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Expliit bounds for the �ojasiewiz exponentin the gradient inequality for polynomialsby Didier D’Acunto (Pisa) and
Krzysztof Kurdyka (Le Bourget-du-La)

Abstrat. Let f : R
n → R be a polynomial funtion of degree d with f(0) = 0and ∇f(0) = 0. �ojasiewiz's gradient inequality states that there exist C > 0 and

̺ ∈ (0, 1) suh that |∇f | ≥ C|f |̺ in a neighbourhood of the origin. We prove thatthe smallest suh exponent ̺ is not greater than 1 − R(n, d)−1 with R(n, d) =
d(3d − 3)n−1.1. Introdution. Let f be an analyti funtion in a neighbourhood ofthe origin in R

n and assume f(0) = 0 and ∇f(0) = 0. The well known�ojasiewiz gradient inequality (f. [�o1℄ or [�o2℄) states that there exist anopen neighbourhood U of the origin and two onstants C > 0 and ̺ < 1suh that for any x ∈ U we have(1.1) |∇f(x)| ≥ C|f(x)|̺.The �ojasiewiz exponent of f at the origin, denoted by ̺f , is the in�mumof the exponents ̺ satisfying the �ojasiewiz gradient inequality. Bohnakand Risler (f. [Bo-Ri℄) proved that ̺f is a rational number. Moreover, in-equality (1.1) holds with exponent ̺f and some onstant C > 0. Knowingexpliitly the exponent ̺f is important for the study of the gradient �ownear a singular point (f. [�o1℄ and [KMP℄).We now assume that f is a polynomial of degree d in n variables. It isknown that ̺f an be bounded by some rational number ̺(n, d) < 1 de-pending only on n and d. If f has an isolated zero at the origin (that is, f2000 Mathematis Subjet Classi�ation: Primary 32Bxx, 34Cxx, Seondary 32Sxx,14P10.Key words and phrases: polynomials, �ojasiewiz's inequality, �ojasiewiz's exponent,valley lines.Supported by the EU researh network IHP-RAAG ontrat number HPRN-CT-2001-00271. [51℄



52 D. D'Aunto and K. Kurdykahas a strit loal extremum at 0) J. Gwo¹dziewiz [Gw℄ proved that
̺f ≤ 1 −

1

(d − 1)n + 1
.In the present paper we onsider the general ase, that is, f may have anon-isolated singularity at the origin. More preisely, for any integer d ≥ 2and for any polynomial f in n variables with deg f = d and f(0) = 0 wehaveMain Theorem. The �ojasiewiz exponent ̺f satis�es

̺f ≤ 1 −
1

d(3d − 3)n−1
.More preisely ̺f ≤ 1 − R(n, d)−1, where

R(n, d) = max{d(3d − 4)n−1, 2d(3d − 3)n−2}.Our approah, unlike [Gw℄ whih uses polar urves, is based on the studyof ridge and valley lines attahed to the singularity. More preisely, in a�xed non-ritial level hypersurfae f−1(t), we detet the points where therestrition of the funtion |∇f | to f−1(t) has a loal minimum. We denoteby Γ (f) the olletion of all those points when t varies in R. As proved in[D'A-Ku℄ the set Γ (f) is of dimension 1 for a generi polynomial of degree d.The set Γ (f) is ontained in the set of ritial points of |∇f | restrited to
f−1(t), whih is the set of points where ∇f is an eigenvetor of Hf , theHessian matrix of f .The paper is organised as follows: �rst we explain the notion of ridgeand valley lines and highlight some important properties of this set. Clearlythe �ojasiewiz exponent ̺f is reahed on Γ (f). Next we reall an elemen-tary de�nition of multipliity of intersetion between a omplex hypersurfae
{f = c} and a omplex algebrai urve ontaining Γ (f); we prefer to allit the geometri degree of f on Γ (f). We state an important result on thesemiontinuity of the geometri degree. We give a sketh of proof based onthe existene of a strati�ation (in the omplex algebrai ase) satisfyingThom's (af ) ondition.We then ompute the �ojasiewiz exponent �rst for a generi polynomialand �nally, using semiontinuity of the geometri degree, for polynomials ofa �xed degree on an algebrai family of urves of ridge and valleys.After the submission of this paper A. Gabrielov informed us that heobtained the same bound in his paper [Ga℄. (In fat he studied a more generalase of p�a�an sets). He used relative polar urves of the omplexi�ationof f and |∇f |2. It seems, however, that our proof is a bit more detailed andomplete. For instane in the proof of Theorem 3.2 of [Ga℄ it is assumed thatthe minima of f on the levels of g (here g = |∇f |2) interseted with a losedball lie on the polar urve, but in fat they may our on the boundary of



