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Existen
e and stability of solutions forsemilinear Diri
hlet problemsby Marek Galewski (�ód¹)
Abstra
t. We provide existen
e and stability results for semilinear Diri
hlet prob-lems with nonlinearities satisfying some general lo
al growth 
onditions. We derive ageneral abstra
t result whi
h we then apply to prove the existen
e of solutions, their sta-bility and 
ontinuous dependen
e on parameters for a sixth order ODE with Diri
hlettype boundary data.1. Introdu
tion. The aim of the paper is to investigate semilinearDiri
hlet problems with nonlinearities satisfying some general growth 
on-ditions. We prove both the existen
e of solutions and their stability, whi
hwe then apply to show that the solution depends 
ontinuously on a fun
-tional parameter. Our results may be used in investigating 
ertain higherorder Diri
hlet problems governed by semilinear ODE with nonlinearitiessatisfying some lo
al growth 
onditions.Higher order Diri
hlet problems have re
ently been thoroughly investi-gated (see for example [6℄, [13℄). The methods applied vary from topologi
alto variational ones�the approa
h via monotone operator theory as well as
riti
al point theory may be used. Although our method is variational inspirit, i.e. it relies on minimizing a suitable a
tion fun
tional, it also usessome topologi
al argument: we prove that a 
ertain set is invariant with re-spe
t to the inverse of a suitable di�erential operator. Therefore we thinkthat our resear
h may bring about some new ideas to the study of semilinearDiri
hlet problems. We also obtain some qualitative properties of the solu-tion in the example whi
h we provide. Su
h properties depend on the growth
ondition assumed and of 
ourse on the 
onstru
tion of the set on whi
h thea
tion fun
tional is minimized. It is worth stressing that we prove the 
ontin-uous dependen
e on parameters for problems whi
h do not ne
essarily have2000 Mathemati
s Subje
t Classi�
ation: 35A15, 34B99, 34D99.Key words and phrases: abstra
t Diri
hlet problem, dual variational method, existen
eof solutions, stability, 
ontinuous dependen
e on parameters.[127℄



128 M. Galewskiunique solutions. A model problem, as far as the stability and existen
eresults are 
on
erned, whi
h is 
overed by our methods is the following:We 
onsider the following Diri
hlet problems for k = 0, 1, 2, . . .

(1.1) −
d6

dt6
x +

d4

dt4
x −

d2

dt2
x − 2x = ∇Fk(t, x),

x(0) = x(π) = ẋ(0) = ẋ(π) = ẍ(0) = ẍ(π) = 0,where we assume:(F1) There exist numbers d > d0 > 0 and 0 ≤ dk ≤ d0 for all k = 1, 2, . . .su
h that ∇Fk(t, dk),∇Fk(t,−dk),∇Fk(t, d),∇Fk(t,−d) ∈ L∞(0, T )for all k = 0, 1, . . . .(F2) For all k = 0, 1, . . . , Fk,∇Fk : [0, T ] × [−d, d] are Carathéodoryfun
tions, Fk is 
ontinuously di�erentiable and 
onvex with respe
tto the se
ond variable in [−d, d] for a.e. t ∈ [0, T ] and equals +∞outside [0, T ] × [−d, d] and
ess sup
t∈[0,T ]

|∇Fk(t, d)| ≤

√
12

π
d, ess sup

t∈[0,T ]
|∇Fk(t,−d)| ≤

√
12

π
d.(F3) For all k = 0, 1, . . . , ∇Fk(t, 0) 6= 0 for a.e. t ∈ [0, T ], and t 7→ Fk(t, 0)and t 7→ F ∗

k (t, 0) are integrable.Here F ∗

k denotes the Fen
hel�Young 
onjugate of a 
onvex l.s.
. fun
tion
Fk. With the above assumptions we may prove for exampleTheorem 1.1. Assume that (F1)�(F3) hold and that ∇Fk(·, x(·)) ⇀

