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Graphs with multiple sheeted pluripolar hulls

by Evgeny Poletsky (Syracuse, NY) and
Jan Wiegerinck (Amsterdam)

Abstract. We study the pluripolar hulls of analytic sets. In particular, we show that
hulls of graphs of analytic functions can be multiple sheeted and sheets can be separated
by a set of zero dimension.

1. Introduction. One of the oldest interesting topics in complex anal-
ysis is the problem of analytic extensions: find the maximal analytic object
containing a given one. For example, if f is an analytic function we are
looking for its analytic continuation and if A is an irreducible analytic set
we try to find another one of the same dimension containing A.

The counterpart of an analytic extension in pluripotential theory is the
so-called pluripolar hull. There are two types of pluripolar hulls of a set A in
a domain D ⊂ C

n. Let PSH(D) be the set of all plurisubharmonic functions
on D and PSH0(D) the set of all negative functions from PSH(D). Define

A∗
D = {z ∈ D : ∀h ∈ PSH(D) h|A = −∞ ⇒ h(z) = −∞},

A−
D = {z ∈ D : ∀h ∈ PSH0(D) h|A = −∞ ⇒ h(z) = −∞}.

For example, if A is an analytic set in a pseudoconvex domain D, then every
point of A has a neighborhood V where A ∩ V = {h1 = · · · = hk = 0} and
the functions hk are holomorphic on this neighborhood. Hence A ∩ V =
{log max{|h1|, . . . , |hk|} = −∞}. In fact, A∗

D = A, because by [2, Cor. 1]
there even exists v ∈ PSH(D) such that A = {v = −∞}.

If such a v ∈ PSH(D) exists for A, we call A pluricomplete in D. In
general, an analytic extension of A is contained in A∗

D.

In the case when A = Γf is the graph of an analytic function f it was
conjectured in [9] that the closure of the analytic extension of A coincides
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with A∗
D. However, A. Edigarian and the second author found in [3] an

analytic function f on the unit disk D that does not extend analytically while
the pluripolar hull of its graph is the graph of an analytic function defined
on almost the whole plane (cf. [11]). Thus pluripolar hulls and analytic
extensions may differ by large sets.

The pluripolar hull of the graph Γf of a holomorphic function f(z) on
a domain D may well be multi-sheeted over D. The principal value of

√
z

on {ℜz > 0} provides the easiest example. Only recently did Zwonek [12],
and, independently, Edlund and Jöricke [6], give examples of holomorphic
functions f on their domain of existence D with the property that the plu-
ripolar hull (Γf )∗

C2 is multi-sheeted over (parts of) D. In all these examples
the topological codimension of ∂D is 1.

As we show in Section 2, this is an intrinsic property of analytic exten-
sions: Let E be a closed subset of C

n+1 and A be an analytic set of pure
dimension n in C

n+1 \E. If the set A∗
Cn+1 is analytic, then dimE ≥ 2n− 1.

However, as we also show, there is a Cantor type set K and a holomorphic
function f(z) on D = C \ K such that (Γf )∗

C2 is 2-sheeted over D. So for
pluripolar extensions sheets can be separated by a 0-dimensional cut and
this demonstrates another principal difference between analytic extensions
and pluripolar hulls.

As a by-product we obtain an example of a uniformly convergent se-
quence of holomorphic functions such that their pluripolar hulls do not con-
verge to the pluripolar hull of the limit.

The set K should be sufficiently fat. Edigarian and the second author
showed that if D = C \K, with K a polar compact set in C, and if f is not
extendible over K, then (Γf )∗

C2 ∩ D × C = Γf ; see [4], and [5] for the fact
that also over K the hull is at most single sheeted.

2. Pluripolar extensions. Let E be a closed set in a pseudoconvex
domain D ⊂ C

n. If A ⊂ D \ E then, in general, A∗
D\E is a proper subset

of A∗
D \ E. However, as the following statement shows, these sets coincide

when E is pluripolar.

Proposition 2.1. If E is a closed pluripolar set in a pseudoconvex do-

main D ⊂ C
n and A ⊂ D \ E, then A∗

D \ E = A∗
D\E.

