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Existence and stability of solutions for
semilinear Dirichlet problems

by MAREK GALEWSKI (F.6d7)

Abstract. We provide existence and stability results for semilinear Dirichlet prob-
lems with nonlinearities satisfying some general local growth conditions. We derive a
general abstract result which we then apply to prove the existence of solutions, their sta-
bility and continuous dependence on parameters for a sixth order ODE with Dirichlet
type boundary data.

1. Introduction. The aim of the paper is to investigate semilinear
Dirichlet problems with nonlinearities satisfying some general growth con-
ditions. We prove both the existence of solutions and their stability, which
we then apply to show that the solution depends continuously on a func-
tional parameter. Our results may be used in investigating certain higher
order Dirichlet problems governed by semilinear ODE with nonlinearities
satisfying some local growth conditions.

Higher order Dirichlet problems have recently been thoroughly investi-
gated (see for example [6], [13]). The methods applied vary from topological
to variational ones—the approach via monotone operator theory as well as
critical point theory may be used. Although our method is variational in
spirit, i.e. it relies on minimizing a suitable action functional, it also uses
some topological argument: we prove that a certain set is invariant with re-
spect to the inverse of a suitable differential operator. Therefore we think
that our research may bring about some new ideas to the study of semilinear
Dirichlet problems. We also obtain some qualitative properties of the solu-
tion in the example which we provide. Such properties depend on the growth
condition assumed and of course on the construction of the set on which the
action functional is minimized. It is worth stressing that we prove the contin-
uous dependence on parameters for problems which do not necessarily have
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unique solutions. A model problem, as far as the stability and existence
results are concerned, which is covered by our methods is the following;:
We consider the following Dirichlet problems for £ =0,1,2,...
d® d* d?
(1.1) “anst Tt T ae
2(0) = z(r) = 2(0) = @(7) = £(0) = &(r) = 0,

where we assume:

(F1)  There exist numbers d > dy > 0 and 0 < dj <dg for all k =1,2,...
such that VFk(t, dk), VFk(t, —dk), VFk(t, d), VFk(t, —d) S LOO(O, T)
forall k=0,1,....

(F2) For all k = 0,1,..., F,VE : [0,T] x [—d,d] are Carathéodory
functions, FJ, is continuously differentiable and convex with respect
to the second variable in [—d, d] for a.e. t € [0,7T] and equals +oco
outside [0,T] x [—d, d] and

12 12
esssup [VFi(t,d)| </ —d, esssup|VEF(t,—d)| </ —d.
t€[0,T] T t€[0,T] ™
(F3) Forallk=0,1,..., VF,(t,0) # 0 for a.e. t € [0,T], and t — Fj(¢,0)
and t — F}(t,0) are integrable.

x —2x = VFi(t,x),

Here F}; denotes the Fenchel-Young conjugate of a convex Ls.c. function
Fj.. With the above assumptions we may prove for example

THEOREM 1.1. Assume that (F1)—(F3) hold and that VFy(-,x(-)) —
VF(-,2(-)) in L2(0,7) for all x € HZ(0,7) N H3(0,7) such that

x(t) € [=do,do] a.e. on [0,7],

37 12
—T <4/ —d,
dt3 .2 i
db d* d?
Then for each k = 1,2,... there exists a solution xy to the problem (1.1)
and there exists a subsequence {xy, };o, of {xi}p, such that lim; oz, =T

strongly in L?(0,7) and
d® d* d?
—ﬁx(t) + %x(t) - Wm(t) —2%(t) = VFy(t,z(t)).
We will also show some qualitative properties of  and zy.
In order to tackle the above problem and similar ones we shall investigate
the existence and stability of solutions to the family of abstract Dirichlet
problems

(1.2) Lz = VFy(x),
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where £k = 0,1,2,..., and L is defined on a separable real Hilbert space
D(L) with values in a separable real Hilbert space Y with scalar product
(-, ). We assume

(A1) D(L) is dense in Y; L is a selfadjoint and positive definite linear
operator, i.e. there exists a constant « > 0 such that for all x € D(L),

(1.3) (Lz,x) > af|z|?.