∇Fk(·, x(·)) in L2(0, π) for all x ∈ H2
0 (0, π) ∩ H3(0, π) su
h that

x(t) ∈ [−d0, d0] a.e. on [0, π],
∥∥∥∥

d3

dt3
x

∥∥∥∥
2

L2

≤

√
12

π
d,

−
d6

dt6
x +

d4

dt4
x −

d2

dt2
x − 2x ∈ L∞(0, T ).Then for ea
h k = 1, 2, . . . there exists a solution xk to the problem (1.1)and there exists a subsequen
e {xki

}∞i=1 of {xk}
∞

k=1 su
h that limi→∞ xki
= xstrongly in L2(0, π) and

−
d6

dt6
x(t) +

d4

dt4
x(t) −

d2

dt2
x(t) − 2x(t) = ∇F0(t, x(t)).We will also show some qualitative properties of x and xk.In order to ta
kle the above problem and similar ones we shall investigatethe existen
e and stability of solutions to the family of abstra
t Diri
hletproblems(1.2) Lx = ∇Fk(x),



Semilinear Diri
hlet problems 129where k = 0, 1, 2, . . . , and L is de�ned on a separable real Hilbert spa
e
D(L) with values in a separable real Hilbert spa
e Y with s
alar produ
t
〈·, ·〉. We assume(A1) D(L) is dense in Y ; L is a selfadjoint and positive de�nite linearoperator, i.e. there exists a 
onstant α > 0 su
h that for all x ∈ D(L),(1.3) 〈Lx, x〉 ≥ α‖x‖2.From (1.3) it follows that R(L) = Y and the inverse operator L−1 :
Y → D(L) is 
ontinuous and selfadjoint. By the properties of L it follows(see [5℄) that there exists (exa
tly one) operator S, 
alled the square rootoperator, whi
h is selfadjoint and su
h that S2 = L. The domain of S,denoted by D(S), is dense in Y and D(L) is dense in D(S) (see [5℄). Moreover
Sx ∈ D(S) for any x ∈ D(L). Usually D(S) is endowed with the graph normwhi
h makes it into a 
omplete spa
e, but we shall rather use an equivalentnorm

‖x‖D(S) = ‖Sx‖Y .Now we state the assumption on the right hand side of the equation 
on-sidered and an additional assumption whi
h is usually satis�ed in 
on
reteappli
ations.(A2) ∇Fk : Y → Y is a gradient mapping, Fk(0) < ∞, ∇Fk(0) 6= 0.(A3) D(S) is 
ompa
tly imbedded in Y.We do not assume yet any growth 
onditions and 
onvexity 
onditionson Fk. These 
onditions are a
tually hidden in the de�nition of the set Xkbelow (see Se
tion 2).Due to the method whi
h we will apply, we will investigate for ea
h
k = 0, 1, 2, . . . the following system:(1.4) Sx = p, Sp = ∇Fk(x),where x ∈ D(L) and p ∈ D(S). Su
h a pair, if it exists, will be 
alleda solution to (1.2). Ne
essary 
onditions for the existen
e of a solution to(1.4) are obtained by duality results. The existen
e is a 
onsequen
e of amodi�
ation of the well known Weierstrass theorem.The abstra
t variational prin
iple whi
h we derive is based on a methodfrom [9℄ and enables one to 
onsider linear di�erential equations of even or-der, espe
ially higher order equations. The main di�eren
e with some knownabstra
t variational prin
iples (see for example [7℄, [8℄) is that the growthassumptions are superlinear. We do not require the gradient mapping ∇Fkto be 
ontinuous and 
onvex on the whole spa
e, while su
h assumptionsmust be made in [2℄ where a method that applies for superlinear problemsand uses some similar ideas has been derived. Thus the theory developedapplies to a wider 
lass of problems and also allows one to obtain stability



