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Non-isotropic Hausdorff capacity of exceptional sets

for pluri-Green potentials in the unit ball of Cn

by Kuzman Adzievski (Orangeburg, SC)

Abstract. We study questions related to exceptional sets of pluri-Green potentials
Vµ in the unit ball B of C

n in terms of non-isotropic Hausdorff capacity. For suitable
measures µ on the ball B, the pluri-Green potentials Vµ are defined by

Vµ(z) =
\
B

log
1

|φz(w)|
dµ(w),

where for a fixed z ∈ B, φz denotes the holomorphic automorphism of B satisfying
φz(0) = z, φz(z) = 0 and (φz ◦ φz)(w) = w for every w ∈ B. If dµ(w) = f(w)dλ(w),
where f is a non-negative measurable function of B, and λ is the measure on B, invariant
under all holomorphic automorphisms of B, then Vµ is denoted by Vf . The main result
of this paper is as follows: Let f be a non-negative measurable function on B satisfying\

B

(1− |z|2)fp(z) dλ(z) <∞

for some p with 1 < p < n/(n− 1) and some α with 0 < α < n+ p− np. Then for each τ
with 1 ≤ τ ≤ n/α, there exists a set Eτ ⊆ S with Hατ (Eτ ) = 0 such that

lim
z→ζ

z∈Tτ,c(ζ)

Vf (z) = 0

for all points ζ ∈ S \Eτ . In the above, for α > 0, Hα denotes the non-isotropic Hausdorff
capacity on S, and for ζ ∈ S = ∂B, τ ≥ 1, and c > 0, Tτ,c(ζ) are the regions defined by

Tτ,c(ζ) = {z ∈ B : |1− 〈z, ζ〉|
τ < c(1− |z|2)}.

1. Introduction. Exceptional sets of Blaschke products, holomorphic
functions, or Green potentials in the unit disc of the complex plane are
usually described in terms of Hausdorff capacity (measure). For example,
Samuelsson [15] and Cargo [8] studied exceptional sets of Blaschke products
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in terms of Hausdorff capacity. In [7], Berman and Cohn prove several results
concerning the existence of certain non-tangential and tangential limits of
Blaschke products and their subproducts in terms of Hausdorff capacity. On
the other hand, in higher dimension, the non-isotropic Hausdorff capacity is
much more appropriate for the description of exceptional sets of holomorphic
functions, or invariant Green potentials.

Many authors have investigated the non-isotropic Hausdorff capacity as
a tool for the description of exceptional sets of some function classes. For ex-
ample, in [17] and [18], Stoll investigated some questions related to the non-
isotropic Hausdorff capacity of exceptional sets of invariant Green potentials
in the unit ball B of C

n. In [4], Ahern and Cohn, using the non-isotropic
Hausdorff capacity, studied exceptional sets for Hardy–Sobolev functions in
the unit ball in C

n. Also, in [5], using Lp-estimates for maximal functions
of invariant Poisson integrals Ahern and Cohn derived that the exceptional
sets of the Poisson integrals of potentials are sets of zero Hausdorff measure.
Ahern and Cascante [3] investigated exceptional sets for Poisson integrals of
potentials on the unit sphere in C

n. Some results for exceptional sets with
zero non-isotropic Hausdorff measure for holomorphic Sobolev functions in
the unit ball of C

n are given in [2] by Ahern. In [11], Cohn gave a charac-
terization of exceptional sets for a class of holomorphic functions in terms
of non-isotropic Hausdorff capacities. Ahern and Nagel [6] studied, among
many other things, the existence of tangential limits of Poisson integrals
of Lp-potentials and functions in Besov spaces within tangential approach
regions in terms of appropriate Hausdorff measure. Cascante and Ortega
[9] characterized some closed tangential exceptional sets for Hardy–Sobolev
spaces in the unit ball of C

n in terms of non-isotropic Hausdorff measure.
The main goal of Jamming and Roginskaya [12] and Roginskaya [13] is to
describe the singular part of a measure on the unit sphere S in C

n in terms
of behavior of its harmonic andM-harmonic extension near the boundary.
Their description involves comparisons of the Hausdorff measure and the
non-isotropic Hausdorff measure, associated to the isotropic Euclidean and
non-isotropic (Korányi) distance on S, respectively.

Homogeneous spaces, in connection with Hausdorff measure and bound-
ary behavior of some function classes have been studied by many authors.
For example, Sjödin [16] investigates analogues of classical Riesz capacity
and Hausdorff measure in a homogeneous space. Since the unit sphere S
in C

n, with the Korányi distance, is a space of homogeneous type, the re-
sults of his paper can be applied for this metric space. In [10], Cifuentes,
Dorronsoro and Sueiro proved strong Lp estimates for weighted maximal
functions of Poisson integrals on spaces of homogeneous type with respect
to Hausdorff content. Sueiro [20] studies questions related to Fatou’s theo-
rem and “fractional Cauchy kernel” for the unit ball B in C

n. By studying
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weighted maximal functions in metric spaces of homogeneous type he ob-
tained estimates on fractional Cauchy kernel and a strong-type maximal
estimate. He then used these estimates to obtain a result on the Hausdorff
measure, defined by the Korányi balls, of the exceptional set of boundary
limits of the fractional Cauchy integrals.

Let B be the class of all Blaschke products on the open unit disc U of
the complex plane C, i.e., all functions of the form

β(z) = zm
∞∏

n=1

an
an
·
an − z

1− anz
,

wherem is a nonnegative integer and {an} is a sequence of non-zero complex
numbers in U which satisfies the condition

∞∑

n=1

(1− |an|) <∞.

The class of all non-decreasing, continuous functions h on [0,∞) such
that h(t) > 0 if t > 0 and h(t)/t is non-increasing on (0,∞) will be denoted
by H. Examples of such functions are h(t) = tα, 0 ≤ α ≤ 1. The subclass
of H, consisting of the functions h ∈ H satisfying the additional condition
h(0) = 0, is denoted by H0.

If h ∈ H0, then h is a determining function for a Hausdorff capacity
(measure)Hh defined on the compact subsetsK of the boundary ∂U of U by

Hh(K) = inf
{ ∞∑

j=1

h(rj)
}
,

where the infimum is taken over all countable covers {D(ζj, rj) : j = 1, 2, . . .}
ofK by discs D(ζj, rj) centered at ζj ∈ ∂U and of radius rj . For an arbitrary
subset A of ∂U , the Hausdorff capacity Hh is defined by

Hh(A) = sup{Hh(K) : K a compact subset of A}.

