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Explicit bounds for the Lojasiewicz exponent
in the gradient inequality for polynomials

by DipDIER D’AcuNTO (Pisa) and
KRrzyszToF KURDYKA (Le Bourget-du-Lac)

Abstract. Let f : R™ — R be a polynomial function of degree d with f(0) = 0
and Vf(0) = 0. Lojasiewicz’s gradient inequality states that there exist C' > 0 and
¢ € (0,1) such that |Vf| > C|f|° in a neighbourhood of the origin. We prove that
the smallest such exponent g is not greater than 1 — R(n,d)”' with R(n,d) =
d(3d —3)" 1.

1. Introduction. Let f be an analytic function in a neighbourhood of
the origin in R™ and assume f(0) = 0 and Vf(0) = 0. The well known
Lojasiewicz gradient inequality (cf. [Lol] or [Lo2]) states that there exist an
open neighbourhood U of the origin and two constants C' > 0 and o < 1
such that for any x € U we have

(1.1) IVf(@)| = C|f(x)°

The Lojasiewicz exponent of f at the origin, denoted by oy, is the infimum
of the exponents p satisfying the f.ojasiewicz gradient inequality. Bochnak
and Risler (cf. [Bo-Ri]) proved that oy is a rational number. Moreover, in-
equality (1.1) holds with exponent oy and some constant C' > 0. Knowing
explicitly the exponent oy is important for the study of the gradient flow
near a singular point (cf. [Lol] and [KMP)).

We now assume that f is a polynomial of degree d in n variables. It is
known that ¢y can be bounded by some rational number o(n,d) < 1 de-
pending only on n and d. If f has an isolated zero at the origin (that is, f
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has a strict local extremum at 0) J. Gwozdziewicz [Gw| proved that
1
(d—1)"+1
In the present paper we consider the general case, that is, f may have a
non-isolated singularity at the origin. More precisely, for any integer d > 2
and for any polynomial f in n variables with deg f = d and f(0) = 0 we
have

or <1-—

MAIN THEOREM. The Lojasiewicz exponent oy satisfies
1
d(3d — 3)n—1"
More precisely of <1 — R(n,d)"!, where
R(n,d) = max{d(3d — 4)"*,2d(3d — 3)"2}.

Our approach, unlike [Gw| which uses polar curves, is based on the study
of ridge and valley lines attached to the singularity. More precisely, in a
fixed non-critical level hypersurface f~!(¢), we detect the points where the
restriction of the function |V f| to f~1(¢) has a local minimum. We denote
by I'(f) the collection of all those points when ¢ varies in R. As proved in
[D’A-Ku| the set I'(f) is of dimension 1 for a generic polynomial of degree d.
The set I'(f) is contained in the set of critical points of |V f| restricted to
f1(t), which is the set of points where Vf is an eigenvector of Hy, the
Hessian matrix of f.

The paper is organised as follows: first we explain the notion of ridge
and valley lines and highlight some important properties of this set. Clearly
the Lojasiewicz exponent gy is reached on I'(f). Next we recall an elemen-
tary definition of multiplicity of intersection between a complex hypersurface
{f = ¢} and a complex algebraic curve containing I'(f); we prefer to call
it the geometric degree of f on I'(f). We state an important result on the
semicontinuity of the geometric degree. We give a sketch of proof based on
the existence of a stratification (in the complex algebraic case) satisfying
Thom’s (ay) condition.

We then compute the Lojasiewicz exponent first for a generic polynomial
and finally, using semicontinuity of the geometric degree, for polynomials of
a fixed degree on an algebraic family of curves of ridge and valleys.

After the submission of this paper A. Gabrielov informed us that he
obtained the same bound in his paper [Ga]. (In fact he studied a more general
case of pffafian sets). He used relative polar curves of the complexification
of f and |V f|2. It seems, however, that our proof is a bit more detailed and
complete. For instance in the proof of Theorem 3.2 of [Ga] it is assumed that
the minima of f on the levels of g (here g = |V f|?) intersected with a closed
ball lie on the polar curve, but in fact they may occur on the boundary of

o <1—
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the ball, so they may not belong to the polar curve. Even more generally it
may happen that the relative polar curve may be empty; then one cannot
apply the crucial Theorem 3.1 of [Ga).