From (1.3) it follows that R(L) = Y and the inverse operator L~! :
Y — D(L) is continuous and selfadjoint. By the properties of L it follows
(see [5]) that there exists (exactly one) operator S, called the square root
operator, which is selfadjoint and such that S? = L. The domain of S,
denoted by D(SS), is dense in Y and D(L) is dense in D(.S) (see [5]). Moreover
Sz € D(S) for any x € D(L). Usually D(S) is endowed with the graph norm
which makes it into a complete space, but we shall rather use an equivalent
norm

1zl pesy = 15|y

Now we state the assumption on the right hand side of the equation con-
sidered and an additional assumption which is usually satisfied in concrete
applications.

(A2) VF;:Y —Y is a gradient mapping, Fy(0) < oo, VF(0) # 0.
(A3)  D(S) is compactly imbedded in Y.

We do not assume yet any growth conditions and convexity conditions
on Fj. These conditions are actually hidden in the definition of the set X
below (see Section 2).

Due to the method which we will apply, we will investigate for each
k=0,1,2,... the following system:

(1.4) Sz =p, Sp=VEy(z),

where z € D(L) and p € D(S). Such a pair, if it exists, will be called
a solution to (1.2). Necessary conditions for the existence of a solution to
(1.4) are obtained by duality results. The existence is a consequence of a
modification of the well known Weierstrass theorem.

The abstract variational principle which we derive is based on a method
from [9] and enables one to consider linear differential equations of even or-
der, especially higher order equations. The main difference with some known
abstract variational principles (see for example [7], [8]) is that the growth
assumptions are superlinear. We do not require the gradient mapping V Fj
to be continuous and convex on the whole space, while such assumptions
must be made in [2] where a method that applies for superlinear problems
and uses some similar ideas has been derived. Thus the theory developed
applies to a wider class of problems and also allows one to obtain stability
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results (see Section 4) without using spectral theory as in [3]. This is pos-
sible since instead of perturbing the primal action functional as in [2], we
perturb the dual one. In consequence, the stability of solutions follows under
some mild additional assumption. As applications we exhibit growth type
conditions for which we get both stability and existence of solution without
assuming any additional convergence of the family of nonlinear terms, which
was necessary in [3], [4], [9], [11], [12].

For sublinear Dirichlet problems the question of stability of solutions
in case the solution is not unique was considered for the first time in [11],
[12]. Later in [10] a dual variational method from [9] was used and some
continuous dependence on parameters results were given for a specific type
of nonlinearity. In case F}, satisfies quadratic growth conditions a problem
similar to ours has been considered in [4], but unlike the case we investigate,
L need not be positive definite there. For a superlinear problem the method
from [4] does not work since in this case both the action and dual action
functionals are unbounded. Thus we believe that our variational method may
contribute to this research. Some results concerning stability for superlinear
nonlinearities were obtained in [3] by using a variational method from [2].
But the assumptions were much more restrictive and the growth conditions
were assumed to hold globally (cf. Section 5). The variational method from
[2] required the gradient mappings to be continuous, and the constructions
of the sets X, were less general.

2. Duality results and necessary conditions. For each k£ =1,2,...
we assume that

(A4)  There exists a nonempty set X}, C S(L) such that for each x € X,
the relation

(2.1) Lz = VFy(x)
implies that € X}, and the sets X, VFi(X}) are relatively weakly
compact in D(S) and Y, respectively.

It follows easily that X, C L™V Fj(X}).

We now can make a convexity assumption:

(A5)  Fj is convex and lower semicontinuous on conv(X}) (the convex hull

of X) for all k=0,1,2,....

Hence we may define a convex and l.s.c. functional on the whole space:
F fi X
() = { k(z) for x E.conv( k),
+o0o  otherwise.
We put
X =5(Xp).
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Of course, X{ C S(D(L)) and X{ is nonempty and relatively weakly com-
pact in Y. Since F}, = G}, for all x € X}, we may consider the equation

Lz = VGy(x)

instead of (1.2) on Xj.

We assume throughout this section that (A1)-(A5) are satisfied.

Due to the above remarks, the action functional Ji : D(S) — R for which
(1.2) is the Euler-Lagrange equation reads

Ji(z) = 3(Sz, Sz) — Gk ().
and the dual functional Jp, : D(S) — R is given by the formula

Ip,(p) = G (Sp) — 3(p. p),
where G}, : Y — R denotes the Fenchel-Young conjugate of G}, : ¥ — R
(see [1]). J will be considered on X}, and Jp, on X{. It is obvious that Jp,
is different from the functional J%(p) = F}(Sp) — %(p,p>, but they coincide
on X]‘j.