Following Samuelsson’s paper [15], for β ∈ B, ζ ∈ ∂U , and t > 0 let

σ(β, ζ, t) =
∑

|ak−ζ|≤t

(1− |ak|).

Further, for h ∈ H, β ∈ B we need the sets

L(β, h) =

{
ζ ∈ ∂U : lim inf

r→1−

1− r

h(1− r)
log

1

|β(rζ)|
= +∞

}
,

Σ(β, h) =

{
ζ ∈ ∂U : lim inf

t→0+

σ(β, ζ, t)

h(t)
= +∞

}
,
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Σ(β, h) =

{
ζ ∈ ∂U : lim sup

t→0+

σ(β, ζ, t)

h(t)
= +∞

}
,

L0(β, h) =

{
ζ ∈ ∂U : lim inf

r→1−

1− r

h(1− r)
log

1

β(rζ)
> 0

}
.

In like manner, for 0 < α < 1 let

Lα(β, h) =

{
ζ ∈ ∂U : lim inf

z→ζ
z∈Sα(ζ)

|z − ζ|

h(|z − ζ|)
log

1

|β(z)|
= +∞

}

for all Stolz domains Sα(ζ) defined by

Sα(ζ) = {z ∈ U : |z − ζ| ≤
√
α− α2, |arg(1− ζz)| ≤ arc sinα}.

In [15], Samuelsson proved the following results:

Theorem A. If β is a Blaschke product , then the set L0(β, 1) is empty.
If h ∈ H0, then

Hh(L0(β, h)) = 0.

Theorem B. Let h ∈ H and let β ∈ B. Then

Σ(β, h) ⊆ Lα(β, h) ⊆ L(β, h) ⊆Σ(β, h).

This paper was motivated by the work of Stoll [18], concerning the non-
isotropic Hausdorff capacity of invariant Green potentials Gµ on the unit
ball B of Cn. For ζ ∈ S = ∂B, τ ≥ 1, and c > 0, let

Tτ,c(ζ) = {z ∈ B : |1− 〈z, ζ〉|
τ < c(1− |z|

2
)}.

The regions Tτ,c(ζ) have tangential contact with the boundary S of the
ball B in all directions at the boundary point ζ ∈ S.

When τ = 1 and 2c = α > 1 the regions Tτ,c(ζ) reduce to the admissible
domains of Korányi

Dα(ζ) =

{
z ∈ B : |1− 〈z, ζ〉| <

α

2
(1− |z|

2
)

}
.

A function V on B is said to have a Tτ -limit L at ζ ∈ S if

lim
z→ζ

z∈Tτ,c(ζ)

V (z) = L

for every c > 1 (c > 1/2 when τ = 1).

The exceptional set for a function f defined on the unit ball B is the set
of all points ζ ∈ S such that f fails to have a Tτ (ζ)-limit at ζ.

In [18], Stoll proved the following result concerning tangential limits and
exceptional sets:
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Theorem C. Let f be a non-negative measurable function on B satis-
fying \

B

(1− |z|2)βfp(z) dλ(z) <∞

for some p > n and some β with 0 < β < n. Then for each τ with 1 ≤
τ ≤ n/β, there exists a set Eτ ⊆ S with Hβτ (Eτ ) = 0 such that Gf has
Tτ (ζ)-limit 0 at all ζ ∈ S \Eτ .

In the above, for 0 < α < n, Hα denotes the non-isotropic Hausdorff
capacity on S, Gf denotes the Green potential of f , and λ denotes a measure
on B invariant under the group of all holomorphic automorphisms of the
ball B.

The methods used to prove Theorem C allowed Stoll to prove the fol-
lowing result:

Theorem D. Let {aj} be a sequence in B satisfying

∞∑

j=1

(1− |aj |
2)β <∞

for some β with 0 < β < n, and let µ be the measure given by µ =
∑
δaj ,

where δaj is the unit point-mass measure at aj . Then for each τ with 1 ≤
τ ≤ n/β, there exists a set Eτ ⊆ S with Hβτ (Eτ ) = 0 such that Gµ has
Tτ -limit 0 at all ζ ∈ S \ Eτ .

In the above theorem, Gµ denotes the invariant Green potential of the
measure µ on the unit ball B.

The purpose of our paper is to investigate analogues of Stoll’s results
(Theorems C and D) for pluri-Green potentials in the unit ball of C

n. We
also extend Samuelsson’s results (Theorems A and B) by considering non-
isotropic Hausdorff capacity of pluri-Green potentials.

The paper is organized as follows. In Section 2, we introduce the neces-
sary notation and definitions. In Section 3, we give some preliminary results
that will be used for the proofs of the main results which are given in Sec-
tion 4.

This paper is part of the author’s dissertation written under the direction
of Professor Manfred Stoll at the University of South Carolina.

2. Notation. Throughout this paper we use the notation and terminol-
ogy of Rudin’s book [14] and most of the general results used in our paper
can be found in that book. For n ≥ 1, Cn denotes the n-dimensional complex
space, with the usual inner product 〈z, w〉 and norm |z| =

√
〈z, z〉. B will

denote the unit ball in C
n with dν the Lebesgue measure on B normalized
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so that ν(B) = 1, and S = ∂B will be the boundary of B with dσ the surface
area measure on S, again normalized so that σ(S) = 1.
For δ > 0 and ζ ∈ S let

Q(ζ, δ) = {η ∈ S : |1− 〈η, ζ〉| < δ}.

Remark. The set Q(ζ, δ) is called a Korányi ball.

The following fact, whose proof can be found in [14, p. 66], will be used:

Proposition K. The function

d(w, z) =
√
|1− 〈w, z〉|, w, z ∈ B,

satisfies the triangle inequality

d(w, z) ≤ d(w, x) + d(x, z) for all w, x, z ∈ B.

Restricted to the sphere S, the function d is a metric, and the sets Q(ζ, δ)
are the corresponding open balls.

Let h be a non-decreasing function on [0,∞) vanishing at 0 and satisfying
the condition

h(2x) ≤ ch(x)

for some positive constant c. Such a function h will be referred to as allowed.

Remark. It is easy to check that each h ∈ H0 is an allowed function.

For an allowed function h, the non-isotropic Hausdorff capacity Hh of a
compact subset K of S is defined by

Hh(K) = inf
{ ∞∑

j=1

h(rj)
}
,

where the infimum is taken over all countable covers {Q(ζj , rj) : j ∈ N}
of K by Korányi balls Q(ζj, rj) centered at ζj ∈ S and of radius rj . For
an arbitrary subset A of S, the non-isotropic Hausdorff capacity Hh is de-
fined by

Hh(A) = sup{Hh(K) : K a compact subset of A}.