Bounds for �ojasiewiz's exponent 53the ball, so they may not belong to the polar urve. Even more generally itmay happen that the relative polar urve may be empty; then one annotapply the ruial Theorem 3.1 of [Ga℄.It is important to stress that the di�ulty is to �nd a bound valid for allpolynomials (of �xed degree), sine for a generi polynomial (whih is Morsein fat) the exponent is equal to 1/2.The main di�erene between the proof in [Ga℄ and ours is the redutionof the dimension of Γ (f). Sine Gabrielov works with the omplexi�ationof Γ (f), he an redue to the ase where dim Γ (f) = 1 by taking the in-tersetion with a suitable omplex 2-plane. Thus the urve on whih the�ojasiewiz exponent is omputed is not real in general, so it is not seletedin Γ (f). In our approah we atually obtain a real semialgebrai urve in
Γ (f) on whih the order of f an be ontrolled. This may be useful in furtherstudies.The problem of �nding the exat maximal �ojasiewiz exponent ̺(n, d)for polynomials of degree d in n variables seems to be quite deliate. If wewrite a bound in the form ̺(n, d) ≤ 1 − R(n, d)−1 with R(n, d) polynomialwith respet to d, then as proved in the present paper R(n, d) is of degree n.It seems interesting to estimate the leading oe�ient. Probably it shouldbe less than 1, as Gwo¹dziewiz's [Gw℄ result suggests. However, the poly-nomials realizing ̺(n, d) may be extremely rare. Possibly there are �nitelymany of them (up to some natural equivalene relation).Of ourse we do not laim that the bound we propose is optimal, butwe hope that the method of valley lines (and their limits) may give a morepreise estimate for the �ojasiewiz exponent.Also lower bounds for ̺(n, d) seem to be unknown. One ould onjeturethat ̺(n, d) ≥ 1−Q(n, d)−1 with Q(n, d) polynomial of degree n with respetto d. If n = 2, then Q(2, d) is of degree 2 and the leading oe�ient of Q(2, d)is not less than 15/28, by S. Gusein-Zade and N. Nekhoroshov [GuNe℄. In thisase the problem is related to AN singularities (with N = N(d) maximal)whih may appear on plane urves of degree d. Clearly for an AN singularitythe �ojasiewiz exponent is 1 − 1/(N + 1).

2. Generalised valley lines. Let f : R
n → R be a polynomial with

deg f = d ≥ 2. In a given level hypersurfae of f there are points of partiularinterest, namely the ridge and valley lines of f . A naive but important way ofdesribing them is the following: �x a non-ritial level hypersurfae f−1(t)and onsider the points x ∈ f−1(t) suh that for all s su�iently lose to t theEulidean distane dist(x, f−1(s)) is greater than or equal to dist(x′, f−1(s))for all x′ ∈ f−1(t) su�iently lose to x. We now give a more rigorousde�nition of the ridge and valley lines of f .