It is important to stress that the difficulty is to find a bound valid for all
polynomials (of fixed degree), since for a generic polynomial (which is Morse
in fact) the exponent is equal to 1/2.

The main difference between the proof in [Ga| and ours is the reduction
of the dimension of I'(f). Since Gabrielov works with the complexification
of I'(f), he can reduce to the case where dim I'(f) = 1 by taking the in-
tersection with a suitable complex 2-plane. Thus the curve on which the
Y.ojasiewicz exponent is computed is not real in general, so it is not selected
in I'(f). In our approach we actually obtain a real semialgebraic curve in
I'(f) on which the order of f can be controlled. This may be useful in further
studies.

The problem of finding the exact maximal Lojasiewicz exponent o(n,d)
for polynomials of degree d in n variables seems to be quite delicate. If we
write a bound in the form o(n,d) < 1 — R(n,d)~! with R(n,d) polynomial
with respect to d, then as proved in the present paper R(n,d) is of degree n.
It seems interesting to estimate the leading coefficient. Probably it should
be less than 1, as Gwozdziewicz's [Gw| result suggests. However, the poly-
nomials realizing g(n,d) may be extremely rare. Possibly there are finitely
many of them (up to some natural equivalence relation).

Of course we do not claim that the bound we propose is optimal, but
we hope that the method of valley lines (and their limits) may give a more
precise estimate for the Lojasiewicz exponent.

Also lower bounds for p(n,d) seem to be unknown. One could conjecture
that o(n,d) > 1—Q(n,d)~! with Q(n, d) polynomial of degree n with respect
to d. If n = 2, then Q(2,d) is of degree 2 and the leading coefficient of Q(2, d)
is not less than 15/28, by S. Gusein-Zade and N. Nekhoroshov [GuNe|. In this
case the problem is related to Ay singularities (with N = N(d) maximal)
which may appear on plane curves of degree d. Clearly for an Ay singularity
the Lojasiewicz exponent is 1 — 1/(N + 1).

2. Generalised valley lines. Let f : R” — R be a polynomial with
deg f = d > 2. In a given level hypersurface of f there are points of particular
interest, namely the ridge and valley lines of f. A naive but important way of
describing them is the following: fix a non-critical level hypersurface f~1(t)
and consider the points # € f~!(¢) such that for all s sufficiently close to ¢ the
Euclidean distance dist(x, f~1(s)) is greater than or equal to dist(z’, f~1(s))
for all 2’ € f~!(t) sufficiently close to x. We now give a more rigorous
definition of the ridge and valley lines of f.



54 D. D’Acunto and K. Kurdyka

DEFINITION 2.1. We say that a point £ € R" belongs to the ridge and
valley set of f, denoted by I'1 (f), if the function |V f|? restricted to f~1(f(z))
has a local minimum at x.

This terminology is motivated by its analogy with elements of the Earth
landscape.

Clearly, the ridge and valley set of f is contained in the set

O1(f) = {z e R" : d(|Vf]*) Adf =0}
of critical points of the function |V f|? restricted to the level sets of f. Observe
that x € ©1(f) if and only Vf(x) is an eigenvector of H(x), the Hessian
matrix of f at z. Note that ©1(f) is a real algebraic set while the ridge and
valley set is semialgebraic. The set ©1(f) is the set of common zeros of at
most n — 1 coefficients of the differential form w = d(|V f|?) A df.

Let B™(rg) be the open ball of radius 7y centred at the origin. Then the
infimum of the function |V f|? restricted to the hypersurfaces f~1(t)NB"(rg)
is not necessarily reached inside B™(ry) but maybe on the sphere S™(rg) =
OB™(rp). This can occur when the origin is not an isolated singularity of f.
One has to take into account some boundary effects. We therefore introduce
the boundary ridge and valley set of f, denoted by I'»(f), as the set of points
at which the function |V f|? restricted to f~1(t)NS™ (7o) has a local minimum.
Clearly, I'x(f) is contained in

Oo(f) = {x € S™(ro) : d([Vf|>) Adf A dr =0},

where 7(x) = |z|? — 73. Then we define the generalised ridge and valley set
of f associated to B"(ro) as I'(f) = I'l(f) U I»(f). Clearly

I'(f) c 0(f) = 61(f) U a(f).