Now we relate the critical values on X and Xg to J and Jp, respec-

tively.

THEOREM 2.1.
0 (@) = inf Tp.(p)
Proof. Define the perturbation Jp,  : X,‘f xY — R of Jp, by
JIpy, (0, 0) = 3(p+ c,p+ ¢) — Gi.(p).

Now we define a type of conjugate of Jp, = with respect to c:
Th,, (pw) = sup {(c, $) - 3(p+ep+o}+Gi(Sp).
By the properties of Fenchel-Young duality [1]|, we have
Tp, (p,x) = Gi.(Sp) + §(Sx, Sx) — (Sp, ).
We observe that for any p € X,‘gi,

22 int T (0.2) = I, ().

P

Indeed, fix pEX,‘j. For a given pGX,‘j there exists z,, € X}, satisfying Sz, = p.
We then have (z,, Sp) — 1(Szp, Sz;,) = 4 (p,p) and since X, C D(L) C Y,

%(p,p) = (xp, Sp) — %(S:Up,Sxp> < mseu)l(a {<£L‘,Sp> - %(S’x, Sa:)}
< sup {(v,p) = 5(v,0)} < 5(p,p)

Therefore we have (2.2).
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Now we observe that for any x € X},
2.3 inf J¥ ,x) = Jr(x).
2:3) I (0.) = Ji@)

Indeed, again fix x € Xj. By definition of Xg there exists p, € Xg such
that ST = p,, where T € X} is such that Lx = VGy(z). It follows that
Spy = VGi(x) and by the properties of the Fenchel-Young conjugate we
get Gi(z) + G (pz) = (z,ps). In consequence
(2, Spa) — Gi(Spa) — 1S, 53) = Gi(x) — L(S, 8z) = —Je(a).
and (2.3) follows.
Now by (2.2) and (2.3) we get

inf J = inf inf J# ;)= inf inf J# ,x) = inf Jp(x).
peXx{ D (p) = peXg z€X), (p ) 2€X), peXd ’(p ) 2€Xp K@) -

We use the results of duality theory to derive the variational principle
providing necessary conditions for the existence of a solution to equation
(1.2).

THEOREM 2.2. Assume that py € X{ is such that Jp, (p,) :infpeX;j Jp,. (p).
Then there exists x € Xy such that

(2.5) Spr = VGi(ax).

Moreover,

2. inf = = = inf .
(2.6) oo I, (p) = Jp,, (k) = Ji(wi) nf Ji(z)

Proof. For p;, € Xg there exists zy, € Xg such that Sxp = pg. So (2.4)
holds. Hence and by the Fenchel-Young inequality we obtain

—Jp, (Pk) = 3Pk, k) — Gi(Spr) = (pr, Swk) — 3(Szk, Swi) — Gi(Spy)
—%(ka, Sxk) + Gk(xk) = —Jk(xk).

So Jp, (pr) > Ji(xr). By Theorem 2.1 it follows that Jp, (pr) < Ji(zk).
In consequence, Gy(xy) + G.(Spr) — (Spk, xx) = 0. By standard convexity

arguments we now get (2.5).
Relation (2.6) follows by Theorem 2.1, since Jp, (pr) = Ji(zk). =

IN

We shall show that the above results with suitable modifications are valid
for minimizing sequences. These will be used in the proof of the existence
theorem.

THEOREM 2.3. Let {pi}ool C Xd be a minimizing sequence for Jp, .

There exists a sequence {l‘k} °, C Xy minimizing for J and such that

(2.7) ‘Tk =571 pk
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for 7 € N. Furthermore

pgg Jp,(p) = inf Jp, (pt) = inf J(x)= inf J(a).

Moreover for any € > 0 there exists jo such that for all j > jo,
(2.8) 0 < Gi(zy) + Gi(Spy) — (3, Spy) <.