130 M. Galewskiresults (see Se
tion 4) without using spe
tral theory as in [3℄. This is pos-sible sin
e instead of perturbing the primal a
tion fun
tional as in [2℄, weperturb the dual one. In 
onsequen
e, the stability of solutions follows undersome mild additional assumption. As appli
ations we exhibit growth type
onditions for whi
h we get both stability and existen
e of solution withoutassuming any additional 
onvergen
e of the family of nonlinear terms, whi
hwas ne
essary in [3℄, [4℄, [9℄, [11℄, [12℄.For sublinear Diri
hlet problems the question of stability of solutionsin 
ase the solution is not unique was 
onsidered for the �rst time in [11℄,[12℄. Later in [10℄ a dual variational method from [9℄ was used and some
ontinuous dependen
e on parameters results were given for a spe
i�
 typeof nonlinearity. In 
ase Fk satis�es quadrati
 growth 
onditions a problemsimilar to ours has been 
onsidered in [4℄, but unlike the 
ase we investigate,
L need not be positive de�nite there. For a superlinear problem the methodfrom [4℄ does not work sin
e in this 
ase both the a
tion and dual a
tionfun
tionals are unbounded. Thus we believe that our variational method may
ontribute to this resear
h. Some results 
on
erning stability for superlinearnonlinearities were obtained in [3℄ by using a variational method from [2℄.But the assumptions were mu
h more restri
tive and the growth 
onditionswere assumed to hold globally (
f. Se
tion 5). The variational method from[2℄ required the gradient mappings to be 
ontinuous, and the 
onstru
tionsof the sets Xk were less general.2. Duality results and ne
essary 
onditions. For ea
h k = 1, 2, . . .we assume that(A4) There exists a nonempty set Xk ⊂ S(L) su
h that for ea
h x ∈ Xkthe relation(2.1) Lx̃ = ∇Fk(x)implies that x̃ ∈ Xk and the sets Xk, ∇Fk(Xk) are relatively weakly
ompa
t in D(S) and Y , respe
tively.It follows easily that Xk ⊂ L−1∇Fk(Xk).We now 
an make a 
onvexity assumption:(A5) Fk is 
onvex and lower semi
ontinuous on conv(Xk) (the 
onvex hullof Xk) for all k = 0, 1, 2, . . . .Hen
e we may de�ne a 
onvex and l.s.
. fun
tional on the whole spa
e:

Gk(x) =

{
Fk(x) for x ∈ conv(Xk),

+∞ otherwise.We put
Xd

k = S(Xk).
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hlet problems 131Of 
ourse, Xd
k ⊂ S(D(L)) and Xd

k is nonempty and relatively weakly 
om-pa
t in Y . Sin
e Fk = Gk for all x ∈ Xk, we may 
onsider the equation
Lx = ∇Gk(x)instead of (1.2) on Xk.We assume throughout this se
tion that (A1)�(A5) are satis�ed.Due to the above remarks, the a
tion fun
tional Jk : D(S) → R for whi
h(1.2) is the Euler�Lagrange equation reads

Jk(x) = 1
2〈Sx, Sx〉 − Gk(x).and the dual fun
tional JDk

: D(S) → R is given by the formula
JDk

(p) = G∗

k(Sp) − 1
2〈p, p〉,where G∗

k : Y → R denotes the Fen
hel�Young 
onjugate of Gk : Y → R(see [1℄). Jk will be 
onsidered on Xk, and JDk
on Xd

k . It is obvious that JDkis di�erent from the fun
tional Jk
D(p) = F ∗

k (Sp) − 1
2〈p, p〉, but they 
oin
ideon Xd

k .Now we relate the 
riti
al values on Xk and Xd
k to Jk and JDk

respe
-tively.Theorem 2.1.
inf

x∈Xk

Jk(x) = inf
p∈Xd

k

JDk
(p).Proof. De�ne the perturbation JDk,p

: Xd
k × Y → R of JDk

by
JDk,p

(p, c) = 1
2〈p + c, p + c〉 − G∗

k(Sp).Now we de�ne a type of 
onjugate of JDk,p
with respe
t to c:

J
#
Dk,p

(p, x) = sup
c∈Y

{
〈c, Sx〉 − 1

2〈p + c, p + c〉
}

+ G∗

k(Sp).By the properties of Fen
hel�Young duality [1℄, we have
J

#
Dk,p

(p, x) = G∗

k(Sp) + 1
2〈Sx, Sx〉 − 〈Sp, x〉.We observe that for any p ∈ Xd

k ,(2.2) inf
x∈Xk

J
#
Dk,p

(p, x) = JDk
(p).Indeed, �x p∈Xd

k . For a given p∈Xd
k there exists xp ∈ Xk satisfying Sxp = p.We then have 〈xp, Sp〉 − 1

