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Explicit difference schemes for nonlinear
differential functional parabolic equations
with time dependent coefficients—convergence analysis

by A. PoLiNskI (Gdansk)

Abstract. We study the initial-value problem for parabolic equations with time de-
pendent coefficients and with nonlinear and nonlocal right-hand sides. Nonlocal terms
appear in the unknown function and its gradient. We analyze convergence of explicit
finite difference schemes by means of discrete fundamental solutions.

1. Introduction. The paper presents a convergence analysis for explicit
finite difference methods (FDM’s) consistent with parabolic equations whose
leading terms are time dependent. The right-hand side contains nontrivial
nonlocal operators (delays, integrals), acting on the unknown function and
its derivatives. We show that discrete solutions and their spatial difference
quotients converge uniformly to the exact solution and its gradient. Unlike
[1], [4], [7], [8] the maximum principle is not applicable in that case because
the gradient essentially depends on functional arguments (delays, integrals).
We generalize some results of [6], where an analogous convergence theorem
has been proven for a nonlocal heat equation, i.e., the leading term was
just the Laplacean. Our nonlocal terms, main assumptions and ideas are
basically the same. We exploit the concept of matching sequences of indices,
which leads to an a priori estimate of differences of the discrete fundamental
solution. Unlike [6] we do not arrive at these estimates by direct analysis of
paired sequences, but by an elegant combinatorial Lemma 4, whose idea is
adapted from some results of Littlewood, Offord, Katona and Kleitman [5].
Owing to this lemma it becomes possible to estimate complicated expressions
in the presence of variable coefficients ay(t).

The organization of the paper is as follows: 1) formulation of the differen-
tial-functional problem and standard assumptions on coercivity and bound-
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edness of the leading term, 2) formulation of the difference scheme and aux-
iliary lemmas on the positivity of its coefficients and properties of a discrete
fundamental solution, 3) the crucial Lemma 5 on estimates of finite dif-
ferences between two values of the fundamental solution, 4) formulation of
assumptions on the right-hand side function, natural in the consistency and
stability theory of difference schemes, 5) deduction of the convergence the-
orem from the consistency and stability lemmas, 6) numerical experiments
in R?.

1.1. Formulation of the differential and difference problem. Given d > 0
and 70, 71,...,T € Ry, set [—7,7] = [-711,71] X ... X [=Tp, ], E = [0,d]
xR" Ey = [-70,0]xR™ and B = [—7p, 0] x[—7, 7]. Denote by C'(B, R) the set
of all continuous functions from B to R. If u: Ey UE — R and (t,z) € E,
then we define the Hale-type functional w(,) : B — R by w4)(s,y) =
u(t + s,x +y) for (s,y) € B.If U = (uy,...,up) : Ey UE — R", then
U(t,:p) = ((ul)(t,m)v ) (un)(t,z))'

Suppose that ay : [0,d] — R and ¢ : Ey — R are continuous, f: 2 — R,
where 2 := E x C(B,R) x C(B,R"). Consider the Cauchy problem

(1) Owu(t,x) Zak Oz u(t, @) + f(t, 2, U0y, (Oxt)(r2))  on E,

(2) u(t,x) = ¢(t,x) on Ep.

We will use the following assumptions; the first implies coercivity of the
differential operator — > ) ay(t)9s,z,, whereas the second guarantees the
stability of the difference problem, as well as the uniform boundedness of
the coefficients ag(+).

ASSUMPTION 1. ag(t) >eg>0for k=1,...,nand ¢ € [0,d].

ASSUMPTION 2. There are positive numbers C1, ..., C), such that
n
1= 2CRax(t) =0, te[0,d].

Fix Cy,...,C), € (0,00). Define the set of admissible steps:

(3)  Ic={h=(ho,h'):ho€(0,d), ' = (hi,...,hy) € RY,
h2C? =hg (i=1,...,n)}.

It is seen that the time step hg is proportional to h?. Recall that explicit
schemes are stable for sufficiently small coefficients C;.