For basic definitions, background and more information on the non-
isotropic Hausdorff capacity we refer to [12], [13] and [16].
For each z ∈ B, φz denotes the holomorphic automorphism of B satisfy-

ing φz(0) = z, φz(z) = 0 and φz ◦φz(w) = w for every w ∈ B. The following
identity will be useful throughout:

(2.1) 1− |φa(z)|
2 =
(1− |z|2)(1− |a|2)

|1− 〈z, a〉|2

for all a ∈ B and z ∈ B.
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M will denote the Möbius group (of all holomorphic automorphisms)
of the ball B. By Cartan’s theorem it follows that ψ ∈ M if and only if
ψ = u ◦φa for a unique unitary transformation u on C

n, where a = ψ−1(0).

For r > 0, let

Br = {z ∈ C
n : |z| < r},

and for a ∈ B, a 6= 0, let

E(a) = φa(B1/2).

Since φa is an involution, z ∈ E(a) if and only if |φa(z)| < 1/2.

We denote by λ the measure on B defined by

dλ(z) =
dν(z)

(1− |z|2)n+1
.

This measure isM-invariant, i.e.\
B

f(z) dλ(z) =
\
B

(f ◦ ψ)(z) dλ(z)

for each f ∈ L1(dλ) and all ψ ∈M.

The Laplace–Beltrami operator (invariant Laplacian) ∆̃ on B is given by

∆̃f(z) =
1

n+ 1
∆(f ◦ φz)(0) =

4(1− |z|2)

n+ 1

n∑

i,j=1

(δi,j − zizj)
∂2f

∂zj∂zi
,

where

δi,j =

{
1 for i = j,
0 for i 6= j,

and ∆ is the usual Laplacian in R
2n.

The Green function for the Laplace–Beltrami operator ∆̃ is given by

G(z, w) = g(φz(w)),

where

g(z) =
n+ 1

2n

1\
|z|

(1− t2)n−1t−2n+1 dt.

Remark. For n = 1, g(z) = − log(|z|), and the Green function for the

Laplace–Beltrami operator ∆̃ coincides with the usual Green function G on
the unit disc U .

If µ is a non-negative regular Borel measure on B, then the function

Gµ(z) =
\
B

G(z, w) dµ(w)
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is called the invariant Green potential of µ on B, provided\
B

G(z0, w) dµ(w) <∞

for some z0 ∈ B. The above condition is satisfied if and only if\
B

(1− |w|2)n dµ(w) <∞.

For each fixed w ∈ B, the function

z 7→ log
1

|φz(w)|

is called the pluri-Green function of B with pole at w. When n = 1,

log
1

|φa(z)|
= log

∣∣∣∣
1− zā

z − a

∣∣∣∣ ,

which is the usual Green function on U .
If µ is a non-negative regular Borel measure on B then the function

Vµ(z) =
\
B

log
1

|φz(w)|
dµ(w)

is called the invariant pluri-Green potential of µ on B, provided\
B

log
1

|φz0(w)|
dµ(w) <∞,

for some z0 ∈ B. In [1] it is shown that this is equivalent to

(2.2)
\
B

(1− |w|2) dµ(w) <∞.

For ζ ∈ S and t > 0 let

Bt(ζ) =
{
z ∈ B : |1− 〈z, ζ〉| ≤ t

}
,

and for a non-negative regular Borel measure µ satisfying the growth con-
dition (2.2) let

(2.3) r(µ, ζ, t) =
\

Bt(ζ)

(1− |w|2) dµ(w).

For a regular Borel measure µ on B satisfying the growth condition (2.2),
and for h ∈ H and 0 < α < 1 we introduce the sets

L(µ, h) =

{
ζ ∈ S : lim inf

r→1−

1− r

h(1− r)
Vµ(rζ) = +∞

}
,

Lα(µ, h) =

{
ζ ∈ S : lim inf

z→ζ
z∈Dα(ζ)

|1− 〈z, ζ〉|

h(|1− 〈z, ζ〉|)
Vµ(z) = +∞

}
,
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R(µ, h) =

{
ζ ∈ S : lim inf

t→0+

r(µ, ζ, t)

h(t)
= +∞

}
,

R(µ, h) =

{
ζ ∈ S : lim sup

t→0+

r(µ, ζ, t)

h(t)
= +∞

}
,

L0(µ, h) =

{
ζ ∈ S : lim inf

r→1−

1− r

h(1− r)
Vµ(rζ) > 0

}
.

A final remark on notation: throughout this paper we will use the same
letter C or C(a, b) to denote various absolute positive constants or positive
constants which depend only on the indicated variables, but not necessarily
the same on any two occurrences.

3. Preliminary results. In this section several preliminary results are
given that will be used for the proof of the main theorems.
For z ∈ B, c a real number, and α > n consider

Jc,α(z) =
\
B

(1− |w|2)α

|1− 〈z, w〉|α+c
dλ(w).

The following asymptotic estimate will play an important role in the
proof of our main results; its proof can be found in [14, pp. 17–18].

Proposition 3.1.

Jc,α(z) ≈





(1− |z|2)−c, c > 0,

log
1

1− |z|2
, c = 0,

1, c < 0.

The notation a(z) ≈ b(z) means that the ratio a(z)/b(z) has a finite
limit as |z| → 0.
The next, “Frostman type” theorem (Theorem 1 in [11], proved for h(t)

= tm) is the key to the proof of our main results. The extension to arbitrary
allowed h (see [2]) poses no difficulty.

Theorem 3.2. Let h be an allowed function. For a compact subset K
of S, Hh(K) > 0 if and only if K contains the support of a positive measure
ν 6≡ 0 satisfying

(3.1) ν(Q(ζ, δ)) ≤ Ch(δ)

for all δ > 0 and ζ ∈ S and an absolute constant C.

The following covering lemma (see [14, Lemma 5.2.3]) will also be needed:

Lemma 3.3. Suppose that E is the union of a finite collection

{Q(ζi, δi)} of Korányi balls. Then there exists a finite disjoint subcollection
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{Q(ζik , δik)}
m
k=1 such that

E ⊆

m⋃

k=1

Q(ζik , 9δik) and σ(E) ≤ Cn

m∑

k=1

σ(Q(ζik , δik)),

where Cn is a constant depending only on n.

On several occasions in the paper we shall use the following elementary
inequality:

(3.2) log x ≤ x− 1 for x > 0.

Now, we proceed to several other lemmas, analogous to those in [15].