Proof. Let {Dj} be an increasing sequence of relatively compact sub-
domains with

⋃
j Dj = D. By [10, Thm. 2.4], A∗

D =
⋃

j(A ∩ Dj)
−
Dj

. If

u ∈ PSH0(Dj \E), then u extends as a negative plurisubharmonic function
to Dj (see [8, Thm. 2.9.22]). Therefore, (A ∩ Dj)

−
Dj

\ E = (A ∩ Dj)
−
Dj\E

.

Since (A∩Dj)
−
Dj\E

⊂ A∗
D\E , we see that A∗

D \E ⊂ A∗
D\E and, consequently,

A∗
D \ E = A∗

D\E .
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The proposition below describes the situation when E is a closed set in
a pseudoconvex domain D ⊂ C

n, A ⊂ D \ E is an analytic set and A∗
D is

also analytic.

Proposition 2.2. Suppose that E is a closed set in a pseudoconvex

domain D ⊂ C
n and A ⊂ D \E is an analytic set. If the set A∗

D is analytic

then every irreducible component of A∗
D contains a component of A of the

same dimension.

Proof. Let X be an irreducible component of A∗
D. We represent A∗

D as
X ∪ Y , where Y is another analytic set in D and dimX ∩ Y < dim X. As
indicated in Section 1, the set Y is pluricomplete and Y ∗

D = Y . It is easy to
check that if F, G ⊂ D, then (F ∪ G)∗D = F ∗

D ∪ G∗
D. So if B = A ∩ (X \ Y )

then X \ Y ⊂ B∗
D.

Suppose that dimX > dimB and let R be the set of regular points of X.
The set of singular points of X is analytic and, consequently, pluricomplete.
By the argument above X \ Y belongs to the pluripolar hull of the set
B′ = B ∩ R.

We may assume that 0 ∈ R and let T be the tangent plane to R at 0.
If p is a projection of C

n on T , then the set p(B′) is pluripolar in T and,
consequently, there is a plurisubharmonic function u on T equal to −∞ on
p(B′). The set p(R) has a non-empty interior in T and, therefore, there is
a point z0 ∈ R such that u(p(z0)) 6= −∞. Then the function v = u ◦ p is
plurisubharmonic on C

n, equal to −∞ on B′ and v(z0) > −∞. Thus R does
not belong to the pluripolar hull of the set B′. This contradiction proves the
proposition.

Suppose that A is a pluricomplete analytic set of pure dimension m in
D \E. If A∗

D is an analytic set in D and A is a proper subset of A∗
D \E, then

the set E ∩ A∗
D cuts A∗

D into several pieces and, therefore, its topological
dimension must be at least 2m − 1.

For example, let D = {(z, w) ∈ C
2} and E = {ℑz = 0, ℜz ≥ 0}.

Take a branch w = f(z) of the function w =
√

z over C \ E and let A =
{(z, f(z)) : z ∈ C}. The pluripolar hull of A in C

2 \E is A because the func-
tion log |f(z)−z| is equal to −∞ exactly on A. But A∗

D = {(z, w) : z = w2}.
In this example A∗

D is an analytic set and the set A∗
D ∩ E is the real curve

{(x2, x) : x ∈ R} which projects 2 to 1 except at 0 and its projection has
dimension 1.

As the following statement shows, this is the minimal possible dimension.

Proposition 2.3. Let E be a closed set in a pseudoconvex domain D ⊂
C

n and let A be an irreducible analytic set of dimension m in D \ E such

that A∗
D is also analytic. If p is a projection of C

n onto C
m ⊂ C

n such that
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p(A) has a non-empty interior in C
m and the topological dimension of p(E)

is less than 2m − 1, then A∗
D \ E = A.

Proof. By Proposition 2.2 every irreducible component of A∗
D contains

a component of A of the same dimension. Thus A∗
D is also irreducible and

has dimension m. We denote by X the set of singular points of A∗
D. This set

is analytic and its dimension is at most m − 1. Hence the set Y = A∗
D \ X

is an irreducible complex submanifold of D \ X. Let X ′ ⊂ Y be the set
where the restriction of the projection p to Y has rank less than m. Since
p(A) has non-empty interior in C

m, the set Y ′ = Y \ X ′ is non-empty and
relatively open in Y . The set X ′ is analytic and, therefore, its dimension is
at most m − 1. Hence the set Y ′ is an irreducible complex submanifold of
D \ (X ∪X ′) and the set A′ = A∩ Y ′ is a non-empty submanifold of Y ′ \E
of dimension m.

