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On absolutely monotone set-valued functions

by ANDRZEJ SMAJDOR (Krakow)

Abstract. We define absolutely monotone multifunctions and prove their analyticity
on an interval [0, b).

1. Let f : [a,b) — R. The pth order difference ALf(t) of f is defined
inductively as follows:

AVf() = f(t),  APFLf(t) = ALf(t+ ) — ALS(1)
for every nonnegative integer p, ¢t € [a,b), s > 0 such that t + (p+ 1)s < b.
We say that the function f is absolutely monotone in the interval [a,b)
if ALf(t)>0fora<t<t+ps<b p=0,1,.... The following Bernstein
theorem is well known (see e.g. [3, Theorem 2.3.2]):

THEOREM. Every absolutely monotone function f : [0,b) — R is analytic:
(o]

F) = apt"

n=0
in [0,b) with a,, > 0,n =0,1,....

2. In this paper we prove an analogue of S. Bernstein’s theorem for ab-
solutely monotone set-valued functions. Let Y be a real normed space and
let cc(Y') denote the family of all nonempty compact convex subsets of Y.
A set C € cc(Y) is the Hukuhara difference of A € cc(Y) and B € cc(Y) if

A=B+C={b+c:beB, ccC}

(see [2]). If the difference C' = A — B exists, then it is unique. This is a
consequence of the following:

LEMMA 1 (cf. [5]). Let A, B and C be subsets of a real topological vector

space such that
A+BcCC+B.

If C is convex closed and B is nonempty bounded, then A C C.
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Now, let —0o < a < b < oo and let H : [a,b) — cc(Y). We define the pth
differences AYH (t) by the recurrence
AYH(t) = H(t), APTYH(t) = APH(t + s) — APH(t)
for every nonnegative integer p, ¢t € [a,b), s > 0 such that ¢t + (p+ 1)s < b.

A set-valued function is said to be absolutely monotone if all differences
ALH (t) exist and each contains zero.

ExXAMPLE. Let A € cc(Y) be such that 0 € A. Suppose that h :
[a,b) — [0,00). Then H(t) = h(t)A is an absolutely monotone set-valued
function if and only if A is an absolutely monotone real function.

We can observe the following:

REMARK. Let b and « be positive numbers, H : [0,b) — cc(Y) and
G(t) = H(at) on [0,b/a). Then G is absolutely monotone if and only if H
is absolutely monotone.

Let G : [0,1] — cc(Y) be a given multifunction. The polynomial
n .
n\ ,; e
B,(t) = t'(1—0)" "G —
0= (7)o -ore ()
is called the nth Bernstein polynomial of G.

THEOREM 1. If G : [0,1] — cc(Y) is continuous (with respect to the
Hausdorff metric d in cc(Y)), then

3 1
d(Bp(t t) < -wl —
(B.(0).6(0) < 3o =),
where
w(8) = sup{d(G("),G(t)) : |t —t'| < 6}.

The proof of this theorem runs similarly to the proof of Bernstein’s ap-
proximation theorem (cf. [3]).

LEMMA 2. Let G :[0,1] — cc(Y) be a multifunction. Then

n
n\ . .
0 B0 =3 ()i, 60
i=0
for positive integers n and t € [0, 1].
Proof. Let “~” denote the Radstrém equivalence relation between pairs
of members of cc(Y) defined by the formula

(A,B)~(C,D)< A+D=DB+C.
For any pair (A, B), [A, B] denotes its equivalence class. All equivalence
classes form a linear space Y with addition defined by the rule
[A,B]+[C,D]=[A+C,B+ D]
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and scalar multiplication
[AA, AB] for A >0,
AA,B] =
AMA,B] = [-AB,—)AA] for A< 0
(ct. [5]). N
Consider the function ¢ : [0,1] — Y defined as follows:

g(t) = [G(#),{0}].

It can be proved by induction that

@) Arg(t) = [APG(1), {0})

and )

3) a9 =3 ()1 ata-+
=0

for nonnegative integers p, t € [0,1) and s > 0 such that ¢t + ps < 1.
Let b, be Bernstein’s polynomials of g:

ba(t) = z:; (T;)ti(l - t)”_ig<%>.

bn(t) = [Bn(t)’ {0}]

Using Newton’s binomial formula, replacing j by 7 — ¢ in the second sum
below, changing the order of summation, and then making use of the identity
(M (5=5) = (%) (%) and equality (3) we obtain

22( )05 Jeves(s)
-2 () Go)ere()
L) (w3 =5 ()t

7=0 =0 j=

Then

M

n

|
M“

According to (2) we have

> (M)ean,c0. 0 =3 (1)ia,00. o)

=0 1=0

3

_ Z <"> t' A ,9(0) = by(t) = [Bn(t), {0}].
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Thus

(3 (5)a1,6(0.10)) ~ a0 101

=0
and (1) holds.

