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Generalized shadowing for disrete semidynamial systemsby Wojciech Jabłoński (Rzeszów), Jacek Tabor (Kraków)and Józef Tabor (Rzeszów)Abstrat. We provide a uni�ed approah to di�erent types of shadowing. This en-ables us to generalize some known shadowing result.1. Introdution. Shadowing is one of the ruial stability onepts indynamial systems [2, 3℄. Roughly speaking it onerns the question if (andwhen) an approximate orbit an be approximated by an exat one. Thisis often important beause using numerial methods we an only obtainapproximate trajetories.However, to preisely formulate shadowing one needs to know what isunderstood by an approximate trajetory. This auses problems, as vari-ous de�nitions are applied in di�erent settings. The most ommonly usedis the notion of pseudoorbit, whih in a sense orresponds to stability inthe supremum norm. However, there also exists limit shadowing [3, p. 64℄,
Lp-shadowing [3, p. 68℄ and weighted shadowing [3, p. 71℄.The aim of this paper is to provide a uni�ed approah in whih all theabove mentioned shadowings an be studied. To do this we introdue a gen-eralization of a norm on a omplete sequene spae whih we all onorm. Inour opinion it gives the right setting to formulate general shadowing results.To illustrate this, using the method from [1℄ we prove some general shad-owing results for semi�ows with disrete time.2. Generalized norm. In this setion we introdue the notion of a om-plete onorm whih will be ruial in our onsiderations. A omplete onorman be understood as a generalization of a norm on a omplete sequenespae.Let N be the set of all positive integers, R+ = [0,∞) and R+ = [0,∞].We assume that 0 · ∞ = 0.2000 Mathematis Subjet Classi�ation: Primary 35C30.Key words and phrases: orbit, pseudoorbit, shadowing.[263℄



264 W. Jabªo«ski et al.In the set R
N

+ of all sequenes x = (xk)k∈N we introdue the relation 4in the following way:
(xk)k∈N 4 (yk)k∈N if and only if xk ≤ yk for every k ∈ N.Definition 1. By an onorm we mean a funtion ⌋·⌊ : R

N

+ → R+ suhthat for x,y ∈ R
N

+ and α ∈ R+ the following onditions are satis�ed:(i) ⌋x⌊ = 0 ⇔ x = 0;(ii) ⌋x + y⌊ ≤ ⌋x⌊ + ⌋y⌊;(iii) ⌋αx⌊ = α⌋x⌊;(iv) x 4 y ⇒ ⌋x⌊ ≤ ⌋y⌊.If (xn) = (xn
k)k∈N is a sequene in R

N

+ and instead of (ii) the ondition(ii)′ ⌋ ∞∑

n=1

xn
⌊
≤

∞∑

n=1

⌋xn⌊, where ∞∑

n=1

xn :=
( ∞∑

n=1

xn
k

)
k∈N

,is satis�ed, then we say that ⌋·⌊ is a omplete onorm.We use the term onorm as the abbreviation of �ordered norm�. It turnsout that every �reasonable� norm ‖ · ‖ on a (omplete) sequene spae Xde�nes a (omplete) onorm. By a sequene spae we understand any vetorsubspae of R
N.Proposition 1. Let X be a sequene spae with a norm satisfying theondition

0 4 x 4 y, x ∈ R
N

+, y ∈ X ⇒ x ∈ X, ‖x‖ ≤ ‖y‖.(1)Then the funtion ⌋·⌊X : R
N

+ → R+ de�ned by the formula
⌋x⌊X :=

{
‖x‖ if x ∈ X,
∞ otherwise,is an onorm on R

N

+.Moreover , if X is omplete and the following ondition holds:
(2) xn = (xn

k)k∈N ∈ X for n ∈ N, lim
n→∞

xn = 0 ⇒ lim
n→∞

xn
k = 0 for k ∈ N,then ⌋·⌊X is a omplete onorm.Proof. It is obvious that under ondition (1), ⌋·⌊ is an onorm.We show that (2) together with the ompleteness of X implies that ⌋·⌊Xis omplete.Let (xn) = (xn

k)k∈N be a sequene in R
N

+. If ∑
∞

n=1
⌋xn⌊ = ∞ then (ii)′holds trivially. So assume ∑

∞

n=1
⌋xn⌊ < ∞. This means that xn ∈ X for every

n ∈ N and ∑
∞

n=1
‖xn‖ < ∞. By the ompleteness of X the series ∑

∞

n=1
xnis onvergent (in the norm topology of X) to some z = (zk)k∈N ∈ X and
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‖z‖ ≤

∑
∞

n=1
‖xn‖. The proof of (ii)′ will be omplete if we show that

zk =

∞∑

n=1

xn
k for every k ∈ N.