Lemma 3.4. Let t be a fixed number such that 0 < t < 1/3 and let
It = [1− 3t, 1− 2t]. For ζ ∈ S and z ∈ B let

Gζ,t(z) =
\
It

log
1

|φz(rζ)|
dr.

Then there exist positive constants C1 and C2, independent of ζ, z and t,
such that

(3.3) Gζ,t(z) ≤ C1(1− |z|
2)

and

(3.4) Gζ,t(z) ≤ C2t
2 1− |z|

|1− 〈z, ζ〉|2

for all z ∈ B.

Proof. First, suppose that ζ = e1 = (1, . . . , 0). For z ∈ B, by the identity
(2.1) we have

Ge1,t(z) =
1

2

\
It

log

{
1 +

(1− r2)(1− |z|2)

|1− 〈z, re1〉|2 − (1− r2)(1− |z|2)

}
dr

≤
1

2

\
It

log

{
1 +
(1− r2)(1− |z|2)

| |z| − r|2

}
dr.

Case 1. If min{| |z| − r| : r ∈ It} ≥ t, then by (3.2) we have

1

2

\
It

log

{
1 +
12t(1− |z|)

t2

}
dr ≤ 6

1− |z|

t

\
It

dr ≤ 6(1− |z|),

which proves (3.3) for ζ = e1 in this case.

Case 2. If min{| |z| − r| : r ∈ It} ≤ t, then 1− |z| = 1− r − (|z| − r) >
1− r − t ≥ t. Therefore in this case we have
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Ge1,t(z) ≤
1

2

\
It

log

{
1 +
6t(1−|z|2)

| |z| − r|2

}
dr ≤

1

2

\
It

log

{
1 +

(
4(1−|z|)

| |z| − r|

)2}
dr

≤

∞\
|z|

log

{
1 +

(
4(1− |z|)

| |z| − r|

)2}
dr

≤ 4(1− |z|)

∞\
0

1

x2
log(1 + x2) dx ≤ C(1− |z|2),

which proves (3.3) for ζ = e1.
To prove (3.4) for ζ = e1, first notice that for z=(z1, . . . , zn)∈B we have

(3.5) |1− 〈z, re1〉|
2 − (1− r2)(1− |z|2) ≥ |z1 − r|

2.

The last inequality is easily verified. Indeed, using the obvious inequality
|z| ≥ |z1| we have

|1− 〈z, re1〉|
2 − (1− r2)(1− |z|2) = |1− rz1|

2 − (1− r2)(1− |z|2)

≥ |1− rz1|
2 − (1− r2)(1− |z1|

2)

= |r − z1|
2.

Now let z = (z1, . . . , zn) ∈ B be such that |1− z1| > 4t. Then for r ∈ It,

|z1 − r| ≥ |1− z1| − (1− r) ≥ |1− z1| − 3t

> |1− z1| −
3

4
|1− z1| =

1

4
|1− z1|.

Therefore from (3.5) and (3.2) it follows that

Ge1,t(z) =
1

2

\
It

log

{
1 +

(1− r2)(1− |z|2)

|1− 〈z, re1〉|2 − (1− r2)(1− |z|2)

}
dr

≤
1

2

\
It

log

{
1 +
12t(1− |z|)

|z1 − r|2

}
dr ≤

1

2

\
It

(12t)(1− |z|)

|z1 − r|2
dr

≤
1

2

(12t)(16t)(1− |z|)

|1− z1|2
= 96t2

1− |z|

|1− 〈z, e1〉|2
.

If |1− z1| < 4t, then by (3.3) for ζ = e1, we have

Ge1,t(z) ≤ C1(1− |z|
2) = C1(1− |z|

2)
|1− z1|

2

1− z1|2

≤ 2C116t
2 1− |z|

|1− 〈z, e1〉|2
= C2t

2 1− |z|

|1− 〈z, ζ〉|2
.

This completes the proof of (3.4) for ζ = e1. Now let ζ ∈ S be arbitrary, and
let ψ be the unitary transformation on C

n such that ψ(e1) = ζ. From the
identity (2.1) we have |φz(ψ(w))| = |φψ−1(z)(w)|, and so the proof of (3.3)
and (3.4) for arbitrary ζ reduces to the one for ζ = e1.
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Lemma 3.5. Let t and It be as in Lemma 3.4 and let ζ ∈ S and h ∈ H
be such that

r(µ, ζ, x) ≤ h(x)

for all x > 0 and every non-negative regular Borel measure µ on B satisfying
the growth condition (2.2). Then there exists an absolute constant C which
does not depend on t such that

inf
r∈It
{Vµ(rζ)} ≤ C

h(t)

t
.

Proof. From the definition of Gζ,t and Fubini’s theorem we have\
B

Gζ,t(z) dµ(z) =
\
It

( \
B

log
1

|φz(rζ)|
dµ(z)

)
dr

=
\
It

( \
B

log
1

|φrζ(z)|
dµ(z)

)
dr

=
\
It

Vµ(rζ) dr ≥
\
It

( inf
s∈It
{Vµ(sζ)}) dr = t inf

s∈It
Vµ(sζ).

Thus

inf
r∈It
{Vµ(rζ)} ≤

1

t

\
B

Gζ,t(z) dµ(z)

for every t with 0 < t < 1/3. Therefore from (3.2) and (3.3) it follows that

inf
r∈It
{Vµ(rζ)} ≤

1

t

\
Bt(ζ)

Gζ,t(z) dµ(z) +
1

t

\
B\Bt(ζ)

Gζ,t(z) dµ(z)

≤
C1
t

\
Bt(ζ)

(1− |z|2) dµ(z) + C2t
\

B\Bt(ζ)

1− |z|2

|1− 〈z, ζ〉|2
dµ(z).

If for j = 1, 2, . . . we set

Aj,t(ζ) = {z ∈ B : 2
j−1t < |1− 〈z, ζ〉| ≤ 2jt},

then from the last estimate and the definition (2.3) of r(µ, ζ, t) we have

inf
r∈It
{Vµ(rζ)} ≤

C1
t
r(µ, ζ, t) + C2t

∞∑

j=1

\
Aj,t(ζ)

1− |z|

|1− 〈z, ζ〉|2
dµ(z)

≤
C1
t
r(µ, ζ, t) + C2t

∞∑

j=1

\
Aj,t(ζ)

1− |z|

t222j−2
dµ(z)

≤
C1
t
r(µ, ζ, t) +

C2
t

∞∑

j=1

22−2jr(µ, ζ, 2jt) =
C

t
h(t).
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By hypothesis, r(µ, ζ, x) ≤ h(x) for every x > 0, and therefore from the
above it follows that

inf
r∈It
{Vµ(rζ)} ≤

C1
t
h(t) +

C2
t

∞∑

j=1

2−2j+2h(2jt)

≤
C1
t
h(t) +

C2
t

∞∑

j=1

2−2j+22jh(t) =
C1 + C

′
2

t
h(t).

