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Expli
it bounds for the �ojasiewi
z exponentin the gradient inequality for polynomialsby Didier D’Acunto (Pisa) and
Krzysztof Kurdyka (Le Bourget-du-La
)

Abstra
t. Let f : R
n → R be a polynomial fun
tion of degree d with f(0) = 0and ∇f(0) = 0. �ojasiewi
z's gradient inequality states that there exist C > 0 and

̺ ∈ (0, 1) su
h that |∇f | ≥ C|f |̺ in a neighbourhood of the origin. We prove thatthe smallest su
h exponent ̺ is not greater than 1 − R(n, d)−1 with R(n, d) =
d(3d − 3)n−1.1. Introdu
tion. Let f be an analyti
 fun
tion in a neighbourhood ofthe origin in R

n and assume f(0) = 0 and ∇f(0) = 0. The well known�ojasiewi
z gradient inequality (
f. [�o1℄ or [�o2℄) states that there exist anopen neighbourhood U of the origin and two 
onstants C > 0 and ̺ < 1su
h that for any x ∈ U we have(1.1) |∇f(x)| ≥ C|f(x)|̺.The �ojasiewi
z exponent of f at the origin, denoted by ̺f , is the in�mumof the exponents ̺ satisfying the �ojasiewi
z gradient inequality. Bo
hnakand Risler (
f. [Bo-Ri℄) proved that ̺f is a rational number. Moreover, in-equality (1.1) holds with exponent ̺f and some 
onstant C > 0. Knowingexpli
itly the exponent ̺f is important for the study of the gradient �ownear a singular point (
f. [�o1℄ and [KMP℄).We now assume that f is a polynomial of degree d in n variables. It isknown that ̺f 
an be bounded by some rational number ̺(n, d) < 1 de-pending only on n and d. If f has an isolated zero at the origin (that is, f2000 Mathemati
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unto and K. Kurdykahas a stri
t lo
al extremum at 0) J. Gwo¹dziewi
z [Gw℄ proved that
̺f ≤ 1 −

1

(d − 1)n + 1
.In the present paper we 
onsider the general 
ase, that is, f may have anon-isolated singularity at the origin. More pre
isely, for any integer d ≥ 2and for any polynomial f in n variables with deg f = d and f(0) = 0 wehaveMain Theorem. The �ojasiewi
z exponent ̺f satis�es

̺f ≤ 1 −
1

d(3d − 3)n−1
.More pre
isely ̺f ≤ 1 − R(n, d)−1, where

R(n, d) = max{d(3d − 4)n−1, 2d(3d − 3)n−2}.Our approa
h, unlike [Gw℄ whi
h uses polar 
urves, is based on the studyof ridge and valley lines atta
hed to the singularity. More pre
isely, in a�xed non-
riti
al level hypersurfa
e f−1(t), we dete
t the points where therestri
tion of the fun
tion |∇f | to f−1(t) has a lo
al minimum. We denoteby Γ (f) the 
olle
tion of all those points when t varies in R. As proved in[D'A-Ku℄ the set Γ (f) is of dimension 1 for a generi
 polynomial of degree d.The set Γ (f) is 
ontained in the set of 
riti
al points of |∇f | restri
ted to
f−1(t), whi
h is the set of points where ∇f is an eigenve
tor of Hf , theHessian matrix of f .The paper is organised as follows: �rst we explain the notion of ridgeand valley lines and highlight some important properties of this set. Clearlythe �ojasiewi
z exponent ̺f is rea
hed on Γ (f). Next we re
all an elemen-tary de�nition of multipli
ity of interse
tion between a 
omplex hypersurfa
e
{f = c} and a 
omplex algebrai
 
urve 
ontaining Γ (f); we prefer to 
allit the geometri
 degree of f on Γ (f). We state an important result on thesemi
ontinuity of the geometri
 degree. We give a sket
h of proof based onthe existen
e of a strati�
ation (in the 
omplex algebrai
 