We introduce a regular mesh. Set t* = ahg and 2° = (31h1, . .. , Bnhy,) for
a € Zand € Z" Let Z, = {(t*, 2°) : (o, B) € Z'T"}. Define EY = EqNZy,
Ey=ENZy, By = EYUEy, Eif ={(t*2") € B, : t*T1,2P) € E}}, By, =
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BN Z;,. We will use the difference operators 58‘, O and Ok (K =1,...,n)
defined by

w(@t18) _ ()

stuled) — ,
o hO
5ku(a,ﬁ) _ u(a7ﬂ+ek) — u(a7ﬂ_ek)
2hy, ’
(a,ﬁ—'—Ek) — 2 (avﬁ) (Oé,ﬁ—ek)
U U +u
S F) = h2 ;
k
where e, = (01k,...,0,%) and J; is the Kronecker symbol for j, k =
1,...,n. The difference operators (56F , O, O approximate the respective

partial derivatives 0y, Oy, and 0y, , . For all t* € [0, d] define
ho
=1-%" Sz a(t”), A = 72 ap(t®) (k=1,...,n).
k
Put cga) = 0 for all remaining multiindices s € Z™ and all o > 0.
LEMMA 1. If Assumptions 1 and 2 are satisfied and h € 1o, then

Sl =1, 0, fortoe(0,d], s ez
SEL™

The finite difference approximation of problem (1)—(2) takes the form

(4) 5 u(@8) = Zaéa)5kku(a,ﬁ) + flu]®®  on E;f,
k=1

(5) ul®P) = E(a’ﬁ) on EY,

where a,ga) = ai(t%), ¢ is a discrete perturbed counterpart of ¢,

6)  fu] P = fiu(t*, 2" a5, (00 0,5), = (011, pu),
u[aﬁ](ta,xg) = u(ta+°‘,x5+ﬁ) for (ta,xﬁ) € By,
(0u)ja,5) = ((O1)(a,g): - - > (On)a,5);
and f5 : Ef x BrR x (PrR)" — R. Here BrR denotes the set of all real
functions defined on Bj,. Equation (4) can be rewritten in the explicit form
(7) wetLh) Z (@) (aB+s) L p of[u ] a,B)
SEL™

Formula (7) is crucial in our further theoretical considerations. First we
investigate basic properties of solutions of such equations.
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1.2. Auzxiliary statements

LEMMA 2. Suppose that Assumptions 1 and 2 are satisfied. If h € I¢,
g: E,T —Randu: FE, — R satisﬁes the equation

(8) ploths) — Z e (@B+5) 4 pog@P®)  on ES,
seEZ™

then

(9) [ulloo (@ + 1) < [lulloc(0) + ho Z l19loo (1t

< Julloo (0 )+ta+1\|9|!oo(04)7
where ||v]oo(@) = SUPz<q, gezn [0 @B)| for any discrete function (a,3)
(@B and there exists a unique representation of the solution

(10) (.B) — Z (@3,0.m),,(0,m)
neLm
o
+hoz Z reBm oC=1n)  on Fy
(=1 nezZr

where T'(@P$N) s the discrete fundamental solution, determined by the re-
currence relations

(11) LB = Go15_y),
(12) letlsdn) Z Cga)p(a7/3+s7C,77)’ 0<(<a,
SEL™

where 6y |g_y| is the Kronecker symbol.
Proof. Tt follows from (8) that

\u“+1’5\<2\c ﬁ*‘s\—i—h\g ,ﬁ’
SEZL™
By Lemma 1 we have the recurrence inequality

[ufloo (e + 1) < lulloo(@) + Rol|glloo()-

This completes the proof of estimate (9).

Now we prove (10)-(12) by induction on «a. For a = 0, (10) follows from
(11), which is obvious. Assume that (10) holds for some o > 0. It follows
from (8), (10) and (12) that

w@ 1) = 3 o {Z pleBts0m,0m 4 hoza: 3 p<a,ﬁ+s,c,n>g<c—1,n)}

ElSYAL T]EZ" C:l T]EZ"

+ hog(a’ﬁ)
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_ Z u(O,n) Z Cga)F(a,ﬁ+s,0,n)

neL™ seLm
o

Fhe ST Y gt ST gl plestsla . pogld)
(=1 nezn sez"

Since this relation holds for arbitrary functions (> and g, we have (12),
and (10) for a + 1. This completes the proof.