54 D. D'Aunto and K. KurdykaDefinition 2.1. We say that a point x ∈ R
n belongs to the ridge andvalley set of f , denoted by Γ1(f), if the funtion |∇f |2 restrited to f−1(f(x))has a loal minimum at x.This terminology is motivated by its analogy with elements of the Earthlandsape.Clearly, the ridge and valley set of f is ontained in the set

Θ1(f) = {x ∈ R
n : d(|∇f |2) ∧ df = 0}of ritial points of the funtion |∇f |2 restrited to the level sets of f . Observethat x ∈ Θ1(f) if and only ∇f(x) is an eigenvetor of Hf (x), the Hessianmatrix of f at x. Note that Θ1(f) is a real algebrai set while the ridge andvalley set is semialgebrai. The set Θ1(f) is the set of ommon zeros of atmost n − 1 oe�ients of the di�erential form ω = d(|∇f |2) ∧ df .Let Bn(r0) be the open ball of radius r0 entred at the origin. Then thein�mum of the funtion |∇f |2 restrited to the hypersurfaes f−1(t)∩Bn(r0)is not neessarily reahed inside Bn(r0) but maybe on the sphere Sn(r0) =

∂Bn(r0). This an our when the origin is not an isolated singularity of f .One has to take into aount some boundary e�ets. We therefore introduethe boundary ridge and valley set of f , denoted by Γ2(f), as the set of pointsat whih the funtion |∇f |2 restrited to f−1(t)∩Sn(r0) has a loal minimum.Clearly, Γ2(f) is ontained in
Θ2(f) = {x ∈ Sn(r0) : d(|∇f |2) ∧ df ∧ dr = 0},where r(x) = |x|2 − r2

0. Then we de�ne the generalised ridge and valley setof f assoiated to Bn(r0) as Γ (f) = Γ1(f) ∪ Γ2(f). Clearly
Γ (f) ⊂ Θ(f) = Θ1(f) ∪ Θ2(f).The dimension of Θ(f) is not always equal to 1. Nevertheless for a�generi� polynomial the set Θ(f) is an algebrai urve. Let Rd[X] be theset of polynomials in n variables of degree less than or equal to d and

X = (X1, . . . , Xn). Then we haveProposition 2.2 ([D'A-Ku℄). Fix integers d, n ≥ 2. There is a semial-gebrai set Gd ⊂ Rd[X], with codimGd ≥ 1, suh that for any polynomial
f ∈ Rd[X] \ Gd, the set Θ(f) is of dimension 1.The proof of this proposition is based on transversality arguments and adetailed study of the spae of symmetri matries (see [D'A-Ku℄). We shallall a polynomial f of degree d generi if f ∈ Rd[X] \ Gd.When dimΘ1(f) = 1, the urve Θ1(f) is ontained in the set of ommonzeros of n − 1 independent polynomials. As mentioned before, a point xbelongs to Θ1(f) if and only if there exists λ ∈ R suh that Hf (x)∇f(x) =
λ∇f(x). Thus the n − 1 polynomials desribing Θ1(f) have degree at most
3d − 4. In the same way Θ2(f) is ontained in the set of ommon zeros of



Bounds for �ojasiewiz's exponent 55
n − 2 polynomial equations of degree at most 3d − 3 and one polynomialequation of degree 2.We shall need the following orollary of Proposition 2.2.Corollary 2.3. For any polynomial f ∈ Rd[X] there exists a polyno-mial mapping ϕ : R → Rd[X] suh that ϕ(0) = f and for all but �nitelymany t ∈ R the polynomial is generi, that is, ϕ(t) 6∈ Gd.Proof. Let Zd be the Zariski losure of Gd. Sine dim Zd = dim Gd < n,
Zd is a proper algebrai subset of Rd[X]. By the lassial urve seletionlemma [�o1℄ there exists an analyti mapping ϕ̃ : (−a, a) → Rd[X] suhthat ϕ̃(0) = f and ϕ̃(0, s) 6⊂ Zd. As ϕ we an take the trunation of ϕ̃ to asu�iently high order.3. Multipliity of intersetion. To prove that the estimate of theMain Theorem for the �ojasiewiz exponent holds true for both generi andnon-generi polynomials we will use some basi fats from elementary inter-setion theory. First we make preise what we shall mean by the geometridegree of a polynomial f : C