ase) satisfyingThom's (af ) 
ondition.We then 
ompute the �ojasiewi
z exponent �rst for a generi
 polynomialand �nally, using semi
ontinuity of the geometri
 degree, for polynomials ofa �xed degree on an algebrai
 family of 
urves of ridge and valleys.After the submission of this paper A. Gabrielov informed us that heobtained the same bound in his paper [Ga℄. (In fa
t he studied a more general
ase of p�a�an sets). He used relative polar 
urves of the 
omplexi�
ationof f and |∇f |2. It seems, however, that our proof is a bit more detailed and
omplete. For instan
e in the proof of Theorem 3.2 of [Ga℄ it is assumed thatthe minima of f on the levels of g (here g = |∇f |2) interse
ted with a 
losedball lie on the polar 
urve, but in fa
t they may o

ur on the boundary of
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z's exponent 53the ball, so they may not belong to the polar 
urve. Even more generally itmay happen that the relative polar 
urve may be empty; then one 
annotapply the 
ru
ial Theorem 3.1 of [Ga℄.It is important to stress that the di�
ulty is to �nd a bound valid for allpolynomials (of �xed degree), sin
e for a generi
 polynomial (whi
h is Morsein fa
t) the exponent is equal to 1/2.The main di�eren
e between the proof in [Ga℄ and ours is the redu
tionof the dimension of Γ (f). Sin
e Gabrielov works with the 
omplexi�
ationof Γ (f), he 
an redu
e to the 
ase where dim Γ (f) = 1 by taking the in-terse
tion with a suitable 
omplex 2-plane. Thus the 
urve on whi
h the�ojasiewi
z exponent is 
omputed is not real in general, so it is not sele
tedin Γ (f). In our approa
h we a
tually obtain a real semialgebrai
 
urve in
Γ (f) on whi
h the order of f 
an be 
ontrolled. This may be useful in furtherstudies.The problem of �nding the exa
t maximal �ojasiewi
z exponent ̺(n, d)for polynomials of degree d in n variables seems to be quite deli
ate. If wewrite a bound in the form ̺(n, d) ≤ 1 − R(n, d)−1 with R(n, d) polynomialwith respe
t to d, then as proved in the present paper R(n, d) is of degree n.It seems interesting to estimate the leading 
oe�
ient. Probably it shouldbe less than 1, as Gwo¹dziewi
z's [Gw℄ result suggests. However, the poly-nomials realizing ̺(n, d) may be extremely rare. Possibly there are �nitelymany of them (up to some natural equivalen
e relation).Of 
ourse we do not 
laim that the bound we propose is optimal, butwe hope that the method of valley lines (and their limits) may give a morepre
ise estimate for the �ojasiewi
z exponent.Also lower bounds for ̺(n, d) seem to be unknown. One 
ould 
onje
turethat ̺(n, d) ≥ 1−Q(n, d)−1 with Q(n, d) polynomial of degree n with respe
tto d. If n = 2, then Q(2, d) is of degree 2 and the leading 
oe�
ient of Q(2, d)is not less than 15/28, by S. Gusein-Zade and N. Nekhoroshov [GuNe℄. In this
ase the problem is related to AN singularities (with N = N(d) maximal)whi
h may appear on plane 
urves of degree d. Clearly for an AN singularitythe �ojasiewi
z exponent is 1 − 1/(N + 1).

2. Generalised valley lines. Let f : R
n → R be a polynomial with

deg f = d ≥ 2. In a given level hypersurfa
e of f there are points of parti
ularinterest, namely the ridge and valley lines of f . A naive but important way ofdes
ribing them is the following: �x a non-
riti
al level hypersurfa
e f−1(t)and 
onsider the points x ∈ f−1(t) su
h that for all s su�
iently 
lose to t theEu
lidean distan
e dist(x, f−1(s)) is greater than or equal to dist(x′, f−1(s))for all x′ ∈ f−1(t) su�
iently 
lose to x. We now give a more rigorousde�nition of the ridge and valley lines of f .