2〈Sxp, Sxp〉 = 1
2〈p, p〉 and sin
e Xk ⊂ D(L) ⊂ Y ,

1
2〈p, p〉 = 〈xp, Sp〉 − 1

2〈Sxp, Sxp〉 ≤ sup
x∈Xk

{
〈x, Sp〉 − 1

2〈Sx, Sx〉
}

≤ sup
v∈Y

{
〈v, p〉 − 1

2〈v, v〉
}
≤ 1

2〈p, p〉Therefore we have (2.2).



132 M. GalewskiNow we observe that for any x ∈ Xk,(2.3) inf
p∈Xd

k

J
#
Dk,p

(p, x) = Jk(x).Indeed, again �x x ∈ Xk. By de�nition of Xd
k there exists px ∈ Xd

k su
hthat Sx̃ = px, where x̃ ∈ Xk is su
h that Lx̃ = ∇Gk(x). It follows that
Spx = ∇Gk(x) and by the properties of the Fen
hel�Young 
onjugate weget Gk(x) + G∗

k(px) = 〈x, px〉. In 
onsequen
e
〈x, Spx〉 − G∗

k(Spx) − 1
2〈Sx, Sx〉 = Gk(x) − 1

2〈Sx, Sx〉 = −Jk(x).and (2.3) follows.Now by (2.2) and (2.3) we get
inf

p∈Xd
k

JDk
(p) = inf

p∈Xd
k

inf
x∈Xk

J
#
Dk,p

(p, x) = inf
x∈Xk

inf
p∈Xd

k

J
#
Dk,p

(p, x) = inf
x∈Xk

Jk(x).We use the results of duality theory to derive the variational prin
ipleproviding ne
essary 
onditions for the existen
e of a solution to equation(1.2).Theorem 2.2.Assume that pk∈Xd
k is su
h that JDk

(pk)=infp∈Xd
k
JDk

(p).Then there exists xk ∈ Xk su
h that
Sxk = pk,(2.4)
Spk = ∇Gk(xk).(2.5)Moreover ,(2.6) inf

p∈Xd
k

JDk
(p) = JDk

(pk) = Jk(xk) = inf
x∈Xk

Jk(x).Proof. For pk ∈ Xd
k there exists xk ∈ Xd

k su
h that Sxk = pk. So (2.4)holds. Hen
e and by the Fen
hel�Young inequality we obtain
−JDk

(pk) = 1
2〈pk, pk〉 − G∗

k(Spk) = 〈pk, Sxk〉 −
1
2〈Sxk, Sxk〉 − G∗

k(Spk)

≤ −1
2〈Sxk, Sxk〉 + Gk(xk) = −Jk(xk).So JDk

(pk) ≥ Jk(xk). By Theorem 2.1 it follows that JDk
(pk) ≤ Jk(xk).In 
onsequen
e, Gk(xk) + G∗

k(Spk) − 〈Spk, xk〉 = 0. By standard 
onvexityarguments we now get (2.5).Relation (2.6) follows by Theorem 2.1, sin
e JDk
(pk) = Jk(xk).We shall show that the above results with suitable modi�
ations are validfor minimizing sequen
es. These will be used in the proof of the existen
etheorem.Theorem 2.3. Let {pj

k}
∞

j=1 ⊂ Xd
k be a minimizing sequen
e for JDk

.There exists a sequen
e {xj
k}

∞

j=1 ⊂ Xk minimizing for J and su
h that(2.7) x
j
k = S−1p

j
k



Semilinear Diri
hlet problems 133for j ∈ N. Furthermore
inf

p∈Xd
k

JDk
(p) = inf

j∈N

JDk
(pj

k) = inf
x∈Xk

J(x) = inf
j∈N

J(xj
k).Moreover for any ε > 0 there exists j0 su
h that for all j ≥ j0,(2.8) 0 ≤ Gk(x

j
k) + G∗

k(Sp
j
k) − 〈xj

k, Sp
j
k〉 ≤ ε.Proof. Sin
e p

j
k ∈ Xd

k for j ∈ N, there exists x
j
k ∈ Xk su
h that (2.7)holds. We will show that {xj

k}
∞

j=1 is a minimizing sequen
e for JDk
. Reason-ing as in the proof of Theorem 2.2 we get by (2.7) and the Fen
hel�Younginequality, for any j ∈ N,(2.9) JDk