Above we used the fact that h(kx) ≤ k h(x) for every k ≥ 1 and every
x > 0. This follows easily from the hypothesis that the function h(t)/t is
non-increasing on the interval (0,∞).

Lemma 3.6. Let α > 1/2 be fixed. Then there exist two positive constants
C1 and C2 such that

(a) C1 lim inf
t→0+

r(µ, ζ, t)

h(t)
≤ lim inf

z→ζ
z∈Dα(ζ)

|1− 〈z, ζ〉|

h(|1− 〈z, ζ〉|)
Vµ(z),

and

(b) lim inf
r→1−

1− r

h(1− r)
Vµ(rζ) ≤ C2 lim sup

t→0+

r(µ, ζ, t)

h(t)

for all ζ ∈ S, h ∈ H, and all non-negative regular Borel measures µ satisfying
the growth condition (2.2).

Proof. From the identity (2.1) and the inequality (3.2) we have

Vµ(z) = −
1

2

\
B

log

{
1−
(1− |z|2)(1− |w|2)

|1− 〈z, w〉|2

}
dµ(w)

≥
1

2

\
B

(1− |z|2)(1− |w|2)

|1− 〈z, w〉|2
dµ(w)

≥
1

2

\
Bt(ζ)

(1− |z|2)(1− |w|2)

|1− 〈z, w〉|2
dµ(w),

where t = |1− 〈z, ζ〉|. Therefore, for all z ∈ Dα(ζ) we have

(3.6) Vµ(z) ≥
|1− 〈z, ζ〉|

α

\
Bt(ζ)

(1− |w|)

|1− 〈z, w〉|2
dµ(w).

Since
√
|1− 〈z, w〉| satisfies the triangle inequality on B ×B (Theorem K),

for all w ∈ Bt(ζ) we have

|1− 〈z, w〉| ≤ 4|1− 〈z, ζ〉|.
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Therefore, for all z ∈ Dα(ζ), from (3.6) we have

Vµ(z) ≥
|1− 〈z, ζ〉|

α

1

16|1− 〈z, ζ〉|2

\
Bt(ζ)

(1− |w|) dµ(w)

≥
r(µ, ζ, |1− 〈z, ζ〉|)

32α|1− 〈z, ζ〉|
.

Hence, for all z ∈ Dα(ζ),

|1− 〈z, ζ〉|

h(|1− 〈z, ζ〉|)
Vµ(z) ≥ C(α)

r(µ, ζ, |1− 〈z, ζ〉|)

h(|1− 〈z, ζ〉|)
,

from which our estimate (a) easily follows.
To prove (b), we may assume that

lim sup
t→0+

r(µ, ζ, t)

h(t)
= l, 0 ≤ l <∞.

Let ε > 0 be given. Then there exists t0 > 0 such that r(µ, ζ, t) < (l+ε)h(t)
for all 0 < t ≤ t0. Let µ1 be the restriction of µ to Bt0(ζ), and let

V1(z) =
\

Bt0 (ζ)

log
1

|φz(w)|
dµ(w) =

\
B

log
1

|φz(w)|
dµ1(w),

V2(z) =
\

B\Bt0 (ζ)

log
1

|φz(w)|
dµ(w).

It is obvious that V2(rζ) → 0 as r → 1−. Now consider V1. Let x > 0. If
x ≤ t0, then

r(µ1, ζ, x) = r(µ, ζ, x) < (l + ε)h(x).

If x > t0, then

r(µ1, ζ, x) = r(µ, ζ, t0) < (l + ε)h(t0) ≤ (l + ε)h(x).

Therefore, for all x > 0 we have

r(µ1, ζ, x) ≤ (l + ε)h(x).

Applying now Lemma 3.5 to µ1 and (l + ε)h(x) we obtain

inf

{
(1− r)

h(1− r)
Vµ1(rζ) : r ∈ It

}
≤
3t

h(3t)
inf{Vµ1(rζ) : r ∈ It}

≤
3t

h(3t)
C1(l + ε)

h(t)

t
= 3C1

h(t)

h(3t)
(l + ε) ≤ 3C1(l + ε).

In the last step above we have used the fact that h(t) ≤ h(3t).
Therefore

lim inf
r→1−

1− r

h(1− r)
Vµ1(rζ) ≤ 3C1(l + ε),
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and since ε > 0 was arbitrary it follows that

lim inf
r→1−

1− r

h(1− r)
Vµ(rζ) ≤ 3C1 l = 3C1 lim sup

t→0+

r(µ, ζ, t)

h(t)
,

as required.

Lemma 3.7. Let h ∈ H0. For a non-negative regular Borel measure µ
on B which satisfies the growth condition (2.2) let

R0(µ, h) =

{
ζ ∈ S : lim sup

t→0+

r(µ, ζ, t)

h(t)
> 0

}
.

Then

Hh(R0(µ, h)) = 0.

Proof. SinceHh is subadditive it is enough to show thatHh(Ra(µ, h))=0
for all a > 0, where for a > 0,

Ra(µ, h) =

{
ζ ∈ S : lim sup

t→0+

r(µ, ζ, t)

h(t)
> a

}
.

Let ε > 0 be given. From the growth condition (2.2) and the regularity of
the measure µ it follows that there exists a compact set K ⊆ B such that

(3.7)
\

B\K

(1− |w|2) dµ(w) < ε.

Let F be a compact subset of Ra, and let

Fa =

{
Q(ζ, 2t) :

r(µ, ζ, t)

h(t)
> a, ζ ∈ F, 0 < t < ̺(K)

}
,

where ̺(K) = inf{1 − |z| : z ∈ K}. Notice that Fa is a covering of F by
Korányi balls. Since F is a compact set, there exist points ζ1, . . . , ζm ∈ S
and positive numbers t1, . . . , tm such that

F ⊆
m⋃

j=1

Q(ζj , 2tj)

and

r(µ, ζj, tj) > ah(tj), 0 < tj < ̺(K).