54 D. D'A
unto and K. KurdykaDefinition 2.1. We say that a point x ∈ R
n belongs to the ridge andvalley set of f , denoted by Γ1(f), if the fun
tion |∇f |2 restri
ted to f−1(f(x))has a lo
al minimum at x.This terminology is motivated by its analogy with elements of the Earthlands
ape.Clearly, the ridge and valley set of f is 
ontained in the set

Θ1(f) = {x ∈ R
n : d(|∇f |2) ∧ df = 0}of 
riti
al points of the fun
tion |∇f |2 restri
ted to the level sets of f . Observethat x ∈ Θ1(f) if and only ∇f(x) is an eigenve
tor of Hf (x), the Hessianmatrix of f at x. Note that Θ1(f) is a real algebrai
 set while the ridge andvalley set is semialgebrai
. The set Θ1(f) is the set of 
ommon zeros of atmost n − 1 
oe�
ients of the di�erential form ω = d(|∇f |2) ∧ df .Let Bn(r0) be the open ball of radius r0 
entred at the origin. Then thein�mum of the fun
tion |∇f |2 restri
ted to the hypersurfa
es f−1(t)∩Bn(r0)is not ne
essarily rea
hed inside Bn(r0) but maybe on the sphere Sn(r0) =

∂Bn(r0). This 
an o

ur when the origin is not an isolated singularity of f .One has to take into a

ount some boundary e�e
ts. We therefore introdu
ethe boundary ridge and valley set of f , denoted by Γ2(f), as the set of pointsat whi
h the fun
tion |∇f |2 restri
ted to f−1(t)∩Sn(r0) has a lo
al minimum.Clearly, Γ2(f) is 
ontained in
Θ2(f) = {x ∈ Sn(r0) : d(|∇f |2) ∧ df ∧ dr = 0},where r(x) = |x|2 − r2

0. Then we de�ne the generalised ridge and valley setof f asso
iated to Bn(r0) as Γ (f) = Γ1(f) ∪ Γ2(f). Clearly
Γ (f) ⊂ Θ(f) = Θ1(f) ∪ Θ2(f).The dimension of Θ(f) is not always equal to 1. Nevertheless for a�generi
� polynomial the set Θ(f) is an algebrai
 
urve. Let Rd[X] be theset of polynomials in n variables of degree less than or equal to d and

X = (X1, . . . , Xn). Then we haveProposition 2.2 ([D'A-Ku℄). Fix integers d, n ≥ 2. There is a semial-gebrai
 set Gd ⊂ Rd[X], with codimGd ≥ 1, su
h that for any polynomial
f ∈ Rd[X] \ Gd, the set Θ(f) is of dimension 1.The proof of this proposition is based on transversality arguments and adetailed study of the spa
e of symmetri
 matri
es (see [D'A-Ku℄). We shall
all a polynomial f of degree d generi
 if f ∈ Rd[X] \ Gd.When dimΘ1(f) = 1, the 
urve Θ1(f) is 
ontained in the set of 
ommonzeros of n − 1 independent polynomials. As mentioned before, a point xbelongs to Θ1(f) if and only if there exists λ ∈ R su
h that Hf (x)∇f(x) =
λ∇f(x). Thus the n − 1 polynomials des
ribing Θ1(f) have degree at most
3d − 4. In the same way Θ2(f) is 
ontained in the set of 
ommon zeros of
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n − 2 polynomial equations of degree at most 3d − 3 and one polynomialequation of degree 2.We shall need the following 
orollary of Proposition 2.2.Corollary 2.3. For any polynomial f ∈ Rd[X] there exists a polyno-mial mapping ϕ : R → Rd[X] su
h that ϕ(0) = f and for all but �nitelymany t ∈ R the polynomial is generi
, that is, ϕ(t) 6∈ Gd.Proof. Let Zd be the Zariski 
losure of Gd. Sin
e dim Zd = dim Gd < n,
Zd is a proper algebrai
 subset of Rd[X]. By the 
lassi
al 
urve sele
tionlemma [�o1℄ there exists an analyti
 mapping ϕ̃ : (−a, a) → Rd[X] su
hthat ϕ̃(0) = f and ϕ̃(0, s) 6⊂ Zd. As ϕ we 
an take the trun
ation of ϕ̃ to asu�
iently high order.3. Multipli
ity of interse
tion. To prove that the estimate of theMain Theorem for the �ojasiewi
z exponent holds true for both generi
 andnon-generi
 polynomials we will use some basi
 fa
ts from elementary inter-se
tion theory. First we make pre
ise what we shall mean by the geometri
degree of a polynomial f : C