Suppose that the topological dimension of p(E) is at most 2m − 2. The
projection p is locally homeomorphic on Y ′ and, therefore, the set E ∩ Y ′

also has dimension at most 2m− 2. Since E is closed the set A′ is relatively
open in Y ′. The set Y ′′ = Y ′ \ (A′ ∪ E) is also relatively open in Y ′. Thus
Y ′ is a topological manifold of dimension 2m and equals the union of two
open sets A′ and Y ′′ and a closed set E of dimension at most 2m−2. By the
Urysohn–Menger Theorem a set of dimension 2m − 2 cannot disconnect a
2m-dimensional manifold (see [7, Ch. IV.5, Cor. 1]). Hence either A′ or Y ′′

is empty. Since A′ is not empty, Y ′ \ E = A′.

Since A is closed in A∗
D\E, it contains X\E and X ′\E. So A∗

D\E = A.

When A is an analytic set in D \ E we denote by AE the intersection
of E and the closure of A in D. If A∗

D \ E 6= A, we will say that A has a
non-trivial pluripolar extension through E in D.

The following theorem lists some limitations on the set AE when a non-
trivial pluripolar extension takes place. Following [1] we call a set G in a
domain Y ⊂ C

p locally removable if G is closed and for every open set V in Y
every bounded holomorphic function f on V \ G extends holomorphically
to V .

Theorem 2.4. Suppose that D is a pseudoconvex domain in C
n, E is a

closed set in D and A is an analytic set of pure dimension m in D\E with a

non-trivial pluripolar extension through E in D. Then the (2m−1)-Hausdorff

measure of the set AE is not equal to zero and if , additionally , p : C
n → C

m

is a projection such that the restriction p|AE
is proper and A∩p−1(z) is empty

for all z ∈ p(AE), then p(AE) is not locally removable in C
m.

Proof. The set A is analytic in D\AE. If the (2m−1)-Hausdorff measure
of E is zero, then by Shiffman’s theorem (see [1, 4.4]) the closure A of A
in D is an analytic set in D. Since the domain D is pseudoconvex there is
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a holomorphic function f on D such that A = {f = 0}. Thus A∗
D = A and

this contradicts the assumption that the extension is non-trivial.
In the second case, if p(AE) is locally removable in C

m, then by the
Proposition in [1, 18.1] the closure A of A is an analytic set in D as before
and the same argument leads to a contradiction.

In our main example, n = 2, m = 1. In this case Theorem 2.4 can be
reformulated as follows:

Corollary 2.5. If in the assumptions of Theorem 2.4, n = 2 and

m = 1, then the first Hausdorff measure of AE is not zero and , under addi-

tional assumptions, the first Hausdorff measure of p(AE) is not zero.

3. A holomorphic function on the complement of a Cantor

type set with 2-sheeted hull

Definition 3.1. A Cantor type set K is a compact perfect subset of R

with empty interior.

It is a well known fact from elementary point set topology that such a
K is homeomorphic to Cantor’s middle thirds set. It is of the form [a0, b0] \⋃∞

j=1 Ij where Ij are open intervals in [a0, b0], Ij ∩ Ik = ∅ if j 6= k and⋃∞
j=1 Ij is dense in [a, b]. We can assume that the length of Ij = (aj , bj)

decreases with j.
It is useful to enumerate the set {aj , bj : j = 0, . . . , n} as {αjn, βjn}

so that α0n = a0, αjn < βjn < αj+1,n and βnn = b0. Note that [a0, b0] \⋃n
j=1 Ij =

⋃n
j=0[αjn, βjn] and that Im ∩ [αjn, βjn] 6= ∅ implies Im ⊂

[αjn, βjn] 6= ∅.
Let

gn(z) =
z − a0

z − b0

z − b1

z − a1
· · · z − bn

z − an
.

Then

gn(z) =
z − α0n

z − β0n

z − α1n

z − β1n
· · · z − αnn

z − βnn
.

Each fraction
z−αjn

z−βjn
, j = 0, 1, . . . , n, has a holomorphic branch

√
z−αjn

z−βjn
of

its square root outside [αjn, βjn] that equals 1 at infinity. Let

(3.1) fn(z) =

√
z − α0n

z − β0n

√
z − α1n

z − β1n
· · ·

√
z − αnn

z − βnn
=

√
gn(z).