REMARK 1. It follows from Lemma 2 that

resen - >y e o 65 sl

SIELT 54 (€L i=1

We now give further properties of the discrete fundamental solution. The
following lemma is a simple consequence of Lemma 1 and the recurrence
relations (11) and (12).

LEMMA 3. Under the assumptions of Lemma 2 we have

(13) F(Q’B7C7n) 2 07 Z F(avﬂ:Cﬂ?) — 1
neLn

fora,( =0,1,... witha > and B € Z".

To obtain a priori estimates of the difference operators for the fundamen-
tal solution we will use the following lemma. The symbol |r]| stands for the
integer part of r € R, i.e., the integer k such that £ <r < k + 1.

LEMMA 4. If 0 <b<1/2, then

%

2 <k> (1 =25 (Lk/2J> ﬁ

Proof. From a version of the Stirling formula [5] we have

kz;) <Z> (1- 2b)"_kbk<tkl;2J> < I;O <;> (1 —2b)" "k \/%

By the Schwarz inequality, we get
% . k
1 - 2
1—2b) Ry ———
2 (1) s

(B ()o-mor ) (F (o-wrwr)”

_ (kio (;) (1 — 2b)i~k (2b)k k#ﬂ)m.
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i\ 1 [i+1) 1
E)Jk+1 \k+1/)i+1’

. +1 .
> <;>(1 — 2b)F(2b)F : i [ < 0 +11)2b kzo (Z Z 1) (1 — 2)"+ 1k (2p)*

k=0

Since

we have

_
(i +1)2b°

Hence the assertion follows.

LEMMA 5. If Assumptions 1 and 2 are satisfied, and h € 1o, then

e}
S 3 [peedn - e o) < 4 Ve
¢=1nezn ) \/E

where

0<e= min CS?;)
j=1,...,n,a>0 J

Proof. We prove this in three steps:
(a) some reductions and simplifications are made in
A0 — Z |(@Btesem) _ plosf=e;Cn)|
neL™

(b) A« ’C) is shown to be an affine and decreasing function in the vari-

ables c (C <~v<a),
(c) the assertlon of Lemma 5 is deduced from Assumption 1 and Lem-
ma 4.

STEP (a). Without loss of generality we assume that j = 1, hence
(a.Q) — Z |P(eBrentn) _ plasf=encm)
nezm™

Thus from Remark 1 we have

QC)_Z‘Z Z Hcal)ai)\nﬁmz 1sz|

neL™ s1€L™ Sa— CEZ” =1

D IRIEDY H 0 ey o |

S1EZL™ Saq—¢€L™ 1=1

Because each multiindex in Z" can be decomposed as mej +n, where n; =0
and m € Z, we rearrange the above formula as follows:
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(14) A9 =

> Y |y Mér- oy T

mEZNEL™, m=0 Y, si=(m+1)e1+n i=1 > si=(m—1)e1+n i=1
Observe that

a—¢ a—(
oY Tao- % Taso
Y si=(mt1)er+n i=1 Y, si=(m—1)e1+n i=1

iff |m + 1| < |m — 1|, i.e., m < 0. This follows from the fact that M =
(

cjs) Thus for all m < 0, there is an injection from the set of multiindices
(815--+,8a—¢) for which

Zsz— m—1er+1, m=0

to the set of multiindices (51,...,54—¢) for which

ZEi:(m-f—l)el-f-T], m = 0.
3
A similar (reverse) injection can be found for all m > 0. The construc-
tion of the injection is based on a proper replacement of some coefficients
cg(ll D= cgf!ell) by cg?_l) = c(fée:l). In the case of m = 0, the above injection
(81,-+s8a—¢) — (31,...,54—¢) becomes a bijection. Hence by (14) and (15)
we have

a—(¢
Ared =y ( S o) 4 Z (a i)
neL™ =0 Z‘Si:_51+77i 1 >, si=n =1
a—(¢
C X M x e
Y si=n i=1 >, si=tei+n i=1

™) ™)

because all remaining terms cancel each other. Since ¢/ = ¢’
rewrite the above formula as

a=¢
Y VI ol | R v 1 ()

neEL™, m=0 3. s;=ni=1 Y si=+ter+n i=1

we can

or A0 = AFSD"C) + AF_?_C{’O, where
a—(¢

(17) Arfed =2 - > el meZ

neL™,m=0%", s;=me1+n i=1
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Hence we have to consider only sequences (si,...,Sq—¢) such that
a—( a—(