n → C on an algebrai
 
urve Γ ⊂ C
n. Assumethat f is non-
onstant on any irredu
ible 
omponent of Γ . Then it is wellknown that for all but �nitely many z ∈ C the number of points of Γ∩f−1(z)is 
onstant. We 
all this number the geometri
 degree of f on Γ and we denoteit by m(Γ, f). The next lemma follows easily from Rou
hé's Theorem.Lemma 3.1. Let Γ ⊂ C

n be an algebrai
 
urve and let f : C
n → C bea polynomial. Assume that f is non-
onstant on any irredu
ible 
omponentof Γ . Let γ : D → Γ ⊂ C

n be an inje
tive holomorphi
 fun
tion de�nedin an open disk D ⊂ C. Then the order of f ◦ γ at any point s ∈ D is notgreater than m(Γ, f).We now explain a kind of semi
ontinuity of the geometri
 degree. Con-sider an algebrai
 family Ct, t ∈ C
∗, of algebrai
 
urves in C

n. That is, weassume that the set
C = {(x, t) ∈ C

n × C
∗ : x ∈ Ct}is algebrai
 in C

n ×C
∗. Let C0 be the limit as t → 0 of this family, pre
isely

C0 × 0 = C \ C,where the 
losure is taken in the Zariski topology in C
n × C. In fa
t, sin
e

C is 
onstru
tible in C
n × C the 
losures of C in the strong and the Zariskitopologies are the same. Hen
e C0 is an algebrai
 set in C

n of dimension
1 = dim C − 1.Now let ft : C

n → C, t ∈ C, be a family of polynomials su
h that the
oe�
ients of ft are polynomials in t. Assume that, for any t ∈ C
∗, ft isnon-
onstant on any irredu
ible 
omponent of Ct.



56 D. D'A
unto and K. KurdykaLemma 3.2. Let Γ0 be the union of all irredu
ible 
omponents of C0 onwhi
h f0 is non-
onstant. Then(3.1) m(Γ0, f0) ≤ m(Ct, ft)for any t 6= 0 su�
iently 
lose to 0 ∈ C.Proof. This result is a parti
ular 
ase of the general interse
tion theory(see for instan
e Chapter 11 in [Fu℄). However, we shall give below a sket
h ofa simple geometri
 argument based on strati�
ation theory. There exists (seefor instan
e [Ha-Lê℄ or [HMS℄) a strati�
ation of (C0 × 0, C) whi
h satis�esthe so-
alled Thom's (af ) 
ondition. In our 
ase it means that there existsa �nite set B ⊂ C0 su
h that:
• C0 \ B is smooth,
• for any x ∈ C0 \ B and any ε > 0 there exist a neighbourhood U of xand δ > 0 su
h that if y ∈ Ct ∩ U and 0 < |t| < δ, then Ct is smoothat y and the distan
e between the tangent spa
es Ty(Ct) and Tx(C0)is less than ε.Now 
hoose z ∈ C su
h that the hypersurfa
e {f0 = z}meets Γ0 transversallyat the points of Γ0\B. So by de�nition, m(Γ0, f0) is equal to the 
ardinality of

Γ0∩{f0 = z}. Fix a point x ∈ C0∩{f0 = z} and its small neighbourhood U .By transversality, if t is 
lose to 0 and z′ is 
lose to z, then {ft = z′} and Cthave at least one 
ommon point in U . This proves inequality (3.1).4. Proof of the Main Theorem. In this se
tion we use the generalisedridge and valley lines to bound the �ojasiewi
z exponent ̺f of a polynomial
f : R

n → R of degree d.Remark 4.1. Gwo¹dziewi
z [Gw℄ proved that if an analyti
 fun
tion fhas an isolated zero at the origin, then the �ojasiewi
z exponent for the gradi-ent inequality (1.1) is rea
hed on all polar 
urves Pv = (∇f)−1(Rv) provided
v belongs to the 
omplement in R

n of a proper linear subspa
e L. Moreoverhe gave examples showing that this is no longer true for non-isolated singu-larities. In parti
ular he proved that if f is a polynomial of degree d with anisolated zero at the origin then ̺f is bounded by 1 − ((d − 1)n + 1)−1.From now on we suppose that f : R
n → R is a polynomial of degree