n → C on an algebrai urve Γ ⊂ C
n. Assumethat f is non-onstant on any irreduible omponent of Γ . Then it is wellknown that for all but �nitely many z ∈ C the number of points of Γ∩f−1(z)is onstant. We all this number the geometri degree of f on Γ and we denoteit by m(Γ, f). The next lemma follows easily from Rouhé's Theorem.Lemma 3.1. Let Γ ⊂ C

n be an algebrai urve and let f : C
n → C bea polynomial. Assume that f is non-onstant on any irreduible omponentof Γ . Let γ : D → Γ ⊂ C

n be an injetive holomorphi funtion de�nedin an open disk D ⊂ C. Then the order of f ◦ γ at any point s ∈ D is notgreater than m(Γ, f).We now explain a kind of semiontinuity of the geometri degree. Con-sider an algebrai family Ct, t ∈ C
∗, of algebrai urves in C

n. That is, weassume that the set
C = {(x, t) ∈ C

n × C
∗ : x ∈ Ct}is algebrai in C

n ×C
∗. Let C0 be the limit as t → 0 of this family, preisely

C0 × 0 = C \ C,where the losure is taken in the Zariski topology in C
n × C. In fat, sine

C is onstrutible in C
n × C the losures of C in the strong and the Zariskitopologies are the same. Hene C0 is an algebrai set in C

n of dimension
1 = dim C − 1.Now let ft : C

n → C, t ∈ C, be a family of polynomials suh that theoe�ients of ft are polynomials in t. Assume that, for any t ∈ C
∗, ft isnon-onstant on any irreduible omponent of Ct.



56 D. D'Aunto and K. KurdykaLemma 3.2. Let Γ0 be the union of all irreduible omponents of C0 onwhih f0 is non-onstant. Then(3.1) m(Γ0, f0) ≤ m(Ct, ft)for any t 6= 0 su�iently lose to 0 ∈ C.Proof. This result is a partiular ase of the general intersetion theory(see for instane Chapter 11 in [Fu℄). However, we shall give below a sketh ofa simple geometri argument based on strati�ation theory. There exists (seefor instane [Ha-Lê℄ or [HMS℄) a strati�ation of (C0 × 0, C) whih satis�esthe so-alled Thom's (af ) ondition. In our ase it means that there existsa �nite set B ⊂ C0 suh that:
• C0 \ B is smooth,
• for any x ∈ C0 \ B and any ε > 0 there exist a neighbourhood U of xand δ > 0 suh that if y ∈ Ct ∩ U and 0 < |t| < δ, then Ct is smoothat y and the distane between the tangent spaes Ty(Ct) and Tx(C0)is less than ε.Now hoose z ∈ C suh that the hypersurfae {f0 = z}meets Γ0 transversallyat the points of Γ0\B. So by de�nition, m(Γ0, f0) is equal to the ardinality of

Γ0∩{f0 = z}. Fix a point x ∈ C0∩{f0 = z} and its small neighbourhood U .By transversality, if t is lose to 0 and z′ is lose to z, then {ft = z′} and Cthave at least one ommon point in U . This proves inequality (3.1).4. Proof of the Main Theorem. In this setion we use the generalisedridge and valley lines to bound the �ojasiewiz exponent ̺f of a polynomial
f : R

n → R of degree d.Remark 4.1. Gwo¹dziewiz [Gw℄ proved that if an analyti funtion fhas an isolated zero at the origin, then the �ojasiewiz exponent for the gradi-ent inequality (1.1) is reahed on all polar urves Pv = (∇f)−1(Rv) provided
v belongs to the omplement in R

n of a proper linear subspae L. Moreoverhe gave examples showing that this is no longer true for non-isolated singu-larities. In partiular he proved that if f is a polynomial of degree d with anisolated zero at the origin then ̺f is bounded by 1 − ((d − 1)n + 1)−1.From now on we suppose that f : R
n → R is a polynomial of degree

d ≥ 2. We still assume that f(0) = 0 and ∇f(0) = 0. Then we haveTheorem 4.2. For any polynomial f : R
n → R of degree d the �o-jasiewiz exponent ̺f at 0 is less than or equal to 1−(d(3d−3)n−1)−1. Morepreisely , if f(0) = 0 and ∇f(0) = 0, then for any r0 > 0 there exist ε > 0and C > 0 suh that

|∇f(x)| ≥ C|f(x)|̺for any x ∈ Bn(r0) with |f(x)| < ε, where ̺ = 1 − (d(3d − 3)n−1)−1.