(18) (Zsizo—kn, 77120) or (Zsi:—kel—kn, 77120).
=1

i= =

The sequences will be classified according to the appearance of s; = +eq,
s; = —ep and other indices. Let J = {1,...,a — (}. Denote by A and B
any disjoint subsets of J whose cardinalities satisfy either #4 = #B or
#B = #A — 1. The set A is related to indices s = +e1, while the set B to
indices s = —ey, so condition (18) is met. Since ANB =0 and AUB C J it
is obvious that 2#A < #.J+1. We have CS:Ye)l = c(je)l and ANB = (), so it will
00 ™) ™)

cause no confusion if we use cy, instead of ¢}/, and ¢’/ to simplify some
of the formulas. For any fixed k € J and any (s;);2k, the sum over s € Z",

(o (a—i)

sk # tep (part of the sum over 7 in (16)), yields (I—QCielk)) [Licsizk csi
Thus we can represent AI'(®¢) as follows:

i) ared—a S LTS T -

ABCJ keA keB keJ\(AUB)
ANB=0
#A—#B€{0,1}

This finishes the proof of step (a).

StEP (b). It follows from (19) that AI'®) is an affine function with

respect to cgf;:k) for all £ € J. Indeed, this is straightforward because k

belongs either to A, B or J \ (AU B). Now we show by induction on o > ¢

that AI'(@9 is decreasing with respect to all arguments cge) .- This is obvious

for o = ( + 1 (see (16) for AI'CFTLO). Assume that AT(@C) decreases in all

nge)l- We will prove it for A1 Tt suffices to consider c(fe)l, because the
proof for arbitrary ( < v < « is analogous. We will show that

(20) A[’(‘%C)(l — C(iae)l) < APt < Ap(ed) nge)l H(l _ QCgtzxe:i)),
ieJ
ie., A (e+L0) ig an affine function, bounded by two affine decreasing func-

tions with the same value at 0. Thus AI'(®+10) is decreasing in cgge)l.

Now we prove (20). By multiplying cga) by appropriate Afr(na’o (see (17)
and (18)) and summing them over s € Z", we get the recurrence formula for
A(a+1,0).

(21) A (@t10) =(1- cgra) _ @ )AFSO"O + @ AFéa’O + c(iae)l AF_(S’C)

el —e1 +e1

L= @) ADEO L o) AP0 L ) Apled

+e1 —e1 +e1 - —e1

— AT — {2 (AT — ATy,

By omitting in (21) the nonnegative terms c(_agl AFJ(FO{’Q and c(_ae)lAFJ(roé’O, we
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get the lower bound in (20). Since AFSO"O contains sequences of coefficients
without any indices s; = Zej, which sum to [[;.;(1 — 265&:1)), we get the
stronger version of (15), namely AF( <) > AF(Q’C +1Lies(1 203?67)). This
gives the upper bound in (20). ThlS finishes the proof of (b).

(

STEP (c). It follows from Assumption 1 that ¢y’ V) > ¢ > 0. From step

(b) and formula (19) we have the inequality

Ared <z Y- I« II a-2o.

A,BCJ keAUB keJ\(AUB)
ANB=0
#A—#Bec{0,1}

Let i = #(AU B). Observe that 0 < i < a — (. Thus by basic combinatorics

we have )
(0 Oi_: a—C i o \a—C—i_i

Applying Lemma 4, we get

1
(22) A9 <9 .
2e(a—(C+1)
Finally, summing over ¢ in (22) yields
(0%
S°Y |restencn _ plas-ain) < 4 Vo
(=1nezn Vi2e
Hence the proof of Lemma 5 is complete.
Now from Lemmas 2, 3 and 5 we get
COROLLARY 1.
V21t
16;ul* )] < 185ullo (0) + C; — 19]loc ().

2. Stability and convergence. The defect of scheme (4)-(5) will be
defined by

Olu, h](aﬁ) = 5+ Za (5kku (c,5) f[u](a’ﬂ).