But limN→∞(z −
∑N

n=1
xn) = 0, whih by (2) means that for every k ∈ Nwe have limN→∞(zk −

∑N
n=1

xn
k) = 0. Consequently, ∑

∞

n=1
xn

k = zk for eah
k ∈ N.Making use of Proposition 1 we give a few examples of omplete onorms.If X = lp, p ∈ [1,∞], then the onorm de�ned in Proposition 1 takes theform

⌋(xk)⌊lp :=
( ∑

k

xp
k

)1/p if p ∈ [1,∞), ⌋(xk)⌊l∞ := sup
k∈N

xk.More generally, if X is a weighted lp-spae with p ∈ [1,∞] then the orre-sponding onorm has the form
⌋(xk)⌊r,lp :=

( ∑

k

(rkxk)
p
)1/p if p ∈ [1,∞), ⌋(xk)⌊r,l∞ := sup

k∈N

rkxk,where r > 0 is �xed.If X = c0 then
⌋(xk)⌊c0

:=

{
supk∈N xk if limk→∞ xk = 0,
∞ otherwise.We have proved in Proposition 1 that a (reasonable) norm on a ompletesequene spae produes a omplete onorm. Now we prove that a ompleteonorm an be used to de�ne a omplete metri on some set of sequenes.Proposition 2. Assume that ⌋·⌊ is a omplete onorm. Let (X, d) bea omplete metri spae and let x = (xk)k∈N be a �xed sequene in X. Let

X := {(zk)k∈N : ⌋(d(xk, zk))k∈N⌊ < ∞}.Then the funtion d : X × X → R+ de�ned by
d(y, z) = ⌋(d(yk, zk))k∈N⌊is a omplete metri on X .Proof. Clearly d is a metri on X . We show that (X ,d) is omplete.Let ei = (δi

k)k∈N, where δi
k is the Kroneker delta. Clearly ⌋ei⌊ > 0 for

i ∈ N.Consider an arbitrary Cauhy sequene (zn)n∈N = ((zn
k )k∈N)n∈N in X .To show that (zn) is omponentwise onvergent, �x k ∈ N. For n, m ∈ N wehave

d(zn
k , zm

k )ek 4 (d(zn
l , zm

l ))l∈N,
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d(zn

k , zm
k ) · ⌋ek⌊ = ⌋d(zn

k , zm
k ) · ek⌊ ≤ ⌋(d(zn

l , zm
l ))l∈N⌊ = d(zn, zm).Sine (zn)n∈N is a Cauhy sequene and ⌋ek⌊ > 0 we infer that (zn

k )n∈N is aCauhy sequene in X, and hene it is onvergent.Let zk := limn→∞ zn
k and z := (zk)k∈N. We will prove that z ∈ X and

limn→∞ d(zn, z) = 0. Sine (zn)n∈N is a Cauhy sequene it has a subse-quene (znl)l∈N suh that
d(znl , znl+1) = ⌋(d(znl

k , z
nl+1

k ))k∈N⌊ < 1/2l for l ∈ N.But liml→∞ znl

k = zk, so
d(z

nj

k , zk) ≤
∞∑

i=j

d(zni

k , z
ni+1

k ) for every k, j ∈ N.Thus
(d(z

nj

k , zk))k∈N 4

( ∞∑

i=j

d(zni

k , z
ni+1

k )
)

k∈N

for j ∈ N,and hene
⌋(d(z

nj

k , zk))k∈N⌊ ≤
⌋( ∞∑

i=j

d(zni

k , z
ni+1

k )
)