(pj
k) ≥ Jk(x

j
k).Take arbitrary ε > 0. Sin
e −∞ < infj∈N JDk

(pj
k) = a < ∞, there exists j0su
h that JDk

(pj
k) < a+ε for all j ≥ j0. By (2.9) it follows that Jk(x

j
k) < a+εfor j ≥ j0. Now Theorem 2.1 yields infj∈N Jk(x

j
k) = a. In 
onsequen
e,

{xj
k}

∞

j=1 is a minimizing sequen
e for Jk.Relation (2.8) follows from Theorem 2.1. Indeed, for ea
h ε > 0 thereexists j0 su
h that for all j ≥ j0,
JDk

(pj
k) < a + ε = inf

l∈N

JDk
(pl) + ε = inf

l∈N

Jk(xl) + ε ≤ Jk(x
j
k) + ε.Using (2.9) we get (2.8).3. Existen
e of solutionsTheorem 3.1. There exists a pair (xk, pk) ∈ D(L)×S(D(L)) su
h that(3.1) Sxk = pk,(3.2) Spk = ∇Gk(xk),(3.3) inf

p∈Xd
k

JDk
(p) = JDk

(pk) = Jk(xk) = inf
x∈Xk

Jk(x).Moreover , xk is the limit (weak in D(S)) of a minimizing sequen
e {xj
k}

∞

j=1for the restri
tion of Jk to Xk, and pk is the limit (weak in D(S)) of aminimizing sequen
e {pj
k}

∞

j=1 for the restri
tion of JDk
to Xd

k .Proof. By the Fen
hel�Young inequality and by de�nition of Xd
k it followsthat JDk

is bounded from below on Xd
k and thus we 
an 
hoose a minimizingsequen
e p

j
k whi
h may be assumed (by (A4) and the de�nition of Xk) to beweakly 
onvergent in D(S) to a 
ertain pk, and therefore by (A3) strongly
onvergent in Y . By Theorem 2.3 we 
an 
hoose a minimizing sequen
e

{xj
k}

∞

j=1 satisfying(3.4) Sx
j
k = p

j
k



134 M. Galewskiand, up to a subsequen
e, weakly 
onvergent in D(S) and strongly 
onver-gent in Y . We denote its limit by xk ∈ D(S). Sin
e S−1 is 
ontinuous, by(3.4) we get limj→∞ S−1p
j
k =S−1pk =xk strongly in Y . Hen
e we have (3.1).We observe that(3.5) Jk(pk) = inf

p∈Xd
k

JDk
(p).

Indeed, G∗

k being 
onvex is lower semi
ontinuous, so lim infj→∞ G∗

k(Sp
j
k) ≥

G∗

k(Spk). Sin
e p
j
k is strongly 
onvergent in Y , we get limj→∞

1
2〈p

j
k, p

j
k〉 =

1
2〈pk, pk〉. Hen
e JDk

is weakly lower semi
ontinuous on D(S) and (3.5) fol-lows.We now show that (pk, xk) also satis�es (3.2). By Theorem 2.3 (relation(2.8)), there exists a numeri
al sequen
e {εn}
∞

n=1, εn > 0, εn → 0, havingthe property: for ea
h εn there exists jn su
h that 0 ≤ Gk(x
j
k) + G∗

k(Sp
j
k) −

〈xj
k, Sp

j
k〉 ≤ ε for all j ≥ jn. We may assume that jn → ∞ as n → ∞.Therefore we obtain

0 ≥ lim inf
j→∞

(Gk(x
j
k) + G∗

k(Sp
j
k) − 〈xj

k, Sp
j
k〉)