If O[u, h](“%) = 0, then {u(*} is a solution of scheme (4)—(5). We formulate
sufficient consistency and stability conditions. All supremum norms will be
denoted by |+ ||co-

AssUMPTION 3. There are constants Li, Lo € Ry such that

|fu(t,z,p,q) = fr(tz,p, @) < Lillp — Plloo + Lallg — qlloo
for all (¢,z,p,q), (t,x,p,q) € E;Lr x BrR x (BrR)™.
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The above assumption is similar to the third part of Assumption H[f3, o]
in [2].

ASSUMPTION 4. The discrete function fj, = f[u](®?) (see (6)) satisfies
’fh(tav xﬂv Ule, 8] (5u)[a,ﬂ}) - f(tav xﬂv Ut zBYs (awu)(t‘l,a:ﬁ))’ < CHhHOO

for all (t*,20) € E,J{, with a constant C' depending on w, 0y, u, ..., dy, u,
where v : Eg U E — R.

It can be shown (see [3]|) that there exists an interpolation operator T}
such that 7w € C(B,R) for arbitrary w : B, — R, and there exist constants
C,C > 0 such that

Ti(v15,) (t,7) — 0(t,2)| < Cllblloe for v € CY(B)
and
| Thw — T oo < Cllw — W for w,w : By — R.
If we define
fu(t,2,p,q) = f(t, 2, Thp, Tha)
for (t,x,p,q) € E;LF x BrR x (BrR)™, then Assumption 4 is satisfied, provided

that f = f(¢,x,p,q) fulfills the Lipschitz condition with respect to p, ¢ and
u € C%*(Eq U E,R).

ASSUMPTION 5. There exists a unique solution u € C*3(Ey U E,R) of
the Cauchy problem (1), (2).

LEMMA 6 (consistency). Suppose that Assumptions 4 and 5 are satisfied
and ||¢(@P) —a(a’ﬁ)ﬂoo — 0 as ||h||oc — 0. Then scheme (4), (5) is consistent
with the Cauchy problem (1), (2) on its solution u € C?3(Ey U E,R).

Proof. The consistency is obtained by using the Taylor expansions at
nodal points (an analogous result was proved in [6]).

LEMMA 7 (stability). If u,v : E;, — R and Assumption 3 is satisfied,
and
[u(@F) — @) < O]l on EY,

10j(u—0) | < C|hlloe on EY, j=1,...,n,
Olu, h) P =0, 6w, n] P < C|hllw on E}f,

L1d+6\/2/8\/g[/2 <1, where C = ‘ I{TllaX }Cj
J€el,...,n

then
sup [(u(® — 0@, 50— 1)@ M) [ =0 as [hlloc — 0.

a7ﬂ
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Proof. Set
w(@B) = (@B) _y(@B) - (@B) — p1yy)(@B) — fly)(@B) — @[, h](*H),

From Lemma 2 and Corollary 1 it follows that

lolloo (@ +1) < Jlwlloo(0) + TV oo (cr) B
< [lwlloo(0) + t°FH{ L |wlloo (@) + Lafldw]loc (@)} + t* 1T ]l oo

and
16w ]loo (@ + 1) < [|0w]loo(0) + Cv/2/eVEHT |1yl (c)
< [|6w]loo(0) + Cv/2/eV* T { L1 @]l oo (@) + Lal6w]loo(@)}
+CC\2/eVtoH ||h| oo
Observe that
Lyttt 4 OV2/eVietl Ly <k <1 for 0 < toH < d,
where Kk := L1d + GMVELQ. If we set

¢ = Ly ||wlloo(@) + La|dw]lso (),

then
¢t < ¢ 4 Lyt 4 C\/2/eVitetT Ly) (@)
+ (L1t + C\/2/eVotT L) O b o
Hence

1 ~ .
I¢lloe < 7= (Cllbllc + Clibll) +

Thus [|¢]|c tends to 0 as ||h||cc — 0, which means that so do |lw||e and
[[0w]]oo-

THEOREM 1 (convergence). Suppose that Assumptions 3-5 are satisfied,

Lid+C\/2/ev/d Ly < 1 and
(23) 1@ — 7 56— 3) @Dy = O(|| ] 0)-

Then the solutions of scheme (4), (5) converge to the unique solution of the
differential-functional problem (1), (2).