k∈N

⌊

=
⌋ ∞∑

i=j

(d(zni

k , z
ni+1

k ))k∈N

⌊
≤

∞∑

i=j

⌋(d(zni

k , z
ni+1

k ))k∈N⌊

≤
∞∑

i=j

1

2i
=

1

2j−1
for j ∈ N,so we have

⌋(d(z
nj

k , zk))k∈N⌊ ≤ 1/2j−1 for j ∈ N.(3)Making use of this inequality with a �xed j ∈ N we obtain
⌋(d(xk, zk))k∈N⌊ ≤ ⌋(d(xk, z

nj

k ))k∈N⌊ + ⌋(d(z
nj

k , zk))k∈N⌊ < ∞,whih means that x ∈ X .In virtue of (3) we have
lim

j→∞

d(znj , z) = lim
j→∞

⌋(d(z
nj

k , zk))k∈N⌊ = 0.Sine (zn)n∈N is a Cauhy sequene, this implies that limn→∞ d(zn, z) = 0.Definition 2. We all a omplete onorm ⌋·⌊ K-ontrative if
⌋(xk+1)k∈N⌊ ≤ K⌋(xk)k∈N⌊ for every (xk)k∈N ∈ R

N

+.Example 1. As one an see, the onorms ⌋·⌊lp and ⌋·⌊c0
are 1-ontrative,and ⌋·⌊lpr

is 1/r-ontrative.



Shadowing for semidynamial systems 2673. Orbits and generalized shadowing. In this setion we general-ize the lassial de�nition of shadowing with the use of a omplete onorm.One an easily see that speifying a omplete onorm we an obtain all thepreviously mentioned notions of shadowing.If not spei�ed otherwise, ⌋·⌊ denotes a �xed omplete onorm. Let (X, d)be a metri spae and let φ : X → X be given.Definition 3. We say that a sequene x = (xk)k∈N is an orbit for φ (ora φ-orbit) provided xk+1 = φ(xk) for every k ∈ N.Definition 4. Let δ > 0 be given. A sequene x = (xk)k∈N is alleda (δ, ⌋·⌊)-pseudoorbit for φ provided
⌋(d(xk+1, φ(xk)))k∈N⌊ ≤ δ.A sequene x = (xk)k∈N is alled a pseudoorbit for φ provided
⌋(d(xk+1, φ(xk)))k∈N⌊ < ∞.Definition 5. We say that a ⌋·⌊-pseudoorbit x = (xk)k∈N for φ is

(ε, ⌋·⌊)-shadowed (or traed) by a φ-orbit y = (yk)k∈N if
⌋(d(xk, yk))k∈N⌊ ≤ ε.Remark 1. The ase most often onsidered (and simplest) is ⌋·⌊ :=

⌋·⌊l∞ . Then we speak simply of pseudoorbits. Thus x = (xk)k∈N is a δ-pseudoorbit for φ if
d(xk+1, φ(xk)) ≤ δ for k ∈ N.Analogously, a pseudoorbit x = (xk)k∈N is ε-shadowed by a φ-orbit y =

(yk)k∈N if
d(xk, yk) ≤ ε for k ∈ N.Any (δ, ⌋·⌊)-pseudoorbit an be onsidered as a result of a numerialomputation of a trajetory, where δ represents the error.Definition 6. We say that a disrete semidynamial system φ has the

⌋·⌊-shadowing property if for any given ε > 0 there exists a δ > 0 suh thatfor every (δ, ⌋·⌊)-pseudoorbit x = (xk)k∈N there exists an orbit y suh that
x is (ε, ⌋·⌊)-shadowed by y.We mention that usually when one talks about shadowing one has inmind shadowing of the whole orbit, and not only of the positive trajetory.Thus what we here all shadowing is sometimes alled shadowing+ (see [1℄).However, sine we do not onsider the general shadowing at all, for simpliitywe speak of shadowing and not of shadowing+.Remark 2. Using onorms we are able to unify some results onerningseveral lassial shadowings. For example, for the onorm ⌋·⌊l∞ we obtain thestandard shadowing; ⌋·⌊c0

de�nes limits shadowing (f. [3, p. 63℄); the onorm
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⌋·⌊lp gives us Lp-shadowing (f. [3, p. 68℄); and for the onorm ⌋·⌊r,lp we getweighted Lr,p shadowing with the sequene r = (rk)k∈N (f. [3, p. 71℄).4. Shadowing. Now we are ready to formulate the main result of thispaper. It is a generalization of the result from [1℄. We show that the notionof an onorm an be useful in proving lassial shadowing results in a moregeneral setting.Theorem 1. Let (X, d) be a omplete metri spae. Let φ : X → X bea bijetion, let l = lip(φ−1) and let ⌋·⌊ be a K-ontrative omplete onormon R