Bounds for �ojasiewiz's exponent 57The proof of Theorem 4.2 is based on the estimate of the order of on-tat of the hypersurfae f−1(0) with a suitable parametrisation of the half-branhes of Γ (f), the generalised ridge and valley set of f in the ball Bn(r0).Preisely the following proposition is ruial.Proposition 4.3. Let f : R
n → R be a polynomial of degree d. Assumethat (0, b) ⊂ f(Bn(r0)) for some b > 0. Then there exists an analyti ar

θ : (−a, a) → R
n suh that :(1) f(θ(0)) = 0 and f ◦ θ((0, a)) ⊂ (0, b);(2) if s > 0 and x ∈ f−1(f(θ(s))) ∩ Bn(r0), then |∇f(x)| ≥ |∇f(θ(s))|;(3) ord0(f ◦ θ) ≤ d(3d − 3)n−1.Proof of Theorem 4.2. Assume we have proved Proposition 4.3 and let θbe an analyti urve as in the proposition.We write θ(t) = amtm +am+1t

m+1 + · · · with |am| = 1, m ≥ 1. For small
s > 0 we put

γ(s) = θ(s1/m) = ams + am+1s
(m+1)/m + · · · ,whih is a onvergent Puiseux series. Note that |γ′(s)| → 1 as s → 0. Let uswrite the Puiseux expansion of f ◦ γ:

(f ◦ γ)(s) = ανsν + αks
k + · · · ,with ν ≤ (1/m)d(3d − 3)n−1, k ∈ (1/m)N, k > ν, αν > 0. Then we have

(f ◦ γ)′(s) = 〈∇f(γ(s)), γ′(s)〉 and |γ′(s)| ≃ 1 as s → 0. This implies
|∇f(γ(s))| ≥ cνανs

ν−1 ≃ f(γ(s))(ν−1)/νfor some positive onstant c > 0 and small s > 0. So there exists C > 0 suhthat
|∇f(γ(s))| ≥ C|f(γ(s))|(ν−1)/ν.Reall that if x ∈ f−1(f(γ(s))), then |∇f(x)| ≥ |∇f(γ(s))|. Thus we have

|∇f(x)| ≥ C|f(x)|(ν−1)/νfor any x ∈ Bn(r0) suh that f(x) > 0 is small enough. Replaing f by −fwe obtain the result also for f(x) < 0.Remark 4.4. Note that, for a �xed ord0(f ◦ θ), the exponent ̺ =
(ν − 1)/ν is the largest possible when m = 1, that is, the urve Γ (f) issmooth.To omplete the proof of Theorem 4.2 it remains to prove Proposition4.3. We shall distinguish two ases. Namely, we �rst onsider the ase of ageneri polynomial and then, using the results of Setion 3, we extend ourbound on the �ojasiewiz exponent to the non-generi polynomials.Proof of Proposition 4.3. We will use the notations and results fromSetion 2. Clearly the ar θ must be hosen from the algebrai set Θ(f).
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Case 1: The polynomial f is generi. That is, Θ(f) is atually a urve.We haveLemma 4.5. Assume that f is generi, and let θ : (−a, a) → Θ(f) ⊂ R