Proof. Since pi € X]‘j for j € N, there exists :c?€ € X such that (2.7)

holds. We will show that {xi}‘;‘;l is a minimizing sequence for Jp, . Reason-
ing as in the proof of Theorem 2.2 we get by (2.7) and the Fenchel-Young
inequality, for any j € N,
(2.9) Ip,(py) = Ji(x3,).
Take arbitrary € > 0. Since —oo < infjecy Jp, (pfg) = a < 0o, there exists jo
such that Jp, (pfg) < a+e for all j > jo. By (2.9) it follows that Jk(xi) < a+te
for j > jo. Now Theorem 2.1 yields infjcy Jk(:pfc) = a. In consequence,
{xfc};";l is a minimizing sequence for Jj.

Relation (2.8) follows from Theorem 2.1. Indeed, for each € > 0 there
exists jo such that for all j > jo,

JDk(p‘,i) <a-+e= lléllg Jp, () +€ = lléllg Ji(x)) +e < Jk(:vi) + e.

Using (2.9) we get (2.8). »

3. Existence of solutions

THEOREM 3.1. There exists a pair (vk,pr) € D(L) x S(D(L)) such that

(3.1) Sz, = px,

(3.2) Spr = VGi(xg),

(3.3) inf Jp, (p) = Jp, (pr) = Ji(zx) = inf Ji(z).
peXd rEX}

Moreover, xy, is the limit (weak in D(S)) of a minimizing sequence {xi}j’;l
for the restriction of Jy to Xy, and py is the limit (weak in D(S)) of a
MINIMIZIng sequence {pi;}]“;l for the restriction of Jp, to X,‘j.

Proof. By the Fenchel-Young inequality and by definition of X ,‘3 it follows
that Jp, is bounded from below on X¢ and thus we can choose a minimizing
sequence p], which may be assumed (by (A4) and the definition of X}) to be
weakly convergent in D(S) to a certain pg, and therefore by (A3) strongly
convergent in Y. By Theorem 2.3 we can choose a minimizing sequence
{a7,}52, satistying

(3.4) Sal, = p}
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and, up to a subsequence, weakly convergent in D(S) and strongly conver-
gent in Y. We denote its limit by x; € D(S). Since S~1 is continuous, by
(3.4) we get limj_,oc S™'p) =S~ 'py=xy, strongly in Y. Hence we have (3.1).
We observe that
(3.5) Je(pk) = inf Jp,(p).
peX{

Indeed, G being convex is lower semicontinuous, so liminf; G}';(Sp{c) >

G7.(Spy). Since p{c is strongly convergent in Y, we get lim; . %(p{c,p?ﬂ) =
+(pk, pi). Hence Jp, is weakly lower semicontinuous on D(S) and (3.5) fol-
lows.

We now show that (pg,xy) also satisfies (3.2). By Theorem 2.3 (relation
(2.8)), there exists a numerical sequence {e,} - |, €n > 0, &, — 0, having
the property: for each €, there exists j, such that 0 < Gk(a:i.) + G}Z(Sp}c) -
(z7,Sp)) < e for all j > j,. We may assume that j, — oo as n — ooc.
Therefore we obtain

0 > liminf(Gy(z]) + G1(Spl) — (x, Sp)))

Jj—0o0
> lim inf Gy () + liminf G§(Sp],) — lim (x), Sp).)
J—00 J—00 Jj—00
> Gk(l’k) + GZ(Spk) — <l’k, Spk>.

From the above and the Fenchel-Young inequality we obtain Gg(zx) +
G (Spr) — (xk, Spr) = 0. Hence (3.2) follows by convexity arguments. By
(3.5) and by Theorem 2.1, relation (3.3) follows. =

Now we get the following

COROLLARY 3.2. Let X} be weakly compact. There exists a pair (zj, pk)
€ X x X,f such that
Sxp =py,  Spk = VGi(zy),

inf JDk(P) = JDk(pk) = Jk(xk) = inf Jk(ac)

pEXg r€ Xy
Moreover, xy, is the limit (weak in D(S)) of a minimizing sequence {xé}?‘;l
for the restriction of Jy to Xy, and py is the limit (weak in D(S)) of a
MINIMIZING SEqUence {p}g}j’;l for the restriction of Jp, to Xg.