Proof. The assertion follows from Lemmas 6 and 7.

REMARK 2. The assumption on the class of the solution of (1), (2) in
Lemma 6 and Assumption 5 can be weakened to C1:2, but in that case we get
in Theorem 1 only ||(]|cc = 0(1) instead of ||{||cc = O(||h]|0). If we assume
class C%* and the estimate by O(||h||%,) in Assumption 4 and (23), then we
get [Clloo = Ol + [11.) = O(IIIZ.) (see [3]).
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(24)

(25)

Opu(t, x1, x2) —

8tu(t7 X1, 172)

Opu(t, z1, x2)

Opu(t, x1,x2)

Opu(t, x1,x2)

Opu(t, z1, x2)

Opu(t, x1,x2)

8tu(t7 Ty, .TQ) -

A. Polinski

. Numerical experiments. Fix n = 2 and consider the equations

(1) Oupay u(t, x1, x2) = fi(t, z1,22),

B
Il o
—_

2
- Z ag(t) Oz, u(t, 1, 22)
k=

= sin(u(t, z1 + sin(x1), x2)) + fat, x1, x2),

E ag(t)Opp 2 u(t, 1, 22)
x1+1

:sin( S u(t,S,[L‘z)dS)+f3(t7$1,$2)7

w1—1
Zak Oy u(t, 21, 2)
= sin(0z, u(t, v1,x2)) + fa(t, 1, x2),
Zak Oy u(t, 21, 2)

= sin(0y, u(t, x1 + sin(x1), x2)) + f5(t, x1, x2),

5 ag(t)Opp 2 u(t, 1, 22)

= sm(@xlu(t — TO,.’L'1,~'L'2)) + fﬁ(taxl)l?)v

Zak zk:ck t -’Elal‘2)

- Sln(u(t - 7-07':617:62)) + f?(t,:ﬂl,l'Q),

2
Zak(t)axwku(t,ml,xg)
k=1
t x1+1
= sin( S S u(s,z,:vQ)dzds) + fs(t, x1, 22).

t—1ox1—1

Consider two sample functions (ai(t), az(t)):

e case I: aj(t)

= as(t) = 2 + sin(t),

e case II: ay(t) = aa(t) = {

1+t, te[0,0.5),
2—t, te[0.5,1].
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We have performed numerical experiments for equations (24)-(31) in
both cases. The results have been compared with the prescribed solution

u(t,x,y) = cos(tsin(t + x1 + x2)).

The right-hand sides fi(t,x1,x2), ..., fs(t,x1,z2) are defined so as to make
1 a solution. Since the computations require a large amount of time and com-
puter memory (especially for small hg), the domain considered in the com-
putations is restricted to [0, 1] x [-11,11] with boundary values equal to the
initial values at ¢ = 0. This may cause large errors near the boundary, so we
present the maximal errors on a smaller domain, namely [0, 1] x [-1, 1]%. The
maximal errors on [0, 1] x [—1, 1]? are presented in Tables 1-2 and 3-4, respec-
tively. The errors for analogous tests on a smaller domain, e.g. [0, 1] x [—6, 6]
turn out to be larger than those listed above. All numerical experiments con-
firm convergence of a discrete function to the exact solution.

Acknowledgements. We are grateful to the reviewer for his valuable
remarks, which improved the entire paper.

Table 1. The maximal error on [0,1]x [~1,1]%, h = hy = hy = 1/n and ho = 1/(12n%+1)