≥ lim inf
j→∞

Gk(x
j
k) + lim inf

j→∞

G∗

k(Sp
j
k) − lim

j→∞

〈xj
k, Sp

j
k〉

≥ Gk(xk) + G∗

k(Spk) − 〈xk, Spk〉.From the above and the Fen
hel�Young inequality we obtain Gk(xk) +
G∗

k(Spk) − 〈xk, Spk〉 = 0. Hen
e (3.2) follows by 
onvexity arguments. By(3.5) and by Theorem 2.1, relation (3.3) follows.Now we get the followingCorollary 3.2. Let Xk be weakly 
ompa
t. There exists a pair (xk, pk)
∈ Xk × Xd

k su
h that
Sxk = pk, Spk = ∇Gk(xk),

inf
p∈Xd

k

JDk
(p) = JDk

(pk) = Jk(xk) = inf
x∈Xk

Jk(x).

Moreover , xk is the limit (weak in D(S)) of a minimizing sequen
e {xj
k}

∞

j=1for the restri
tion of Jk to Xk, and pk is the limit (weak in D(S)) of aminimizing sequen
e {pj
k}

∞

j=1 for the restri
tion of JDk
to Xd

k .4. Stability result. We assume (A1)�(A4) and(A6) There exists a weakly 
ompa
t 
onvex set B ⊂ Y su
h that Xk ⊂ Band ∇Gk is uniformly bounded on B.(A7) Fk is 
onvex and lower semi
ontinuous on B for ea
h k = 0, 1, 2, . . . .d
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hlet problems 135Sin
e all sets Xk are now relatively weakly 
ompa
t, this assumption isnot very restri
tive. We e�ne as before a 
onvex and l.s.
. fun
tional on thewhole spa
e for k = 0, 1, 2, . . . by
Gk(x) =

{
Fk(x) for x ∈ B,

+∞ otherwise.By stability we mean 
onditions under whi
h from a sequen
e {xk}
∞

k=1,where xk for k = 1, 2, . . . is a solution to (1.2), one may 
hoose a subse-quen
e 
onverging weakly to a 
ertain x whi
h is a solution to the problem
Lx = ∇G0(x). Here we mean that limk→∞ xk = x weakly in D(S) and
limk→∞∇Gk(x) = ∇G0(x) weakly in Y for any x ∈ B, up to subsequen
es.Theorem 4.1. Assume (A1)�(A4), (A6), (A7) and that for any x ∈ Bthere is a subsequen
e kj su
h that

lim
j→∞

∇Gkj
(x) = ∇G0(x)weakly in Y . Then for ea
h k = 0, 1, 2, . . . there exists a solution xk to (1.2),and there exists a subsequen
e {xki
}∞i=1 of {xk}

∞

k=1 and x ∈ D(L) su
h that
lim
i→∞

xki
= x weakly in D(S), strongly in Y.Moreover

Lx = ∇G0(x).Proof. From Theorem 3.1 it follows that for ea
h k = 1, 2, . . . there existsa pair (xk, pk) ∈ D(L) × S(D(L)) su
h that(4.1) Sxk = pk, Spk = ∇Gk(xk).Due to assumption (A6) we may 
hoose from {xk}
∞

k=1 a subsequen
e weakly
onverging in Y whi
h we still denote by {xk}
∞

k=1. Now by (4.1) and by theboundedness of∇Gk (see (A7)) it follows that {xk}
∞

k=1 is, up to subsequen
e,strongly 
onvergent in D(S) to a 
ertain x by (A3). The sequen
e {pk}
∞

k=1is, up to a subsequen
e, weakly 
onvergent in D(S) and strongly 
onvergentin Y . We denote its limit by p. In the following we denote all the resultingsubsequen
es by the subs
ript ki for simpli
ity. Take a subsequen
e {ki}
∞

i=1su
h that limi→∞∇Gki
(x) = ∇G0(x) weakly.We will now prove that

Sx = ∇G0(x).By 
onvexity of Gki
we get, for any x ∈ Y ,
〈∇Gki

(xki
) −∇Gki

(x), xki
− x〉 ≥ 0.Hen
e by Theorem 3.1,

〈Lxki
+ (∇G0(x) −∇Gki

(x)) −∇G0(x), xki
− x〉 ≥ 0.
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e xki
→ x strongly in Y and ∇Gki