4. Stability result. We assume (A1)—(A4) and

(A6)  There exists a weakly compact convex set B C Y such that X, C B
and V(Gy, is uniformly bounded on B.
(A7)  F} is convex and lower semicontinuous on B for each k = 0,1,2,....d
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Since all sets X} are now relatively weakly compact, this assumption is
not very restrictive. We efine as before a convex and l.s.c. functional on the
whole space for kK =0,1,2,... by

Gi(z) = {

By stability we mean conditions under which from a sequence {z;}°,,
where z for K = 1,2,... is a solution to (1.2), one may choose a subse-
quence converging weakly to a certain T which is a solution to the problem
LT = VGo(T). Here we mean that limg_,o xp = T weakly in D(S) and
limg_.oo VGi(2) = VGo(x) weakly in Y for any = € B, up to subsequences.

THEOREM 4.1. Assume (Al)-(A4), (A6), (A7) and that for any x € B
there is a subsequence k; such that

lim VG, (x) = VGo(x)

J—00

Fi(x) for x € B,

400 otherwise.

weakly in Y. Then for each k = 0,1,2,... there exists a solution xj to (1.2),
and there exists a subsequence {xy, }72, of {xx}32, and T € D(L) such that
lim zp, =T  weakly in D(S), strongly in'Y.

1— 00
Moreover
Lz = VGy(T).
Proof. From Theorem 3.1 it follows that for each k = 1,2, ... there exists
a pair (zy,px) € D(L) x S(D(L)) such that
(4.1) Sz =pr, Spr = VGi(zy).
Due to assumption (A6) we may choose from {z}}72,; a subsequence weakly
converging in Y which we still denote by {x}}72 ;. Now by (4.1) and by the
boundedness of VG, (see (A7)) it follows that {z}7- , is, up to subsequence,
strongly convergent in D(S) to a certain Z by (A3). The sequence {p;}7°,
is, up to a subsequence, weakly convergent in D(S) and strongly convergent
in Y. We denote its limit by p. In the following we denote all the resulting
subsequences by the subscript k; for simplicity. Take a subsequence {k;};°,
such that lim; ... VGy, (T) = VGo(T) weakly.
We will now prove that
ST = VG()(T)
By convexity of G}, we get, for any x € Y,
Hence by Theorem 3.1,
(Lzy, + (VGo(x) — VGy, (z)) — VGo(z), 2k, — ) > 0.
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Since z, — T strongly in Y and VGy, (z) = VGo(x) weakly in Y we easily
obtain
((VGo(z) — VG, () — VGo(x), 2k, — x) — (—VGo(z),T — ).

Moreover (Lxy,, —x) — (LT, —z) since L is selfadjoint. It remains to observe
that <L$kmx/ﬁ> = <Spkmxki> - <Spvj> Hence
(4.2) (Sp —VGo(z),T—z) >0
for any x € D(L).

Now we apply the “Minty trick”, i.e. we consider the points T + tx, where
x € D(L) and t > 0. By the above inequality we obtain

(Sp— VGo(T + tz), z) < 0.
Since the function [—1,1] 3 ¢t — Go(T + tx) € R is convex, its derivative
[—1,1] 5t — (VGo(T + tx),z) € R is continuous. Hence
0> }in%(ST? — VGo(T + tx),x) = (Sp — VGo(T), z)

for any x € D(L). As D(L) is dense in Y, this means that Sp = VG ().

We need to prove that ST = p. We again apply the Minty trick. Obviously
(Lxy, — Lz, xy, —x) > 0 for any = € D(L). Moreover (Spy, — Lz, xp, —x) > 0
and taking the limit we get

(Sp— Lz, T —x) > 0.

Now by considering points T+tx for any = € D(L) we obtain —(Sp— LT, x) —
t(Lz,z) > 0. Hence taking the limit as t — 0 we get
for any € D(L). Thus Sp = LT and the proof is finished. m

5. Applications. In this section we give some applications to concrete
problems. We shall check each time that (A1)—(A4) and (A6)—(A7) are sat-
isfied.

5.1. Ezxistence and stability of solutions for a sizth order Dirichlet prob-
lem. We consider the problem defined in the Introduction, i.e. the family of
Dirichlet problems for £k =0,1,2,...,

d® d* d?

SRS L P v )
(5.1) o t gt gpt ~ 2 = Vhtha),
x2(0) = z(7) = £(0) = @(w) = £(0) = &(7) =0,
where we define L = —C‘lj—;x + %x — %J]’ + 2z and assume (F1)—(F3).