Then fn(∞) = 1, f2
n = gn and fn is holomorphic on Gn = (C \ [a0, b0]) ∪⋃n

j=1 Ij .
The maximal analytic extension of fn is a branched 2-sheeted cover Xn =

{(z, w) : w2 = gn(z)} of C that branches over {aj , bj : j = 0, 1, . . . , n}. The
pluripolar hull (Γfn

)∗
C2 equals Xn.
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Lemma 3.2. Keeping the above notation, the sequence {gn} converges

normally to an analytic function g on C \ K. Moreover , the function g
extends analytically over a point x ∈ K if and only if for some α < x < β
the length of the set K ∩ (α, β) is zero.

Proof. Let L be a compact set in C \ K. Let us show that

(3.2)
z − a0

z − b0

∞∏

j=1

z − bj

z − aj
= lim

n→∞
gn(z)

is uniformly convergent on L. There exists n0 such that L ⊂ Gn for n > n0

and moreover, for some δ > 0,

L ⊂ {z : |z − aj | > δ, j = 0, 1, . . . }.
Hence, for z ∈ L, ∣∣∣∣

z − bj

z − aj
− 1

∣∣∣∣ =

∣∣∣∣
bj − aj

z − aj

∣∣∣∣ ≤
bj − aj

δ
.

Since
∑

(bj − aj) is finite, the product in (3.2) converges uniformly on L to
a function g that is holomorphic on C \ K.

Suppose that g extends analytically over a point x ∈ K so that g is
analytic on (C \ K) ∪ (α, β). We may assume that α ∈ Ik, bk ≤ x, and
β ∈ Im, am ≥ x, and

g1n(z) =
∏ z − αjn

z − βjn
,

where the product runs over all j such that either βjn < α or αjn > β. Let

g2n(z) =
∏ z − αjn

z − βjn
,

where the product runs over all j such that α < αjn and βjn < β. Then
gn = g1ng2n and by the argument above the sequences {g1n} and {g2n}
converge uniformly on compacta in C \ (K \ (α, β)) and C \ (K ∩ (α, β))
respectively. We denote their respective limits by g1 and g2.

For the derivative of g2n we find g′2n(∞) =
∑

(βjn−αjn) = ln, where the
sum runs over all j such that α < αjn and βjn < β. Thus g2n(∞) is equal
to the length ln of the intervals (αjn, βjn) lying in (α, β) and g′2(∞) is the
length of the set K ∩ (α, β). If this length is positive, then the function g2

is not constant and, therefore, does not extend to K ∩ (α, β).
If this length is 0 then for z ∈ C such that |z − y| ≥ 1 for all y ∈ (α, β)

we have

|1 − g2n(z)| =

∣∣∣∣1 −
∏ (

1 +
βjn − αjn

z − βjn

)∣∣∣∣ ≤ eln − 1.

Hence the sequence {g2n} converges to 1 near ∞, g2 ≡ 1 and g extends
analytically over (α, β).
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Lemma 3.3. If f = fK and the length of K is positive, then the union

Γ f ∪ Γ−f of the closures of the graphs of f and −f is not an analytic set.

Proof. If A = Γ f ∪ Γ−f is an analytic set, then there is a holomorphic
function h = h(z, w) on C

2 such that h ≡ 0 on A. We have A = Γf ∪Γ−f ∪E,
where E ⊂ K × C.

Let us show that for every z0 ∈K the analytic set Ez0
= {w : (z0, w) ∈ E}

= A ∩ {z0} × C consists of at most two points. If it contains three points,
then at least two of them belong to, say, Γ f . Thus there are sequences
{zj} and {z′j} converging to z0 such that the sequences {f(zj)} and {f(z′j)}
have distinct limits. Connecting each zj and z′j by small curves in C \ K
and looking at their limits we see that the cluster set of f at z0 contains a
continuum. Hence, Ez0

= C and h(z0, w) ≡ 0.
From the Taylor expansion of h we immediately derive that h(z, w) =

(z−z0)
nh1(z0, w), where h1 is holomorphic on C

2 and h1(z0, w) 6≡ 0. But for
every point w ∈ C there is a sequence of zj converging to z0 such that, say,
f(zj) converges to w. Since h(zj, f(zj)) = 0 we see that h1(z0, w) = 0. This
contradiction shows that Ez0

has at most two points and the intersection of
Γ f or Γ−f with E consists of at most one point.