h 1/5 1/10 1/20

t-interval [0,05]  [0,1]  [0,0.5] [0,1]  [0,0.5]  [0,1]
(24) 1.06e-03 3.85e-03 2.66e-04 9.58¢-04 6.66e-05 2.41e-04
(25) 1.14e-03  4.20e-03 2.85e-04 1.05e-03 7.13e-05 2.63e-04
(26) 9.87e-04 3.66e-03 2.47e-04 9.11e-04 6.19e-05 2.29e-04
(27) 1.09¢-03 3.88e-03 2.73e-04 9.79e-04 6.86e-05 2.45e-04
(28) 1.15e-03 3.96e-03 2.89e-04 9.85e-04 7.20e-05 2.50e-04
(29) (1o =0.5)  1.06e-03 3.83¢-03 2.66e-04 9.53¢-04 6.66e-05 2.39e-04
(29) (1o = 0.25) 1.06e-03 3.77e-03 2.66e-04 9.39¢-04 6.66e-05 2.36e-04
(30) (0 = 0.5)  1.06e-03 3.81e-03 2.66e-04 9.49e-04 6.66e-05 2.38¢-04
(30) (70 = 0.25) 1.06e-03 3.76e-03 2.65¢-04 9.35¢-04 6.64e-05 2.35e-04
(31) (1o =0.5) 8.4le-04 1.73e-03 2.11e-04 4.35e-04 5.30e-05 1.09e-04
(31) (70 = 0.25) 8.42e-04 1.73e-03 2.11e-04 4.36e-04 5.30e-05 1.09e-04

Table 2. The maximal error for u, (¢, z,y) with the same parameters as in Table 1

h 1/5 1/10 1/20
t-interval [0,05] [0,1]  [0,05]  [0,1]  [0,0.5]  [0,1]
(27) 2.02e-03 7.20e-03 5.08¢-04 1.80e-03 1.28¢c-04 4.50e-04

(28) 2.30e-03 7.98¢-03 5.85e-04 2.02e-03 1.47e-04 5.06e-04
(29) (10 =0.5)  2.02e-03 7.13¢-03 5.06e-04 1.78¢-03 1.27e-04 4.45e-04
(29) (10 = 0.25) 2.01e-03 7.27¢-03 5.05e-04 1.81e-03 1.26e-04 4.54e-04




110

A. Polinski

Table 3. The maximal error on [0,1] X [=1,1]?, h = hy = ha = 1/n and ho = 1/(6n+1)

h 1/5 1/10 1/20
t-interval [0,05]  [0,1]  [0,05  [0,1]  [0,0.5]  [0,1]
(24) 1.34e-03 4.34e-03 3.37e-04 1.08¢-03 8.47e-05 2.7le-04
(25) 1.48¢-03 5.05e-03 3.73e-04 1.26e-03 9.36e-05 3.16e-04
(26) 1.20e-03 3.99e-03 3.02¢-04 9.95¢-04 7.58e-05 2.49e-04
(27) 1.46e-03 4.79¢-03 3.67¢-04 1.20e-03 9.22e-05 2.99e-04
(28) 1.47¢-03 4.69e-03 3.74e-04 1.18e-03 9.32e-05 2.96e-04
(29) (1o =0.5)  1.34e-03 4.34e-03 3.37¢-04 1.09¢-03 8.47e-05 2.72e-04
(29) (1o = 0.25) 1.32e-03 4.13¢-03 3.37¢-04 1.03e-03 8.44e-05 2.59e-04
(30) (7o =0.5)  1.34e-03 4.31e-03 3.37¢-04 1.07e-03 8.47e-05 2.69e-04
(30) (1o = 0.25) 1.33e-03 4.26e-03 3.36e-04 1.06e-03 8.43e-05 2.66e-04
(31) (0 =0.5)  1.67e-03 3.44e-03 4.22e-04 8.70e-04 1.06e-04 2.18e-04
(31) (10 = 0.25) 1.67e-03 3.45¢-03 4.22e-04 8.71e-04 1.06e-04 2.18e-04

Table 4. The maximal error for u,(¢, z,y) with the same parameters as in Table 3

(1]
2]
(3]
[4]
(5]
[6]
[7]

h 1/5 1/10 1/20
t-interval [0,05] 0,1  [0,0.5] [0,1]  [0,0.5]  [0,1]
(27) 2.42¢-03 8.52e-03 6.16e-04 2.16e-03 1.54e-04 5.39e-04
(28) 2.91e-03 1.08e-02 7.44e-04 2.75e-03 1.89e-04 6.98e-04
(29) (o =0.5)  2.40e-03 8.10e-03 6.05¢-04 2.03e-03 1.52e-04 5.09e-04
(29) (1o = 0.25) 2.35e-03 8.44e-03 5.92e-04 2.10e-03 1.49e-04 5.28e-04
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