(x) ⇀ ∇G0(x) weakly in Y we easilyobtain
〈(∇G0(x) −∇Gki

(x)) −∇G0(x), xki
− x〉 → 〈−∇G0(x), x − x〉.Moreover 〈Lxki

,−x〉 → 〈Lx,−x〉 sin
e L is selfadjoint. It remains to observethat 〈Lxki
, xki

〉 = 〈Spki
, xki

〉 → 〈Sp, x〉. Hen
e(4.2) 〈Sp −∇G0(x), x − x〉 ≥ 0for any x ∈ D(L).Now we apply the �Minty tri
k�, i.e. we 
onsider the points x+ tx, where
x ∈ D(L) and t > 0. By the above inequality we obtain

〈Sp −∇G0(x + tx), x〉 ≤ 0.Sin
e the fun
tion [−1, 1] ∋ t 7→ G0(x + tx) ∈ R is 
onvex, its derivative
[−1, 1] ∋ t 7→ 〈∇G0(x + tx), x〉 ∈ R is 
ontinuous. Hen
e

0 ≥ lim
t→0

〈Sp −∇G0(x + tx), x〉 = 〈Sp −∇G0(x), x〉for any x ∈ D(L). As D(L) is dense in Y , this means that Sp = ∇G0(x).We need to prove that Sx = p. We again apply the Minty tri
k. Obviously
〈Lxki

−Lx, xki
−x〉 ≥ 0 for any x ∈ D(L). Moreover 〈Spki

−Lx, xki
−x〉 ≥ 0and taking the limit we get

〈Sp − Lx, x − x〉 ≥ 0.Now by 
onsidering points x+tx for any x ∈ D(L) we obtain −〈Sp−Lx, x〉−
t〈Lx, x〉 ≥ 0. Hen
e taking the limit as t → 0 we get

〈Sp − Lx, x〉 ≤ 0for any x ∈ D(L). Thus Sp = Lx and the proof is �nished.5. Appli
ations. In this se
tion we give some appli
ations to 
on
reteproblems. We shall 
he
k ea
h time that (A1)�(A4) and (A6)�(A7) are sat-is�ed.5.1. Existen
e and stability of solutions for a sixth order Diri
hlet prob-lem. We 
onsider the problem de�ned in the Introdu
tion, i.e. the family ofDiri
hlet problems for k = 0, 1, 2, . . . ,

(5.1) −
d6

dt6
x +

d4

dt4
x −

d2

dt2
x − 2x = ∇Fk(t, x),

x(0) = x(π) = ẋ(0) = ẋ(π) = ẍ(0) = ẍ(π) = 0,where we de�ne L = − d6

dt6
x + d4

dt4
x − d2

dt2
x + 2x and assume (F1)�(F3).We observe that ea
h Fk is 
onvex and l.s.
.Theorem 5.1. Under assumptions (F1)�(F3), for any k = 0, 1, 2, . . .there exists a solution to the Diri
hlet problem (5.1).
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hlet problems 137Proof. Fix k. We shall show that all assumptions of Theorem 3.1 aresatis�ed. First of all we observe that (A1) and (A3) hold by de�nition of
L2(0, π) and by the Poin
aré inequality. (A2) follows by the assumptionson Fk. To show (A4) we need to 
onstru
t a suitable set Xk. We de�ne
Xk =

{
x ∈ H2

0 (0, π) ∩ H3(0, π) : x(t) ∈ [−dk, dk] a.e. on [0, π],

∥∥∥∥
d3

dt3
x

∥∥∥∥
2

L2

≤

√
12

π
d and −

d6

dt6
x +

d4

dt4
x −

d2

dt2
x − 2x ∈ L∞(0, T )

}
.We take any u ∈ Xk. A solution to

(5.2) −
d6

dt6
x +

d4

dt4
x −

d2

dt2
x − 2x = ∇Fk(t, u),

x(0) = x(π) = ẋ(0) = ẋ(π) = ẍ(0) = ẍ(π) = 0,obviously exists. Moreover by a dire
t 
al
ulation using the Poin
aré inequal-ity and the fa
t that the derivative of a 
onvex fun
tion is nonde
reasing weget
π\
0