The dimension of ©(f) is not always equal to 1. Nevertheless for a
“generic” polynomial the set O(f) is an algebraic curve. Let R4[X] be the
set of polynomials in n variables of degree less than or equal to d and
X =(X1,...,X,). Then we have

PROPOSITION 2.2 (|D’A-Ku|). Fiz integers d,n > 2. There is a semial-
gebraic set Gg C Ry[X], with codim G4 > 1, such that for any polynomial
f € Ry[X]\ Gy, the set O(f) is of dimension 1.

The proof of this proposition is based on transversality arguments and a
detailed study of the space of symmetric matrices (see [D’A-Ku]). We shall
call a polynomial f of degree d generic if f € Ry[X]\ Gy.

When dim ©;(f) = 1, the curve ©;(f) is contained in the set of common
zeros of n — 1 independent polynomials. As mentioned before, a point x
belongs to ©1(f) if and only if there exists A € R such that H;(z)V f(x) =
AV f(z). Thus the n — 1 polynomials describing @1 (f) have degree at most
3d — 4. In the same way ©O3(f) is contained in the set of common zeros of
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n — 2 polynomial equations of degree at most 3d — 3 and one polynomial
equation of degree 2.
We shall need the following corollary of Proposition 2.2.

COROLLARY 2.3. For any polynomial f € R4[X] there exists a polyno-
mial mapping ¢ : R — Ry[X] such that ©(0) = f and for all but finitely
many t € R the polynomial is generic, that is, o(t) & Gq.

Proof. Let Z; be the Zariski closure of G4. Since dim Z; = dim Gy < n,
Zg4 is a proper algebraic subset of Ry[X]. By the classical curve selection
lemma [Lol] there exists an analytic mapping ¢ : (—a,a) — Ry[X] such
that ©(0) = f and ©(0,s) ¢ Z;. As ¢ we can take the truncation of ¢ to a
sufficiently high order. =

3. Multiplicity of intersection. To prove that the estimate of the
Main Theorem for the F.ojasiewicz exponent holds true for both generic and
non-generic polynomials we will use some basic facts from elementary inter-
section theory. First we make precise what we shall mean by the geometric
degree of a polynomial f : C" — C on an algebraic curve I" C C". Assume
that f is non-constant on any irreducible component of I'. Then it is well
known that for all but finitely many z € C the number of points of ' f~1(z)
is constant. We call this number the geometric degree of f on I" and we denote
it by m(I, f). The next lemma follows easily from Rouché’s Theorem.

LEMMA 3.1. Let I' C C" be an algebraic curve and let f : C" — C be
a polynomial. Assume that f is non-constant on any irreducible component
of I' Let v : D — I' C C™ be an injective holomorphic function defined
in an open disk D C C. Then the order of f oy at any point s € D is not
greater than m(I, ).

We now explain a kind of semicontinuity of the geometric degree. Con-
sider an algebraic family Cy, t € C*, of algebraic curves in C”. That is, we
assume that the set

C={(z,t) eC"xC*:xz € Cy}
is algebraic in C" x C*. Let Cy be the limit as ¢t — 0 of this family, precisely
Co x 0= 6\ C,

where the closure is taken in the Zariski topology in C" x C. In fact, since
C is constructible in C" x C the closures of C' in the strong and the Zariski
topologies are the same. Hence Cj is an algebraic set in C" of dimension
1=dimC —1.

Now let f; : C* — C, t € C, be a family of polynomials such that the
coefficients of f; are polynomials in ¢. Assume that, for any t € C*, f; is
non-constant on any irreducible component of C;.
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LEMMA 3.2. Let Iy be the union of all irreducible components of Cy on
which fo is non-constant. Then

(31) ’I’)’L(Fo,fo) < m(Ct)ft)
for any t # 0 sufficiently close to 0 € C.