By the covering Lemma 3.3, there exists a finite disjoint subcollection
of Fa, which for convenience we denote by {Q(ηj , 2tj) : j = 1, . . . , k}, such
that

(3.8)
F ⊆

k⋃

j=1

Q(ηj , 18tj),

r(µ, ηj , tj) > ah(tj), 0 < tj < ̺(K), j = 1, . . . , k.
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Now let ν be any positive measure on S satisfying the condition (3.1) in
Theorem 3.2:

ν(Q(ζ, δ)) ≤ Ch(δ)

for all ζ ∈ S and every δ > 0. Then from (3.9) we have

ν(F ) ≤
k∑

j=1

ν(Q(ηj , 18tj)) ≤ C
k∑

j=1

h(18tj) ≤ C
k∑

j=1

h(tj)(3.9)

≤
C

a

k∑

j=1

r(µ, ηj , tj) =
C

a

k∑

j=1

\
Btj (ηj)

(1− |w|2) dµ(w).

If z ∈ B is such that |1− 〈z, ηj〉| ≤ tj for some j = 1, . . . , k, then

1− |z| ≤ |1− 〈z, ηj〉| ≤ tj < ̺(K).

Therefore

(3.10)
k⋃

j=1

Btj (ηj) ⊆
k⋃

j=1

{z ∈ B : |1− 〈z, ηj〉| ≤ tj} ⊆ B \K.

From the trivial inequality |1− 〈z, ζ〉| ≥ 12 |1− 〈z/|z|, ζ〉| for z ∈ B and
ζ ∈ S we have

{z ∈ B : |1− 〈z, ηj〉| ≤ tj} ⊆ {z ∈ B : |1− 〈z/|z|, ηj〉| ≤ 2tj}.

Since {Q(ηj , 2tj) : j = 1, . . . , k} is a pairwise disjoint family of Korányi
balls, from the last inclusion it follows that the family

{
Btj (ηj) : j =

1, . . . , k
}
is also pairwise disjoint. Therefore, from (3.9) and (3.10) we have

ν(F ) ≤ C
k∑

j=1

\
Btj (ηj)

(1− |z|2) dµ(z) = C
\

⋃
k
j=1

Btj (ηj)

(1− |z|2) dµ(z)

≤ C
\

B\K

(1− |z|2) dµ(z) < Cε.

Since ε > 0 was arbitrary we have ν(F ) = 0 and hence Theorem 3.2 implies
the result.

4. Main results. As immediate consequences of Lemmas 3.6 and 3.7
we have the following results:

Theorem 4.1. If µ is a non-negative Borel regular measure on B sat-
isfying the usual growth condition\

B

(1− |w|2) dµ(w) <∞,
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then the set L0(µ, 1) is empty. If h ∈ H0, then

Hh(L0(µ, h)) = 0.

Theorem 4.2. Let h ∈ H, 0 < α < 1 and let µ be a non-negative Borel
regular measure on B satisfying the growth condition\

B

(1− |w|2)dµ(w) <∞.

Then

R(µ, h) ⊆ Lα(µ, h) ⊆ L(µ, h) ⊆ R(µ, h).

For a non-negative regular Borel measure µ on B satisfying the growth
condition (2.2) let Fµ be the function on B defined by

(4.1) Fµ(z) = (1− |z|
2)
\
B

1− |w|2

|1− 〈z, w〉|2
dµ(w).

If dµ(w) = f(w)dλ(w), where f is a non-negative measurable function on B,
then we denote Fµ by Ff .
The next two propositions will be needed for the proofs of our next

results. They provide sufficient conditions for the existence of the Tτ -limit
of Fµ and Ff at a point ζ ∈ S. Although their proofs are almost identical to
those of Propositions 1 and 2 in [18], they are included here only for reasons
of completeness.

Proposition 4.3. Let µ be a non-negative regular Borel measure on B
satisfying the growth condition (2.2). If ζ ∈ S is such that

(4.2)
\

Tτ,c(ζ)

(1− |w|2)α

|1− 〈w, ζ〉|τα
dµ(w) <∞

and

(4.3)
\

B\Tτ,c(ζ)

(1− |w|2)γ

|1− 〈w, ζ〉|τγ
dµ(w) <∞

for some c > 0, α > 0, γ < 1, and τ ≥ 1, then

lim
z→ζ

z∈Tτ,c(ζ)

Fµ(z) = 0.

Proof. For 0 < R < 1, let AR = {z : R < |z| < 1}. Then

(4.4) Fµ(z) ≤ C(R)(1− |z|
2) + (1− |z|2)

\
AR

1− |w|2

|1− 〈z, w〉|2
dµ(w)

= C(R)(1− |z|2) + (1− |z|2)
\

AR∩Tτ,c(ζ)

(1− |w|2)α(1− |w|2)1−α

|1− 〈z, w〉|2−α|1− 〈z, w〉|α
dµ(w)
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+ (1− |z|2)
\

AR\Tτ,c(ζ)

(1− |w|2)γ(1− |w|2)1−γ

|1− 〈z, w〉|2−γ|1− 〈z, w〉|γ
dµ(w)

≤ C(R)(1− |z|2) + C
\

AR∩Tτ,c(ζ)

(1− |w|2)α

|1− 〈z, w〉|α
dµ(w)

+ C
\

AR\Tτ,c(ζ)

(1− |w|2)γ

|1− 〈z, w〉|γ
dµ(w).

Now let z ∈ Tτ,c(ζ) and let w ∈ B. Then

|1− 〈z, ζ〉|τ ≤ c (1− |z|2) ≤ (2c) |1− 〈z, w〉|.

Using this and the fact that the function
√
|1− 〈z, w〉| satisfies the triangle

inequality on B × B (Theorem K) we see that for all z ∈ Tτ,c(ζ) and all
w ∈ B,

|1− 〈w, ζ〉| ≤ 2(|1− 〈w, z〉|+ |1− 〈z, ζ〉|)

≤ 2|1− 〈w, z〉|+ 2(2c)1/τ |1− 〈w, z〉|1/τ

≤ C(c, τ)|1− 〈w, z〉|1/τ .

Thus

|1− 〈w, ζ〉|τ ≤ C(c, τ)|1− 〈w, z〉|

for all z ∈ Tτ,c(ζ) and w ∈ B, and therefore by (4.4),

Fµ(z) ≤ C(R)(1− |z|
2) + C(c, τ)

\
AR∩Tτ,c(ζ)

(1− |w|2)α

|1− 〈w, ζ〉|ατ
dµ(w)(4.5)

+ C(c, τ)
\

AR\Tτ,c(ζ)

(1− |w|2)γ

|1− 〈w, ζ〉|γτ
dµ(w)

for all z ∈ Tτ,c(ζ).