It follows that f extends continuously to K. Since K lies on the real line,
f extends holomorphically to C; but this impossible by Lemma 3.2.

Example 3.4. If the set K has Lebesgue measure 0, then

lim
n→∞

gn(z) = 1

uniformly on any compact set L not meeting K. It follows that f ≡ 1 and
(Γf )∗

C2 = {(z, 1)}. But the Hausdorff limit of the sets Xn over D equals
{(z, w) : w = 1 or −1}.

We will need the next lemma, whose proof is similar to the proof of
Theorem 2.1 in [4].

Lemma 3.5. Let f be a holomorphic function on a domain V ⊂ C
N

containing a closed ball B and let {rn}n be a sequence of rational functions

of degree n with poles outside V and such that the sup-norm ‖f − rn‖1/n
B

tends to 0 as n → ∞. Then there is a plurisubharmonic function v on C
N+1

such that {v = −∞} ∩ (V × C) = Γf . Thus, (Γf )∗
CN+1 ∩ (V × C) = Γf .

Proof. The functions rn are ratios of polynomials pn and qn of degree n.
We may assume that B is the closed unit ball centered at the origin and
‖qn‖B = 1. Then |qn(z)| ≤ max{1, |z|n}, ‖pn‖B does not exceed some con-
stant C and |pn(z)| ≤ C max{1, |z|n}.

Consider the plurisubharmonic functions

un(z, w) =
1

n
log |qn(z)w − pn(z)|
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on C
N+1. From the estimates on pn and qn there is a constant C1 such that

un(z, w) ≤ 2 log |z| + log |w| + C1 when |z| ≥ 1 and un(z, w) ≤ log |w| + C1

when |z| ≤ 1.
We take zn∈B such that qn(zn) = an, |an| = 1. Let wn = (pn(zn)+1)/an.

Then |wn| ≤ C + 1 and un(zn, wn) = 0. If Bn is a ball in CN+1 centered at
(zn, wn) and of radius rn = C+5, then Bn contains the unit ball B′ centered
at the origin and \

Bn

un dV ≥ cun(zn, wn) = 0.

It is immediate from the upper estimates on un that there is a constant C2

such that \
B′

un dV ≥ C2.

By our assumption there is a sequence {dn} converging to ∞ such that

un(z, fn(z)) =
1

n
log |qn(z)| + 1

n
log

∣∣∣∣f(z) − pn(z)

qn(z)

∣∣∣∣ ≤ −dn

when |z| ≤ 1.

Let us take a sequence {cn} of positive reals such that
∑

cn = 1 while∑
cndn = ∞. Let

v(z, w) =
∞∑

n=1

cn max{un(z, w), dn}.

Since \
B

v dV ≥ C2,

we see that v 6≡ −∞ and, therefore, it is a plurisubharmonic function on
C

N+1. Clearly, v(z, f(z)) = −∞ when |z| ≤ 1. Therefore, v = −∞ on Γf .
The zeros of the polynomials qn are in C

N \ V . Hence the functions
hn(z) = n−1 log |qn(z)| are harmonic on V and uniformly bounded above on
compacta. So if z ∈ V and lim inf hn(z) = −∞, then there is a subsequence
{nk} such that limhnk

(z) = −∞. Therefore, the functions hnk
converge to

−∞ uniformly on compacta in V . But hnk
(znk

) = 0, and this contradiction
tells us that lim inf hn(z) > −∞. So if w 6= f(z), then

v(z, w) ≥
∞∑

n=1

cnhn(z) +
∞∑

n=1

cn

n
log

∣∣∣∣w − pn(z)

qn(z)

∣∣∣∣ > −∞.

Hence {v = −∞} ∩ (V × C) = Γf and (Γf )∗
CN+1 ∩ (V × C) = Γf .

Now we can present our main example.

Theorem 3.6. There exists a Cantor type set K, obtained by deleting

intervals Ii = (ai, bi) from [−1, 1], such that the function f = fK given by
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Lemma 3.3 has the following property :

(Γf )∗
C2 ∩ (C \ K) × C = Γf ∪ Γ−f .

Proof. We will construct K by deleting a sequence of open intervals
(ai, bi) from the interval [−1, 1]. For convenience, set a0 = 1, b0 = −1.
In order to choose the intervals appropriately, we have to construct certain
subdomains Dn in the open unit disk D in the process. The domains Dn will
contain the set D∩{|ℑz| > 1/2}. Thus the closed discs S = {|z+3i/4| ≤ 1/8}
and X = {|z − 3i/4| ≤ 1/8} will be contained in Dn.

