
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EXAMPLE 5.3 (Parusiniski example). Let
h(z,y) =y + 1+ (1 +2%)y)*.

Each fibre of this function is homeomorphic to a line. Hence, by [TZ, Propo-
sition 2.6], h is a locally trivial fibration. On the curve PC, := {0,h = 0} =
{1+ (1+2%)y = 0}, we see that 0 belongs to K« (h). Moreover we find that
K(h) = Koo(h) = {O}

We compactify R? to RP?, with coordinates [z : y : z]. Fach fibre of h
admits [1: 0 : 0] as a unique point at infinity.

In this example, the gradient field realises the trivialisation.

The gradient vector field of h is given by

0 0
Vh(z,y) = 6zy(l + y + z°y)? e + (11" 4+ 3(1 + 2°) (L + y + 2°y)?) oy

Note that any level h=1(¢), with |t| < 1, is actually the graph of some

function z; of y, and we have

[t1/3 —1—y k(t)
with k(t) < 0.

Let gg be the Kurdyka—t.ojasiewicz exponent at infinity for 0. Let G be
any semialgebraic curve along which & is negative and tends to 0. The curve
G is the graph of a function, say x, of the variable x. Thus we must have
k(z) ~ —z¥ for a rational number v < 1. We assume z > 1.

If v £ —2, it is easy to verify that

(2, k()] - [Vh(z, 5(2))] > 2.

Thus the Kurdyka-t.ojasiewicz exponent along any such curve is non-
positive.

Assume v = —2. Then we deduce x(z) ~ —x~2. So there exists n > 1
such that d,;h(z, k(z)) ~ 27", thus dyh(x, x(x)) > 32377, and so

(2, 5(2))] - [Vh(z, 5(2))| =~ 20yh(x, ().
We can verify that there is a positive constant C' such that:

(1) if n > 23 then
xdyh(z, k(z)) > Clh(z, k(z))| "%,

(2) if n € ]47/3,23[ then
2dyh(z, k() > C|f(z, k(2))|4M/2 > C|h(z, k(z)) 1/
(3) if n € ]1,47/3] then
2yh(z,k(x)) > C|f(z,k(x))| 82V C=3D > C|h(z, v(x))[.
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Taking #(z) := —(1 4+ 22)~!, we can verify that along y = x(z),
20yh(, w(x)) ~ |h(z, x(2))] "2,
and thus gp = 19/22. So the flow of Vh/|Vh|? realises the trivialisation.
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and encouragement. We also thank R. Moussu and A. Parusiriski for fruitful
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