d ≥ 2. We still assume that f(0) = 0 and ∇f(0) = 0. Then we haveTheorem 4.2. For any polynomial f : R
n → R of degree d the �o-jasiewi
z exponent ̺f at 0 is less than or equal to 1−(d(3d−3)n−1)−1. Morepre
isely , if f(0) = 0 and ∇f(0) = 0, then for any r0 > 0 there exist ε > 0and C > 0 su
h that

|∇f(x)| ≥ C|f(x)|̺for any x ∈ Bn(r0) with |f(x)| < ε, where ̺ = 1 − (d(3d − 3)n−1)−1.
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z's exponent 57The proof of Theorem 4.2 is based on the estimate of the order of 
on-ta
t of the hypersurfa
e f−1(0) with a suitable parametrisation of the half-bran
hes of Γ (f), the generalised ridge and valley set of f in the ball Bn(r0).Pre
isely the following proposition is 
ru
ial.Proposition 4.3. Let f : R
n → R be a polynomial of degree d. Assumethat (0, b) ⊂ f(Bn(r0)) for some b > 0. Then there exists an analyti
 ar


θ : (−a, a) → R
n su
h that :(1) f(θ(0)) = 0 and f ◦ θ((0, a)) ⊂ (0, b);(2) if s > 0 and x ∈ f−1(f(θ(s))) ∩ Bn(r0), then |∇f(x)| ≥ |∇f(θ(s))|;(3) ord0(f ◦ θ) ≤ d(3d − 3)n−1.Proof of Theorem 4.2. Assume we have proved Proposition 4.3 and let θbe an analyti
 
urve as in the proposition.We write θ(t) = amtm +am+1t

m+1 + · · · with |am| = 1, m ≥ 1. For small
s > 0 we put

γ(s) = θ(s1/m) = ams + am+1s
(m+1)/m + · · · ,whi
h is a 
onvergent Puiseux series. Note that |γ′(s)| → 1 as s → 0. Let uswrite the Puiseux expansion of f ◦ γ:

(f ◦ γ)(s) = ανsν + αks
k + · · · ,with ν ≤ (1/m)d(3d − 3)n−1, k ∈ (1/m)N, k > ν, αν > 0. Then we have

(f ◦ γ)′(s) = 〈∇f(γ(s)), γ′(s)〉 and |γ′(s)| ≃ 1 as s → 0. This implies
|∇f(γ(s))| ≥ cνανs

ν−1 ≃ f(γ(s))(ν−1)/νfor some positive 
onstant c > 0 and small s > 0. So there exists C > 0 su
hthat
|∇f(γ(s))| ≥ C|f(γ(s))|(ν−1)/ν.Re
all that if x ∈ f−1(f(γ(s))), then |∇f(x)| ≥ |∇f(γ(s))|. Thus we have

|∇f(x)| ≥ C|f(x)|(ν−1)/νfor any x ∈ Bn(r0) su
h that f(x) > 0 is small enough. Repla
ing f by −fwe obtain the result also for f(x) < 0.Remark 4.4. Note that, for a �xed ord0(f ◦ θ), the exponent ̺ =
(ν − 1)/ν is the largest possible when m = 1, that is, the 
urve Γ (f) issmooth.To 
omplete the proof of Theorem 4.2 it remains to prove Proposition4.3. We shall distinguish two 
ases. Namely, we �rst 
onsider the 
ase of ageneri
 polynomial and then, using the results of Se
tion 3, we extend ourbound on the �ojasiewi
z exponent to the non-generi
 polynomials.Proof of Proposition 4.3. We will use the notations and results fromSe
tion 2. Clearly the ar
 θ must be 
hosen from the algebrai
 set Θ(f).
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Case 1: The polynomial f is generi
. That is, Θ(f) is a
tually a 
urve.We haveLemma 4.5. Assume that f is generi
, and let θ : (−a, a) → Θ(f) ⊂ R