As a consequence of hypotheses (4.2) and (4.3) we have

lim
R→1

\
AR∩Tτ,c(ζ)

(1− |w|2)α

|1− 〈w, ζ〉|ατ
dµ(w)= lim

R→1

\
AR\Tτ,c(ζ)

(1− |w|2)γ

|1− 〈w, ζ〉|γτ
dµ(w)= 0.

Therefore, for any ε > 0, we can find R with 0 < R < 1 such that

C(c, τ)
\

AR∩Tτ,c(ζ)

(1− |w|2)α

|1− 〈w, ζ〉|ατ
dµ(w)

+ C(c, τ)
\

AR\Tτ,c(ζ)

(1− |w|2)γ

|1− 〈w, ζ〉|γτ
dµ(w) < ε.
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Hence, for this R, from (4.5) we have

lim
z→ζ

z∈Tτ,c(ζ)

Fµ(z) < ε,

which proves the result.

Proposition 4.4. Let f be a non-negative measurable function on B.
If ζ ∈ S and c > 0, τ ≥ 1 are such that

(4.6)
\

Tτ,c(ζ)

(1− |w|2)α

|1− 〈w, ζ〉|τα
fp(w) dλ(w) <∞

and

(4.7)
\

B\Tτ,c(ζ)

(1− |w|2)γ

|1− 〈w, ζ〉|τγ
fp(w) dλ(w) <∞

for some p with 1 < p < n/(n− 1), and some α and γ with 0 < α < n+p−np
and 0 < γ < n+ p− np, then

lim
z→ζ

z∈Tτ,c(ζ)

Ff (z) = 0.

Proof. As in Proposition 4.2, for z ∈ B and 0 < R < 1 we have

Ff (z) ≤ C(R)(1− |z|
2) + (1− |z|2)

\
AR

1− |w|2

|1− 〈z, w〉|2
f(w) dλ(w)

= C(R)(1− |z|2) + (1− |z|2)
\

AR∩Tτ,c(ζ)

1− |w|2

|1− 〈z, w〉|2
f(w) dλ(w)

+ (1− |z|2)
\

AR\Tτ,c(ζ)

1− |w|2

|1− 〈z, w〉|2
f(w) dλ(w).

If q = p/(p− 1) is the conjugate exponent of p, then by Hölder’s inequality,

Ff (z) ≤ C(R)(1− |z|
2) + (1− |z|2)

{ \
AR

(1− |w|2)(1−α/p)q

|1− 〈z, w〉|(2−α/p)q
dλ(w)

}1/q

×

{ \
AR∩Tτ,c(ζ)

(1− |w|2)α

|1− 〈z, w〉|α
fp(w) dλ(w)

}1/p

+ (1− |z|2)

{ \
AR

(1− |w|2)(1−γ/p)q

|1− 〈z, w〉|(2−γ/p)q
dλ(w)

}1/q

×

{ \
AR\Tτ,c(ζ)

(1− |w|2)γ

|1− 〈z, w〉|γ
fp(w) dλ(w)

}1/p
.



78 K. Adzievski

If we apply to this estimate the asymptotic estimate from Proposi-
tion 3.1,\

AR

(1− |w|2)(1−k/p)q

|1− 〈z, w〉|(2−k/p)q
dλ(w) ≤ C (1− |z|2)−q, k = α or k = γ,

provided (1− k/p)q > n, i.e., k < n+ p− np, we have

Ff (z)≤C(R)(1−|z|
2)+C

{ \
AR∩Tτ,c(ζ)

(1− |w|2)α

|1− 〈z, w〉|α
fp(w) dλ(w)

}1/p
(4.8)

+ C

{ \
AR\Tτ,c(ζ)

(1− |w|2)γ

|1− 〈z, w〉|γ
fp(w) dλ(w)

}1/p
.

As in Proposition 4.3 we have

|1− 〈w, z〉| ≥ C(c, τ)|1− 〈w, ζ〉|τ

for all z ∈ Tτ,c(ζ) and all w ∈ B. Therefore, for z ∈ Tτ,c(ζ) from (4.8) it
follows that

Ff (z) ≤ C(R)(1− |z|
2)

+ C(c, τ)

{ \
AR∩Tτ,c(ζ)

(1− |w|2)α

|1− 〈w, ζ〉|τ α
fp(w) dλ(w)

}1/p

+ C(c, τ)

{ \
AR\Tτ,c(ζ)

(1− |w|2)γ

|1− 〈w, ζ〉|τ γ
fp(w) dλ(w)

}1/p
,

and so hypotheses (4.6) and (4.7) give the proof as in Proposition 4.3.

The proof of the following proposition is omitted since it closely parallels
the proof of a similar result, Proposition 3, given in [18, pp. 148–151].

Proposition 4.5. Let µ be a non-negative regular Borel measure on B
satisfying \

B

(1− |w|2)β dµ(w) <∞

for some β with 0 < β < 1, and let 1 ≤ τ ≤ n/β. Then

(a) for any γ with β < γ ≤ 1,

Hβτ

({
ζ ∈ S :

\
B\Tτ,c(ζ)

(1− |w|2)γ

|1− 〈w, ζ〉|τγ
dµ(w) =∞

})
= 0,

(b) for any α with 0 < α < β,

Hβτ

({
ζ ∈ S :

\
Tτ,c(ζ)

(1− |w|2)α

|1− 〈w, ζ〉|τα
dµ(w) =∞

})
= 0.
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From the above propositions we have the following

Corollary 4.6. If µ is a non-negative regular Borel measure on B
satisfying \

B

(1− |w|2)β dµ(w) <∞

for some β with 0 < β < 1, then for each τ with 1 ≤ τ ≤ n/β there exists
a set Eτ ⊆ S with Hβτ (Eτ ) = 0 such that Fµ has Tτ -limit 0 at all points
ζ ∈ S \Eτ .

Proof. Fix α and γ satisfying 0 < α < β < γ ≤ 1. By Proposition 4.5,
there exists a set Eτ ⊆ S with Hβτ (Eτ ) = 0 such that the integrals in (a)
and (b) of Proposition 4.5 are finite for all ζ ∈ S \ Eτ . For those ζ, now
apply Proposition 4.3.

Corollary 4.7. If µ is a non-negative regular Borel measure on B sat-
isfying the condition \

B

(1− |w|2)βdµ(w) <∞,

for some β with 0 < β < 1, then for each τ with 1 ≤ τ ≤ n/β,

Hβτ ({ζ ∈ S : µ(Tτ,c(ζ)) =∞}) = 0.

Proof. Since |1− 〈w, ζ〉|τ < c(1− |w|2) for all w ∈ Tτ,c(ζ),\
Tτ,c(ζ)

(1− |w|2)β

|1− 〈w, ζ〉|τβ
dµ(w) ≥ Cµ(Tτ,c(ζ)).