We observe that each F}, is convex and l.s.c.

THEOREM 5.1. Under assumptions (F1)—-(F3), for any k = 0,1,2,...
there exists a solution to the Dirichlet problem (5.1).
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Proof. Fix k. We shall show that all assumptions of Theorem 3.1 are
satisfied. First of all we observe that (A1) and (A3) hold by definition of
L?(0,7) and by the Poincaré inequality. (A2) follows by the assumptions
on Fy. To show (A4) we need to construct a suitable set X;. We define

X = {3: € H2(0,7) N H3(0,7) : x(t) € [~dy, di] a.e. on [0, 7],
2 6 4 2
12 d d d o
L < \/?dand —ﬁm—i—%x—ﬁx—ZmEL (O,T)}.
We take any u € Xj. A solution to
d® d* d?

(5.2) Tttt T e

2(0) = z(r) = 2(0) = @(m) = #(0) = &(m) = 0,

d3
|7

x — 2z = VFy(t,u),

obviously exists. Moreover by a direct calculation using the Poincaré inequal-
ity and the fact that the derivative of a convex function is nondecreasing we
get

™ d3 2 ™ d6 d4 d2
§ T dt < (S) (—ﬁm(t) + 2qe(t) = Z5a(t) - 2m(t)>3:(t) dt
s - d3 9
= | VEu(t, u()x(t) dt < esssup|VE(t,d)| | |-5x| dt.
0 te[0,T] 0 dt
Hence
| 12
L2

So by Sobolev’s inequality we get

#(0)] < max [2(s)| </ 5

Thus z € X}, and we may put X = X . Of course X}, and Fj,(X},) are rel-
atively weakly compact in H3(0,7) and L?(0, 7). Hence all the assumptions
of Theorem 3.1 are satisfied and we infer the existence of solutions to the
Dirichlet problem (5.1). =

3 2

L2

The set B (see (A6)) may due to (F1) be given by B = Xj. Therefore
(A6), (A7) are satisfied. Now by Theorem 4.1 we easily obtain Theorem 1.1.

5.2. Dependence on parameters. We now consider a similar problem but
concentrate on the continuous dependence on parameters for the Dirichlet



138

problem

(5.3)

where ©

M. Galewski

d6 d4 d?
st T gEt T e

2(0) = z(m) = &(0) = @(r) = #(0) = i(r) = 0,

x — 2z = VF(t, z(t), u(t)),

: [0, 7] — R™ is a functional parameter from the set

Ly = {u:[0,7] — R™ : u is measurable, u(t) € M a.e.}

and M C R™ is a given compact set. We also assume:

(Fp1)

(Fp2)

(Fp3)

There exist numbers d < dy such that
VE(t,d,u), VF(t,—d,u), VE(t,do,u), VF(t, —do,u) € L*(0,T)

for all u € L.

F,VF:[0,T] x [—d,d] x M are Carathéodory functions, F is con-
tinuously differentiable and convex with respect to the second vari-
able in [—dp, dp] for a.e. t € [0,7T] and equals +o0o outside [0,7] x
[—do, dpl; for all uw € Ly,

12 12
esssup |VF(t,d,u)| <(/—d, esssup|VF(t,—d,u)| <4/—d.
te[0,7] Q te[0,7] m

VFE(t,0,u) # 0 for a.e. t € [0,7] and all uw € Ly; ¢t — F(t,0,u) and
t — F*(t,0,u) are integrable for all u € L.

We have the following theorem which is a direct consequence of Theo-

rem 4.1.

THEOREM 5.2. Assume that (Fpl)-(Fp3) hold and that {u,}7>, C Ly
with uy, — @ in L*(0,7). For each k = 1,2,... there exists a solution xj, to
problem (5.3) and there exists a subsequence {xy, }2, of {x1}72, and T € X
such that lim;_.o xy, = T strongly in L*(0,7) and

d® _ d* _ d? _ _ o
—ﬁx(t) + @x(t) - @x(t) —2%(t) = VF(t,z(t),u(t)).

Proof. By the Krasnosel’skii theorem we get

strongly

VE(.x().us() — VF(.2(),7()
in L2(0, 7). Hence Theorem 4.1 applies with
Fr(x(-) = F(o2(), ug(-)). =
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