Proof. This result is a particular case of the general intersection theory
(see for instance Chapter 11 in [Fu]). However, we shall give below a sketch of
a simple geometric argument based on stratification theory. There exists (see
for instance [Ha-Lé] or [HMS]) a stratification of (Cy x 0, C') which satisfies
the so-called Thom’s (ay) condition. In our case it means that there exists
a finite set B C Cj such that:

e () \ B is smooth,

e for any x € Cy \ B and any € > 0 there exist a neighbourhood U of x
and § > 0 such that if y € C; NU and 0 < [t| < §, then C} is smooth
at y and the distance between the tangent spaces T, (C;) and T5(C)
is less than e.

Now choose z € C such that the hypersurface { fo = z} meets I transversally
at the points of Iy\ B. So by definition, m(Iy, fo) is equal to the cardinality of
I'yn{fo = z}. Fix a point x € CyN{fo = 2} and its small neighbourhood U.
By transversality, if ¢ is close to 0 and 2’ is close to z, then {f; = 2’} and C
have at least one common point in U. This proves inequality (3.1). m

4. Proof of the Main Theorem. In this section we use the generalised
ridge and valley lines to bound the Lojasiewicz exponent oy of a polynomial
f:R™ — R of degree d.

REMARK 4.1. Gwozdziewicz |Gw| proved that if an analytic function f
has an isolated zero at the origin, then the f.ojasiewicz exponent for the gradi-
ent inequality (1.1) is reached on all polar curves P, = (V f)~!(Rv) provided
v belongs to the complement in R™ of a proper linear subspace L. Moreover
he gave examples showing that this is no longer true for non-isolated singu-
larities. In particular he proved that if f is a polynomial of degree d with an
isolated zero at the origin then gy is bounded by 1 — ((d — 1)" +1)~1.

From now on we suppose that f : R®™ — R is a polynomial of degree
d > 2. We still assume that f(0) =0 and V f(0) = 0. Then we have

THEOREM 4.2. For any polynomial f : R™ — R of degree d the fo-
jasiewicz exponent oy at 0 is less than or equal to 1—(d(3d—3)"~1)~1. More
precisely, if f(0) =0 and Vf(0) = 0, then for any ro > 0 there exist € > 0
and C > 0 such that

IVf(@)| = C|f(x)
for any x € B™(ro) with |f(z)| < &, where o =1 — (d(3d — 3)"~1)~L.
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The proof of Theorem 4.2 is based on the estimate of the order of con-
tact of the hypersurface f~!(0) with a suitable parametrisation of the half-
branches of I'( ), the generalised ridge and valley set of f in the ball B™(rg).

Precisely the following proposition is crucial.

PROPOSITION 4.3. Let f : R™ — R be a polynomial of degree d. Assume
that (0,b) C f(B™(rg)) for some b > 0. Then there exists an analytic arc
0: (—a,a) — R"™ such that:

(1) f(6(0)) =0 and f o 6((0,a)) C (0,b);

(2) if s> 0 and x € f1(F(0()) N B (ro), then [V F(2)] = [V F(6(s)];

(3) ordo(f o) < d(3d—3)" 1.

Proof of Theorem 4.2. Assume we have proved Proposition 4.3 and let
be an analytic curve as in the proposition.

We write 0(t) = amt™ + am1t™ 1 +- -+ with |a,,| = 1, m > 1. For small
s > 0 we put

’Y(S) = 9<81/m) = ams + CLm+13(m—i_1)/m +---,

which is a convergent Puiseux series. Note that |y/(s)| — 1 as s — 0. Let us
write the Puiseux expansion of f o~:

(f 01)(s) = s + o + -+
with v < (1/m)d(3d — 3)" "1, k € (1/m)N, k > v, a,, > 0. Then we have
(f 01)(5) = (V£(3(s)),7'(s)} and [7/(s)| = 1 as 5 — 0. This implies

IVF((8))] = evans”™ = f((s))" 1/

for some positive constant ¢ > 0 and small s > 0. So there exists C' > 0 such
that

IV F(v()] = Clf(v(s))| D7
Recall that if z € f~1(f(y(s))), then |V f(z)| > |V f(7(s))|. Thus we have

Vf ()| > C|f(a)| 7

for any x € B™(rg) such that f(x) > 0 is small enough. Replacing f by —f
we obtain the result also for f(z) < 0. =

REMARK 4.4. Note that, for a fixed ordo(f o #), the exponent p =
(v —1)/v is the largest possible when m = 1, that is, the curve I'(f) is
smooth.