nbe an analyti ar. Suppose that the omplexi�ation of θ is injetive in asmall disk around the origin in C. Then ord0(f ◦ θ) ≤ d(3d − 3)n−1.Reall that Θ(f) = Θ1(f) ∪ Θ2(f) is the union of two algebrai sets. Sothe image of θ entirely lies in one of them.First we assume that θ(s) ∈ Θ1(f) for all s ∈ (−a, a). Reall that if fis generi then Θ1(f) is of dimension one and is ontained in the ommonzeros of n − 1 independent oe�ients of the 2-form ω = d(|∇f |2) ∧ df .Denote them by g1, . . . , gn−1; reall that deg gi ≤ 3d − 4. We may assumethat ∇g1(x), . . . ,∇gn−1(x) are linearly independent for all but �nitely many
x ∈ Θ1(f).Indeed, pik a smooth point xi in eah irreduible omponent Ci of Θ1(f).Let g1, . . . , gn−1 be suh that ∇g1(x1), . . . ,∇gn−1(x1) are linearly indepen-dent, and suppose that ∇g1, . . . ,∇gn−1 are linearly dependent at x2. Let
h1, . . . , hn−1 be oe�ients of ω suh that ∇h1(x2), . . . ,∇hn−1(x2) are lin-early independent.Now put g̃i = gi + εhi. If ε > 0 is small enough, then the gradients of
g̃i are linearly independent at both points x1, x2. Continuing in this way weobtain linear ombinations p1, . . . , pn−1 of the oe�ients of ω suh that theirgradients are linearly independent at eah point xi, hene, by algebraiity,at all but �nitely many points of Θ1(f).From Bézout's Theorem (f. e.g. [Be-Ri℄, [Fu℄) we obtain(4.1) m(Θ1(f), f) ≤ deg f

n−1∏

i=1

deg gi ≤ d(3d − 4)n−1 ≤ d(3d − 3)n−1.Hene by Lemma 3.1,(4.2) ord0(f ◦ θ) ≤ m(Θ1(f), f) ≤ d(3d − 3)n−1.Assume now θ(s) ∈ Θ2(f) for all s ∈ (−a, a). Reall that Θ2(f) is on-tained in the ommon zeros of n− 2 polynomial equations of degree at most
3d − 3 and one polynomial equation of degree 2. So again by Bézout's The-orem,(4.3) m(Θ2(f), f) ≤ 2d(3d − 3)n−2 ≤ d(3d − 3)n−1,and by Lemma 3.1,(4.4) ord0(f ◦ θ) ≤ 2d(3d − 3)n−2 ≤ d(3d − 3)n−1.This proves Lemma 4.5.We now ontinue the proof of Proposition 4.3 in the �rst ase. Choose
ε > suh that (0, ε) ⊂ f(Bn(r0)). By the lassial urve seletion lemma (f.



Bounds for �ojasiewiz's exponent 59e.g. [BCR℄) there exists a semialgebrai urve θ̃ : (0, ε) → Bn(r0) suh that
|∇f(x)| ≥ |∇f(θ̃(s))|, x ∈ f−1(θ̃(s)) ∩ Bn(r0).It follows from Puiseux's Theorem (f. e.g. [�o3℄) that there exists a rationalnumber q > 0 suh that θ(s) = θ̃(sq), s > 0, has an analyti (holomorphi)extension whih is atually injetive on a small disk around the origin.Observe that θ(s) ∈ Γ (f) ⊂ Θ1(f) ∪ Θ2(f). But θ is analyti and

Θ1(f), Θ2(f) are algebrai sets, so either
θ(s) ∈ Θ1(f), s ∈ (0, ε), or θ(s) ∈ Θ2(f), s ∈ (0, ε),for ε > 0 small enough. From (4.2) and (4.4) we obtain(4.5) ord0(f ◦ θ) ≤ d(3d − 3)n−1.This proves Proposition 4.3 in Case 1, that is, for a generi polynomial.