The result is now an immediate consequence of Proposition 4.4(b).

Now we are ready for our next main theorems.

Theorem 4.8. Let f be a non-negative measurable function on B satis-
fying

(4.9)
\
B

(1− |z|2)αfp(z) dλ(z) <∞

for some p with 1 < p < n/(n− 1) and some α with 0 < α < n+p−np. Then
for each τ with 1 ≤ τ ≤ n/α there exists a set Eτ ⊆ S with Hατ (Eτ ) = 0
such that Vf has Tτ -limit 0 at all points ζ ∈ S \ Eτ .

Proof. For a function f which satisfies (4.9) let

V1(z) =
\

E(z)

log
1

|φz(w)|
f(w) dλ(w),

V2(z) =
\

B\E(z)

log
1

|φz(w)|
f(w) dλ(w).

Recall that E(z) = {w ∈ B : |φz(w)| < 1/2}.
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From the inequality (3.2) it follows that

log
1

|z|
≤ C(1− |z|2) for all z ∈ B with |z| ≥ 1/2.

Therefore from the identity (2.1) we have

log
1

|φz(w)|
≤ C
(1− |z|2)(1− |w|2)

|1− 〈w, z〉|2

for all w ∈ B \E(z). Thus,

V2(z) ≤ C(1− |z|
2)
\
B

1− |w|2

|1− 〈w, z〉|2
f(w) dλ(w) = CFf (z)

for all z ∈ B.
If we take dµ(w) = fp(w)dλ(w), then from Propositions 4.4 and 4.5 it

follows that there exists a set E2 ⊆ S such that Hατ (E2) = 0 and Ff has
Tτ -limit 0 at all points ζ ∈ S \E2. Therefore there exists a set E2 ⊆ S such
that Hατ (E2) = 0 and V2 has Tτ -limit 0 at all points ζ ∈ S \E2.
Now consider the function V1. Taking dµ(w) = f

p(w)dλ(w) in Corollary
4.5, it follows that there exists a set E1 ⊆ S with Hατ (E1) = 0 such that

(4.10)
\

Tτ,c′ (ζ)

fp(w) dλ(w) <∞

for all ζ ∈ S \E1 and any c
′ > 0. Suppose that c > 0 and z ∈ Tτ,c(ζ). Then

by [19, Lemma 8.17] we have

E(z) ⊆ Tτ,c′(ζ) ∩Ar for every c′ > c2τ+1 and r ≥ 2|z|2 − 1.

Let q be the conjugate exponent of p. From the above inclusion, the
M-invariance of λ and Hölder’s inequality we have

V1(z) ≤

{ \
E(z)

(
log

1

|φz(w)|

)q
dλ(w)

}1/q{ \
E(z)

fp(w) dλ(w)
}1/p

=

{ \
{w : |w|<1/2}

(
log

1

|φz(w)|

)q
dλ(w)

}1/q{ \
E(z)

fp(w) dλ(w)
}1/p

≤ C
{ \
Tτ,c′ (ζ)∩Ar

fp(w) dλ(w)
}1/p

,

where C is a constant which is independent of z tending to the boundary
of B.
Therefore, for all z ∈ B we have

V1(z) ≤ C
{ \
Tτ,c′ (ζ)∩Ar

fp(w) dλ(w)
}1/p

.
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Now, as a consequence of (4.10) the above integral goes to 0 as r → 1. Thus
V1 has Tτ -limit 0 at all points ζ ∈ S \ E1. If we take Eτ = E1 ∪ E2, then
Hβτ (Eτ ) = 0 and Vf has Tτ -limit 0 at all points ζ ∈ S \ Eτ .

Theorem 4.9. Let {zj : j = 1, 2, . . .} be a sequence in B satisfying
∞∑

j=1

(1− |zj |
2)α <∞

for some 0 < α < 1, and let µ be the measure given by µ =
∑
δzj , where δzj

is the unit point-mass measure at zj. Then for each τ with 1 ≤ τ ≤ n/α,
there exists a set Eτ ⊆ S with Hατ (Eτ ) = 0 such that Vµ has Tτ -limit 0 at
all points ζ ∈ S \Eτ .

Proof. As in Theorem 4.8, for the measure µ, let

V1(z) =
\

E(z)

log
1

|φz(w)|
dµ(w), V2(z) =

\
B\E(z)

log
1

|φz(w)|
dµ(w).

As in Theorem 4.8, for the function Fµ defined by (4.1), we have

V2(z) ≤ C Fµ(z)

for all z ∈ B, where C is a constant independent on z.
By Corollary 4.5 there exists a set E1 ⊆ S such that Hβτ (E1) = 0 and

Fµ has Tτ -limit 0 at all points ζ ∈ S \ E1. Therefore V2 has Tτ -limit 0 at
all points ζ ∈ S \ E1. By Corollary 4.6 there exists a set E2 ⊆ S such that
Hατ (E2) = 0 and

µ(Tτ,c(ζ)) <∞ for all ζ ∈ S \E2.

Now, it is obvious that µ(Tτ,c(ζ)) < ∞ if and only if Tτ,c(ζ) contains
only a finite number of terms of the sequence {zk}. But for those ζ for
which µ(Tτ,c(ζ)) <∞ we obviously have

lim
z→ζ

z∈Tτ,c(ζ)

V1(z) = 0,

which means that V1 has Tτ -limit 0 at all points ζ ∈ S \ E2. Now take
Eτ = E1 ∪E2.
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[16] T. Sjödin, A note on capacity and Hausdorff measure on homogeneous spaces, Po-

tential Anal. 6 (1977), 87–97.
[17] M. Stoll, Boundary limits and non-integrability ofM-subharmonic functions on the

unit ball of C
n (n ≥ 1), Trans. Amer. Math. Soc. 349 (1997), 3773–3785.

[18] —, Non-isotropic Hausdorff capacity of exceptional sets of invariant potentials, Po-
tential Anal. 4 (1995), 141–155.

[19] —, Potential Theory in the Unit Ball of C
n, London Math. Soc. Lecture Note Ser.

199, Cambridge Univ. Press, 1994.
[20] J. Sueiro, Tangential boundary limits and exceptional sets for holomorphic functions

in Dirichlet-type spaces, Math. Ann. 286 (1990), 661–678.

Department of Mathematics and Computer Science
South Carolina State University
Orangeburg, SC 29117, U.S.A.
E-mail: kadzievski@scsu.edu

Received 14.10.2005 (1644)