To complete the proof of Theorem 4.2 it remains to prove Proposition
4.3. We shall distinguish two cases. Namely, we first consider the case of a
generic polynomial and then, using the results of Section 3, we extend our
bound on the Lojasiewicz exponent to the non-generic polynomials.

Proof of Proposition 4.3. We will use the notations and results from
Section 2. Clearly the arc § must be chosen from the algebraic set O(f).
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CASE 1: The polynomial f is generic. That is, ©(f) is actually a curve.
We have

LEMMA 4.5. Assume that f is generic, and let 6 : (—a,a) — O(f) C R"
be an analytic arc. Suppose that the complexification of 0 is injective in a
small disk around the origin in C. Then ordy(f o 0) < d(3d — 3)"~L.

Recall that O(f) = O1(f) U Oa(f) is the union of two algebraic sets. So
the image of 0 entirely lies in one of them.

First we assume that 6(s) € ©;(f) for all s € (—a,a). Recall that if f
is generic then ©;(f) is of dimension one and is contained in the common
zeros of n — 1 independent coefficients of the 2-form w = d(|Vf|?) A df.
Denote them by g¢1,...,gn—1; recall that degg; < 3d — 4. We may assume
that Vgq(x), ..., Vgn—1(z) are linearly independent for all but finitely many
HARS @1(f).

Indeed, pick a smooth point x; in each irreducible component C; of ©1(f).
Let g1,...,gn—1 be such that Vg;(z1),...,Vg,_1(x1) are linearly indepen-
dent, and suppose that Vgi,...,Vg,—1 are linearly dependent at xzs. Let
hi,...,hn—1 be coefficients of w such that Vhj(xs),...,Vh,_1(x2) are lin-
early independent.

Now put g; = g; + €h;. If € > 0 is small enough, then the gradients of
gi are linearly independent at both points 1, 2. Continuing in this way we
obtain linear combinations p1, ..., p,_1 of the coefficients of w such that their
gradients are linearly independent at each point x;, hence, by algebraicity,
at all but finitely many points of ©1(f).

From Bézout’s Theorem (cf. e.g. [Be-Ri|, [Fu]) we obtain

n—1

(4.1)  m(O1(f), f) < deg f [ [ deggs < d(3d —4)" " < d(3d—3)""".
=1

Hence by Lemma 3.1,

(4.2) ordg(f © 0) <m(61(f), f) < d(3d—3)"".

Assume now 6(s) € Oa(f) for all s € (—a,a). Recall that Oa(f) is con-
tained in the common zeros of n — 2 polynomial equations of degree at most
3d — 3 and one polynomial equation of degree 2. So again by Bézout’s The-
orem,

(4.3) m(Oa(f), f) < 2d(3d — 3)"2 < d(3d —3)",
and by Lemma 3.1,
(4.4) ordo(f 0 0) < 2d(3d —3)""2 < d(3d — 3)" .

This proves Lemma 4.5.

We now continue the proof of Proposition 4.3 in the first case. Choose
e > such that (0,¢) C f(B™(ro)). By the classical curve selection lemma (cf.
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e.g. [BCR]) there exists a semialgebraic curve 0 : (0,¢) — B"(rq) such that

IVf(@)] = |[VfO(s)], @€ f7(0(s) N B"(ro).
It follows from Puiseux’s Theorem (cf. e.g. [L.03|) that there exists a rational
number ¢ > 0 such that 6(s) = 6(s7), s > 0, has an analytic (holomorphic)
extension which is actually injective on a small disk around the origin.
Observe that 6(s) € I'(f) C O1(f) U O2(f). But 0 is analytic and
O1(f), Oa(f) are algebraic sets, so either

0(s) € ©1(f), s € (0,e), or 6(s) € Ox(f),s € (0,¢),
for € > 0 small enough. From (4.2) and (4.4) we obtain
(4.5) ordg(f 0 8) < d(3d —3)" L.
This proves Proposition 4.3 in Case 1, that is, for a generic polynomial.