Case 2: The general ase. We now onsider an arbitrary polynomial
f : R

n → R, of degree d ≥ 2. By Proposition 2.2 there exists an algebraifamily of polynomials ft, t ∈ R, of degree at most d suh that f0 = f andfor all su�iently small t 6= 0 the polynomial ft is generi in the sense ofSetion 2. Atually, by Corollary 2.3 we may hoose this family so that theoe�ients of ft are polynomials in t.Hene ft is a well de�ned polynomial on C
n of degree at most d. So wehave two assoiated algebrai families of urves Ct = Θ1(ft), t ∈ C

∗, and
Dt = Θ2(ft), t ∈ C

∗.More preisely, Ct or Dt is a urve for all but �nitely many t ∈ C
∗. Thisfollows from the fat that the generiity in Proposition 2.2 omes from atransversality ondition whih is valid also in the omplex ase.Let C0 and D0 be the respetive limits, as t → 0, of the families Ct =

Θ1(ft), t ∈ C
∗, and Dt = Θ2(ft), t ∈ C

∗. Note that C0 and D0 are algebraiurves in C
n. We set

Γ0(f) = R
n ∩ (C0 ∪ D0).Lemma 4.6. Let y ∈ R and assume that f−1(y)∩Bn(r0) 6= ∅. Then thereexists a point x0 ∈ Γ0(f) ∩ Bn(r0) suh that

|∇f(x)| ≥ |∇f(x0)|, x ∈ f−1(y) ∩ Bn(r0).To prove the lemma observe that Γ0(f)∩Bn(r0) is the Hausdor� limit, as
t → 0, of the family (Ct∪Dt)∩Bn(r0), t ∈ R

∗. Reall that if f−1
t (y)∩Bn(r0)is non-empty then |∇ft|, restrited to f−1

t (y)∩Bn(r0), has a minimum at apoint whih belongs to (Ct ∪ Dt) ∩ Bn(r0) = Θ(ft) ∩ Bn(r0). We leave thedetails to the reader.We are now in a position to �nish the proof of Proposition 4.3 in theseond ase. As in Case 1 we an hoose in Γ0(f) an analyti ar θ(s),
s ∈ (−a, a), whih satis�es ondition (2) in Proposition 4.3. Clearly, as in



60 D. D'Aunto and K. KurdykaCase 1, there are two possibilities: the image of θ is inluded in C0 or in D0.Reall that, by (4.1),
m(Θ1(ft), ft) ≤ d(3d − 4)n−1 ≤ d(3d − 3)n−1, t 6= 0.So, by the semiontinuity of intersetion (Lemma 3.2), we have(4.6) m(C0, f) ≤ d(3d − 4)n−1 ≤ d(3d − 3)n−1.Hene if the image of θ is inluded in C0 it follows from Lemma 3.1 that(4.7) ord0(f ◦ θ) ≤ m(C0, f) ≤ d(3d − 3)n−1.Analogously by (4.3) we have
m(Θ2(ft), ft) ≤ 2d(3d − 3)n−2 ≤ d(3d − 3)n−1, t 6= 0.Again, by Lemma 3.2, we have(4.8) m(D0, f) ≤ 2d(3d − 3)n−1 ≤ d(3d − 3)n−1.Hene if the image of θ is inluded in D0 it follows from Lemma 3.1 that(4.9) ord0(f ◦ θ) ≤ m(D0, f) ≤ d(3d − 3)n−1.This ends the proof of Proposition 4.3.Note that ord0(f ◦ θ) is atually bounded by max{d(3d − 4)n−1,

2d(3d − 3)n−2}. So as laimed in the statement of the Main Theorem wehave preisely ̺f ≤ 1 − R(n, d)−1, where
R(n, d) = max{d(3d − 4)n−1, 2d(3d − 3)n−2}.Remark 4.7. Note that, in ontrast to the geometri degree, the �o-jasiewiz exponent is not upper semiontinuous. Consider for instane thefamily

ft(x) = tx2 + xd.Clearly ̺ft
= 1/2 for t 6= 0 and ̺f0

= 1 − 1/d.So in the proof of Theorem 4.2 we annot laim that we �rst prove theestimate for a generi polynomial and then we extend it �by ontinuity� toall polynomials. Atually a generi polynomial is a Morse funtion, hene its�ojasiewiz exponent is equal to 1/2. What we an ontrol is the geometridegree of the polynomial on an algebrai urve on whih the �ojasiewizexponent is reahed.
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