∣∣∣∣
d3

dt3
x

∣∣∣∣
2

dt ≤

π\
0

(
−

d6

dt6
x(t) +

d4

dt4
x(t) −

d2

dt2
x(t) − 2x(t)

)
x(t) dt

=

π\
0

∇Fk(t, u(t))x(t) dt ≤ ess sup
t∈[0,T ]

|∇Fk(t, d)|

π\
0

∣∣∣∣
d3

dt3
x

∣∣∣∣
2

dt.

Hen
e ∥∥∥∥
d3

dt3
x

∥∥∥∥
2

L2

≤

√
12

π
d.So by Sobolev's inequality we get

|x(t)| ≤ max
s∈[0,π]

|x(s)| ≤

√
π

12

∥∥∥∥
d3

dt3
x

∥∥∥∥
2

L2

≤ d.Thus x ∈ Xk and we may put Xk = Xk. Of 
ourse Xk and Fk(Xk) are rel-atively weakly 
ompa
t in H3(0, π) and L2(0, π). Hen
e all the assumptionsof Theorem 3.1 are satis�ed and we infer the existen
e of solutions to theDiri
hlet problem (5.1).The set B (see (A6)) may due to (F1) be given by B = X0. Therefore(A6), (A7) are satis�ed. Now by Theorem 4.1 we easily obtain Theorem 1.1.5.2. Dependen
e on parameters. We now 
onsider a similar problem but
on
entrate on the 
ontinuous dependen
e on parameters for the Diri
hlet
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(5.3) −

d6

dt6
x +

d4

dt4
x −

d2

dt2
x − 2x = ∇F (t, x(t), u(t)),

x(0) = x(π) = ẋ(0) = ẋ(π) = ẍ(0) = ẍ(π) = 0,where u : [0, π] → R
m is a fun
tional parameter from the set

LM = {u : [0, π] → R
m : u is measurable, u(t) ∈ M a.e.}and M ⊂ R

m is a given 
ompa
t set. We also assume:(Fp1) There exist numbers d ≤ d0 su
h that
∇F(t, d, u),∇F(t,−d, u),∇F(t, d0, u),∇F(t,−d0, u) ∈ L∞(0, T )for all u ∈ LM .(Fp2) F,∇F : [0, T ] × [−d, d] × M are Carathéodory fun
tions, F is 
on-tinuously di�erentiable and 
onvex with respe
t to the se
ond vari-able in [−d0, d0] for a.e. t ∈ [0, T ] and equals +∞ outside [0, T ] ×
[−d0, d0]; for all u ∈ LM ,

ess sup
t∈[0,T ]

|∇F(t, d, u)| ≤

√
12

π
d, ess sup

t∈[0,T ]
|∇F(t,−d, u)| ≤

√
12

π
d.(Fp3) ∇F(t, 0, u) 6= 0 for a.e. t ∈ [0, T ] and all u ∈ LM ; t 7→ F (t, 0, u) and

t 7→ F ∗(t, 0, u) are integrable for all u ∈ LM .We have the following theorem whi
h is a dire
t 
onsequen
e of Theo-rem 4.1.Theorem 5.2. Assume that (Fp1)�(Fp3) hold and that {uk}
∞

k=1 ⊂ LMwith uk → u in L2(0, π). For ea
h k = 1, 2, . . . there exists a solution xk toproblem (5.3) and there exists a subsequen
e {xki
}∞i=1 of {xk}

∞

k=1 and x ∈ X0su
h that limi→∞ xki
= x strongly in L2(0, π) and

−
d6

dt6
x(t) +

d4

dt4
x(t) −

d2

dt2
x(t) − 2x(t) = ∇F (t, x(t), u(t)).Proof. By the Krasnosel'ski�� theorem we get

∇F (·, x(·), uk(·)) →
k→∞

∇F (·, x(·), u(·))strongly in L2(0, π). Hen
e Theorem 4.1 applies with
Fk(·, x(·)) = F (·, x(·), uk(·)).
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