CASE 2: The general case. We now consider an arbitrary polynomial
f :R™ — R, of degree d > 2. By Proposition 2.2 there exists an algebraic
family of polynomials f, t € R, of degree at most d such that fy = f and
for all sufficiently small ¢ # 0 the polynomial f; is generic in the sense of
Section 2. Actually, by Corollary 2.3 we may choose this family so that the
coeflicients of f; are polynomials in t.

Hence f; is a well defined polynomial on C™ of degree at most d. So we
have two associated algebraic families of curves C; = ©1(f;), t € C*, and
Dy =6:(f), t € C.

More precisely, C; or Dy is a curve for all but finitely many ¢t € C*. This
follows from the fact that the genericity in Proposition 2.2 comes from a
transversality condition which is valid also in the complex case.

Let Cy and Dg be the respective limits, as t — 0, of the families C; =
O1(ft), t € C*, and Dy = O3(ft), t € C*. Note that Cp and Dy are algebraic
curves in C". We set

Fo(f) =R"N (Co U Do).

LEMMA 4.6. Lety € R and assume that f~1(y)NB"(rg) # 0. Then there

exists a point xo € Io(f) N B"(ro) such that
IVf(@) = |V f(xo)l, =€ f(y)nB"(ro).

To prove the lemma observe that I (f)NB™(rg) is the HausdorfF limit, as
t — 0, of the family (CyUDy)NB™(ro), t € R*. Recall that if f,!(y) N B"(ro)
is non-empty then |V f;|, restricted to f;*(y) N B™(rg), has a minimum at a
point which belongs to (C; U Dy) N B™(rg) = O(f;) N B™(ro). We leave the
details to the reader.

We are now in a position to finish the proof of Proposition 4.3 in the
second case. As in Case 1 we can choose in Ip(f) an analytic arc 6(s),
s € (—a,a), which satisfies condition (2) in Proposition 4.3. Clearly, as in
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Case 1, there are two possibilities: the image of 4 is included in Cj or in Dy.
Recall that, by (4.1),

m(01(fy), fr) <d(3d—4)"1 <d(3d—3)""", t#£0.

So, by the semicontinuity of intersection (Lemma 3.2), we have

(4.6) m(Co, f) < d(3d —4)" ! < d(3d—3)" L.
Hence if the image of 6 is included in Cj it follows from Lemma 3.1 that
(4.7) ordo(f 0 0) < m(Co, f) < d(3d —3)" 1.

Analogously by (4.3) we have
m(O2(fy), fi) < 2d(3d —3)" % <d(3d —3)""!, t#0.

Again, by Lemma 3.2, we have

(4.8) m(Do, f) < 2d(3d —3)"" 1 < d(3d —3)""1.
Hence if the image of 6 is included in Dy it follows from Lemma 3.1 that
(4.9) ordo(f 0 8) < m(Dy, f) < d(3d —3)" L.

This ends the proof of Proposition 4.3. =

Note that ordg(f o #) is actually bounded by max{d(3d — 4)" !
2d(3d — 3)"2}. So as claimed in the statement of the Main Theorem we
have precisely oy < 1 — R(n,d)™!, where

R(n,d) = max{d(3d — 4)"~', 2d(3d — 3)"?}.

REMARK 4.7. Note that, in contrast to the geometric degree, the f.o-
jasiewicz exponent is not upper semicontinuous. Consider for instance the
family

fe(z) = ta® + 2.
Clearly oy, = 1/2 for t # 0 and g, =1 —1/d.

So in the proof of Theorem 4.2 we cannot claim that we first prove the
estimate for a generic polynomial and then we extend it “by continuity” to
all polynomials. Actually a generic polynomial is a Morse function, hence its
Lojasiewicz exponent is equal to 1/2. What we can control is the geometric
degree of the polynomial on an algebraic curve on which the f.ojasiewicz
exponent is reached.
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