N

+. Assume that Kl < 1. If x = (xk)k∈N is an ⌋·⌊-pseudoorbit thenthere exists a unique orbit y = (yk)k∈N whih ⌋·⌊-shadows x. Moreover , if
x = (xk)k∈N is an (ε, ⌋·⌊)-pseudoorbit for some ε > 0, then

⌋(d(xk, yk))k∈N⌊ ≤
lε

1 − Kl
.Remark 3. We underline that in Theorem 1 the ontinuity of φ is notassumed.Proof of Theorem 1. Fix an ε-pseudoorbit x = (xk)k∈N. De�ne

X := {z = (zk)k∈N : ⌋(d(xk, zk))k∈N⌊ < ∞}.By Proposition 2 we know that
d(y, z) = ⌋(d(yk, zk))k∈N⌊de�nes a omplete metri on X . De�ne a mapping P : X → X by

P((zk)k∈N) := (φ−1(zk+1))k∈N.We will show now that P is a well de�ned ontration. Sine φ−1 is Lipshitzwith Lipshitz onstant l, we have
⌋(d(xk, φ

−1(xk+1)))k∈N⌊ = ⌋(d(φ−1(φ(xk)), φ
−1(xk+1)))k∈N⌊

≤ ⌋l(d(φ(xk), xk+1))k∈N⌊ = l⌋(d(φ(xk), xk+1))k∈N⌊ ≤ lε.This proves that P(x) ∈ X and
d(x,P(x)) ≤ lε.(4)Consider an arbitrary z = (zk)k∈N ∈ X . Then we have

⌋(d(xk, φ
−1(zk+1)))k∈N⌊

≤ ⌋(d(xk, φ
−1(xk+1)) + d(φ−1(xk+1), φ

−1(zk+1)))k∈N⌊

= ⌋(d(xk, φ
−1(xk+1)))k∈N + (d(φ−1(xk+1), φ

−1(zk+1)))k∈N⌊

≤ ⌋(d(xk, φ
−1(xk+1)))k∈N⌊ + ⌋(d(φ−1(xk+1), φ

−1(zk+1)))k∈N⌊

≤ d(x,P(x)) + l⌋(d(xk+1, zk+1))k∈N⌊ ≤ lε + lK⌋(d(xk, zk))k∈N⌊ < ∞.Thus P(z) ∈ X .



Shadowing for semidynamial systems 269Now we show that P is a ontration. Fix w = (wk)k∈N, z = (zk)k∈N ∈ X .Then
d(P(w),P(z)) = ⌋(d(φ−1(wk+1), φ

−1(zk+1)))k∈N⌊

≤ ⌋l(d(wk+1, zk+1))k∈N⌊ = l⌋(d(wk+1, zk+1))k∈N⌊

≤ lK⌋(d(wk, zk))k∈N⌊ = Kld(w, z).Hene P is a ontration with onstant Kl < 1. Thus using the BanahContration Priniple we derive that P has a unique �xed point y ∈ X , andon aount of (4) we get
d(x,y) ≤

d(x,P(x))

1 − Kl
≤

lε

1 − Kl
.Sine P(y) = y, we get (φ−1(yk+1))k∈N = (yk)k∈N, whih means that y is anorbit for φ. To prove uniqueness of y suppose that ỹ = (ỹk)k∈N is a φ-orbitwhih shadows x. Then ỹ ∈ X and

P((ỹk)k∈N) = (φ−1(ỹk+1))k∈N = (ỹk)k∈N,whih means that ỹ is a �xed point for P. Hene ỹ = y.As a orollary we obtain a lassial shadowing result [1, Proposition 3℄in a slightly more general setting.Corollary 1. Let φ : X → X be a bijetion suh that φ−1 is a on-tration. Then φ has the shadowing property and φ has the limit shadowingproperty.
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