For a compact set F in a domain D ⊂ C let

ω(z, F, D) = − sup{h(z) : h ∈ PSH0(D), lim sup
w→K

h(w) ≤ −1}

be the harmonic measure of F in D. We set D0 = D and observe that
ω(z, S, D0) > c0 for some positive c0.

Let {cn} be a sequence of positive real numbers converging to ∞. Sup-
pose that the intervals I1, . . . , In have been chosen. We take as an+1 the mid-
point of the largest interval in their complement. Next take bn+1 > an+1 so
small that the interval [an+1, bn+1] does not intersect the intervals I1, . . . , In,
dn+1 = bn+1 − an+1 < 4−(n+1)cn+1 and, moreover,

ω(z, S, Dn+1) > c0, z ∈ X.

Here we define Dn+1 = Dn \ D(an+1, (bn+1 − an+1)2
n+1), where D(a, r) is

the open disk centered at a and of radius r.

Observe that for j ≤ n,
∣∣∣∣
z − bj

z − aj
− 1

∣∣∣∣ =

∣∣∣∣
dj

z − aj

∣∣∣∣ <
1

2j

on Dn. It follows that
n∏

j=1

z − bj

z − aj

is bounded on Dn independently of n.

Let z0 ∈ X. We will show that (z0,−f(z0)) ∈ (Γf )∗
C2 . Then Γ−f is also in

the hull and we are done. Consider the function f̃n defined on D\⋃n
j=1 Ij by

f̃n(z) =





fn(z) if ℑz < 0,

−fn(z) if ℑz > 0,

limy↑0 f(x + iy) if x ∈ [−1, 1] \ ⋃
Ij .

The function f̃n is holomorphic. Let cn = f̃n(z0) + fK(z0). Then cn → 0 as

n → ∞. The functions hn = f̃n − cn tend to fK uniformly on compact sets
in D ∩ {ℑz < 0} and hn(z0) = −fK(z0).
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Now let u be a plurisubharmonic function on C
2 that equals −∞ on Γf .

The function u(z, hn(z)) is subharmonic on the domain Dn, and because
hn(z) is bounded on Dn independently of n, u(z, hn(z)) is bounded by a
constant M independently of n.

Next we apply the two constants theorem and find

u(z0,−fK(z0)) ≤ M(1 − ω(z0, S, Dn)(3.3)

+ max
z∈S

u(z, hn(z))ω(z0, S, Dn) → −∞ as n → ∞.

Hence, (Γf )∗
C2 ⊃ Γf ∪ Γ−f .

To get the equality we will show that the sup-norm satisfies

‖g − gn‖1/n
L → 0, n → ∞,

on compacta L outside K. For this we write

|g − gn| = |gn|
∣∣∣∣

∞∏

k=n+1

z − ak

z − bk
− 1

∣∣∣∣.

The first factor is bounded by a constant C depending on L. To estimate the
second factor we let δ be the distance from L to K and write the factor as∣∣∣∣

∞∏

k=n+1

(
1 +

dk

z − bk

)
− 1

∣∣∣∣ ≤
∞∏

k=n+1

(
1 +

dk

δ

)
− 1 ≤ exp

( ∞∑

k=n+1

dk

δ

)
− 1.

Since dk < 4−kck we see that
∣∣∣∣

∞∏

k=n+1

z − ak

z − bk
− 1

∣∣∣∣ ≤ exp

(
4−ncn

(1 − 4−cn)δ

)
− 1.

Hence

‖g − gn‖1/n
L ≤ 2

(
CL

δ

)1/n

4−cn

when n is sufficiently large and

‖g − gn‖1/n
L → 0, n → ∞.

By Lemma 3.5, Γ ∗
g = Γg in C

2 \ (K×C). Thus for any (z0, w0) with z0 ∈
C\K and w0 6= g(z0), there is a function u ∈ PSH(C2) such that u|Γg

= −∞
and u(z0, w0) 6= −∞. Then the function v(z, w) = u(z, w2) is equal to −∞
on Γf∪Γ−f and v(z0,±

√
w0) 6= −∞. Hence (Γf )∗

C2∩(C\K)×C = Γf∪Γ−f .
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