nbe an analyti
 ar
. Suppose that the 
omplexi�
ation of θ is inje
tive in asmall disk around the origin in C. Then ord0(f ◦ θ) ≤ d(3d − 3)n−1.Re
all that Θ(f) = Θ1(f) ∪ Θ2(f) is the union of two algebrai
 sets. Sothe image of θ entirely lies in one of them.First we assume that θ(s) ∈ Θ1(f) for all s ∈ (−a, a). Re
all that if fis generi
 then Θ1(f) is of dimension one and is 
ontained in the 
ommonzeros of n − 1 independent 
oe�
ients of the 2-form ω = d(|∇f |2) ∧ df .Denote them by g1, . . . , gn−1; re
all that deg gi ≤ 3d − 4. We may assumethat ∇g1(x), . . . ,∇gn−1(x) are linearly independent for all but �nitely many
x ∈ Θ1(f).Indeed, pi
k a smooth point xi in ea
h irredu
ible 
omponent Ci of Θ1(f).Let g1, . . . , gn−1 be su
h that ∇g1(x1), . . . ,∇gn−1(x1) are linearly indepen-dent, and suppose that ∇g1, . . . ,∇gn−1 are linearly dependent at x2. Let
h1, . . . , hn−1 be 
oe�
ients of ω su
h that ∇h1(x2), . . . ,∇hn−1(x2) are lin-early independent.Now put g̃i = gi + εhi. If ε > 0 is small enough, then the gradients of
g̃i are linearly independent at both points x1, x2. Continuing in this way weobtain linear 
ombinations p1, . . . , pn−1 of the 
oe�
ients of ω su
h that theirgradients are linearly independent at ea
h point xi, hen
e, by algebrai
ity,at all but �nitely many points of Θ1(f).From Bézout's Theorem (
f. e.g. [Be-Ri℄, [Fu℄) we obtain(4.1) m(Θ1(f), f) ≤ deg f

n−1∏

i=1

deg gi ≤ d(3d − 4)n−1 ≤ d(3d − 3)n−1.Hen
e by Lemma 3.1,(4.2) ord0(f ◦ θ) ≤ m(Θ1(f), f) ≤ d(3d − 3)n−1.Assume now θ(s) ∈ Θ2(f) for all s ∈ (−a, a). Re
all that Θ2(f) is 
on-tained in the 
ommon zeros of n− 2 polynomial equations of degree at most
3d − 3 and one polynomial equation of degree 2. So again by Bézout's The-orem,(4.3) m(Θ2(f), f) ≤ 2d(3d − 3)n−2 ≤ d(3d − 3)n−1,and by Lemma 3.1,(4.4) ord0(f ◦ θ) ≤ 2d(3d − 3)n−2 ≤ d(3d − 3)n−1.This proves Lemma 4.5.We now 
ontinue the proof of Proposition 4.3 in the �rst 
ase. Choose
ε > su
h that (0, ε) ⊂ f(Bn(r0)). By the 
lassi
al 
urve sele
tion lemma (
f.
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z's exponent 59e.g. [BCR℄) there exists a semialgebrai
 
urve θ̃ : (0, ε) → Bn(r0) su
h that
|∇f(x)| ≥ |∇f(θ̃(s))|, x ∈ f−1(θ̃(s)) ∩ Bn(r0).It follows from Puiseux's Theorem (
f. e.g. [�o3℄) that there exists a rationalnumber q > 0 su
h that θ(s) = θ̃(sq), s > 0, has an analyti
 (holomorphi
)extension whi
h is a
tually inje
tive on a small disk around the origin.Observe that θ(s) ∈ Γ (f) ⊂ Θ1(f) ∪ Θ2(f). But θ is analyti
 and

Θ1(f), Θ2(f) are algebrai
 sets, so either
θ(s) ∈ Θ1(f), s ∈ (0, ε), or θ(s) ∈ Θ2(f), s ∈ (0, ε),for ε > 0 small enough. From (4.2) and (4.4) we obtain(4.5) ord0(f ◦ θ) ≤ d(3d − 3)n−1.This proves Proposition 4.3 in Case 1, that is, for a generi
 polynomial.