LEMMA 3. Let 0 < ¢ < b and H : [0,b) — cc(Y). If A;,B; € cc(Y),
1=0,1,..., are such that

oo

H(t)=> t"A, forte[0,b),

n=0
o

= Ztan fort €10,c),
=0

then A; = B; fori=0,1,....
Proof. We see that Ay = H(0) = Bp. Suppose that
Ao = By, ..., Ay = By.
Then

Ht) =¥ A H(E)-XF ¢B
tht1 - tl—l>%l+ tht1 = By1-

A hm
k1 = —0+

THEOREM 2. A set-valued function H : [0,b) — cc(Y') is absolutely mono-

tone if and only if there exist sets A; € cc(Y'), i = 0,1,..., containing zero
such that

o0
(4) H(t)=> t"A, forte€l0,b).

n=0

Proof. 1. Suppose that H : [0,b) — cc(Y) is of the form (4) and that
0 € A, € cc(Y). We see that

(e}

H(t—f—s):E (t+s)"A +E ((t+s)" —t")Ap,
n=0
therefore

ALH(t) Z Al A,
By induction it may be shown that
APH(t Z AP A,

Thus all differences ALH (t) exist. As they contain zero, H is an absolutely
monotone multifunction.
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2. Now, suppose that H : [0,b) — cc(Y) is an absolutely monotone
multifunction. The differences ALH(t) and A2H(t) exist and contain zero,
therefore

H(t)C H(t)+ ALH(t) = H(t + )
and
2H(t+5) C 2H(t + )+ A2H(t) = H(t + s) + H(t) + ALH(t) + A2H(¢t)
= H(t+s)+ H(t)+ A H(t +5) = H(t) + H(t + 25).
Thus H is increasing and midconcave in [0, b).

Fix a number ¢ € (0, b). The function H, being midconcave and bounded
on [0, ¢], is continuous, according to Theorem 4.4 in [4]. Define G(t) = H(ct)
for ¢t € [0,1]. Then G is continuous and by Theorem 1 it is the uniform limit
of the sequence of its Bernstein polynomials B,,(t). By Lemma 2 we have

n

Bu(t) =" (7;) £A%,,G(0) = gtiA?,

i=0
where A" = () A’i/nG(O). We note that 0 € Aj and
(5) A8 C Ba(1) = G(1).

Since G(1) is compact, the family of all closed subsets of G(1) is compact
(see [1, p. 41]). By (5) there exists a strictly increasing sequence (n)) and
Ap(c) € ce(Y) such that

n

ATE 5 Ao (0).
Similarly, since
ATF € Bo(1) = G(1),
there exists a strictly increasing subsequence (n}) of (n9) and A; € cc(Y)
such that
A3 = 410

0
and so on. Applying the diagonalization procedure to the sequences (Ag"),

1
(Ag’“), ... we obtain a strictly increasing sequence (ny) such that
ApF — Ag(e), ATF — Aq(c), ...
Fix t € [0,1), € > 0 and define

n
Su(t) =Y t'Ai(c) forn=0,1,....
=0
Choose a positive integer k so large that 2||G(1)||t*(1 — t)~! < /3, where

IG(D)|| = sup{|ly|]| : v € G(1)}, and then choose L large enough to get
d(By,(t),G(t)) < /3 and Y-¥_  d(A}, A;) < £/3 for | > L. Then
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d(Sp, (1), G(t)) < d(Sn,(t), Bn,(t)) + d(By,(t), G(t))
i k+1

<oc/3+ S HAAT, A < (2/3) + 2| G| % <e.
i=k—+1 B
Thus
(6) lim 8, (1) = G()

and according to Theorem II-2 in [1],

= U S, (£)
=1

Using the monotonicity of the sequence (S, (t)) we get
Si(t) C Sp,(t) CG(t) forl=0,1,....
Therefore the sequence d(G(t), S;(t)) is decreasing. By (6),
llim d(G(t),Si(t)) = 1m d(G(t), Sp,(t)) =0.
Consequently,
G(t) = lim Sy Zt’ for t € [0,1).
The definition of G leads to
H(t)=G(t/c) = th ~A;  forte]0,c).

Now (4) follows from Lemma 3.

References

[1] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lec-
ture Notes in Math. 580, Springer, Berlin, 1977.

[2] M. Hukuhara, Intégration des applications mesurables dont la valeur est un compact
conveze, Funcial. Ekvac. 10 (1967), 205-223;

[3] S. Lojasiewicz, An Introduction to the Theory of Real Functions, Wiley, 1988.

[4] K. Nikodem, K-convez and K-concave set-valued functions, Zeszyty Nauk. Politech.
Lodz. Mat. 559, Rozprawy Naukowe 114, 1989.

[5] H. Radstrom, An embedding theorem for spaces of convez sets, Proc. Amer. Math.
Soc. 3 (1952), 165-169.

Pedagogical University
Podchorazych 2

30-084 Krakoéw, Poland

E-mail: asmajdor@ap.krakow.pl

Received 18.7.2005
and in final form 2.11.2005 (1596)