Case 2: The general 
ase. We now 
onsider an arbitrary polynomial
f : R

n → R, of degree d ≥ 2. By Proposition 2.2 there exists an algebrai
family of polynomials ft, t ∈ R, of degree at most d su
h that f0 = f andfor all su�
iently small t 6= 0 the polynomial ft is generi
 in the sense ofSe
tion 2. A
tually, by Corollary 2.3 we may 
hoose this family so that the
oe�
ients of ft are polynomials in t.Hen
e ft is a well de�ned polynomial on C
n of degree at most d. So wehave two asso
iated algebrai
 families of 
urves Ct = Θ1(ft), t ∈ C

∗, and
Dt = Θ2(ft), t ∈ C

∗.More pre
isely, Ct or Dt is a 
urve for all but �nitely many t ∈ C
∗. Thisfollows from the fa
t that the generi
ity in Proposition 2.2 
omes from atransversality 
ondition whi
h is valid also in the 
omplex 
ase.Let C0 and D0 be the respe
tive limits, as t → 0, of the families Ct =

Θ1(ft), t ∈ C
∗, and Dt = Θ2(ft), t ∈ C

∗. Note that C0 and D0 are algebrai

urves in C
n. We set

Γ0(f) = R
n ∩ (C0 ∪ D0).Lemma 4.6. Let y ∈ R and assume that f−1(y)∩Bn(r0) 6= ∅. Then thereexists a point x0 ∈ Γ0(f) ∩ Bn(r0) su
h that

|∇f(x)| ≥ |∇f(x0)|, x ∈ f−1(y) ∩ Bn(r0).To prove the lemma observe that Γ0(f)∩Bn(r0) is the Hausdor� limit, as
t → 0, of the family (Ct∪Dt)∩Bn(r0), t ∈ R

∗. Re
all that if f−1
t (y)∩Bn(r0)is non-empty then |∇ft|, restri
ted to f−1

t (y)∩Bn(r0), has a minimum at apoint whi
h belongs to (Ct ∪ Dt) ∩ Bn(r0) = Θ(ft) ∩ Bn(r0). We leave thedetails to the reader.We are now in a position to �nish the proof of Proposition 4.3 in these
ond 
ase. As in Case 1 we 
an 
hoose in Γ0(f) an analyti
 ar
 θ(s),
s ∈ (−a, a), whi
h satis�es 
ondition (2) in Proposition 4.3. Clearly, as in
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unto and K. KurdykaCase 1, there are two possibilities: the image of θ is in
luded in C0 or in D0.Re
all that, by (4.1),
m(Θ1(ft), ft) ≤ d(3d − 4)n−1 ≤ d(3d − 3)n−1, t 6= 0.So, by the semi
ontinuity of interse
tion (Lemma 3.2), we have(4.6) m(C0, f) ≤ d(3d − 4)n−1 ≤ d(3d − 3)n−1.Hen
e if the image of θ is in
luded in C0 it follows from Lemma 3.1 that(4.7) ord0(f ◦ θ) ≤ m(C0, f) ≤ d(3d − 3)n−1.Analogously by (4.3) we have
m(Θ2(ft), ft) ≤ 2d(3d − 3)n−2 ≤ d(3d − 3)n−1, t 6= 0.Again, by Lemma 3.2, we have(4.8) m(D0, f) ≤ 2d(3d − 3)n−1 ≤ d(3d − 3)n−1.Hen
e if the image of θ is in
luded in D0 it follows from Lemma 3.1 that(4.9) ord0(f ◦ θ) ≤ m(D0, f) ≤ d(3d − 3)n−1.This ends the proof of Proposition 4.3.Note that ord0(f ◦ θ) is a
tually bounded by max{d(3d − 4)n−1,

2d(3d − 3)n−2}. So as 
laimed in the statement of the Main Theorem wehave pre
isely ̺f ≤ 1 − R(n, d)−1, where
R(n, d) = max{d(3d − 4)n−1, 2d(3d − 3)n−2}.Remark 4.7. Note that, in 
ontrast to the geometri
 degree, the �o-jasiewi
z exponent is not upper semi
ontinuous. Consider for instan
e thefamily

ft(x) = tx2 + xd.Clearly ̺ft
= 1/2 for t 6= 0 and ̺f0

= 1 − 1/d.So in the proof of Theorem 4.2 we 
annot 
laim that we �rst prove theestimate for a generi
 polynomial and then we extend it �by 
ontinuity� toall polynomials. A
tually a generi
 polynomial is a Morse fun
tion, hen
e its�ojasiewi
z exponent is equal to 1/2. What we 
an 
ontrol is the geometri
degree of the polynomial on an algebrai
 
urve on whi
h the �ojasiewi
zexponent is rea
hed.
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