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Generalized shadowing for discrete semidynamical systems

by WoJCIECH JABLONSKI (Rzeszow), JACEK TABOR (Krakow)
and JOZEF TABOR (Rzeszow)

Abstract. We provide a unified approach to different types of shadowing. This en-
ables us to generalize some known shadowing result.

1. Introduction. Shadowing is one of the crucial stability concepts in
dynamical systems [2, 3|. Roughly speaking it concerns the question if (and
when) an approximate orbit can be approximated by an exact one. This
is often important because using numerical methods we can only obtain
approximate trajectories.

However, to precisely formulate shadowing one needs to know what is
understood by an approximate trajectory. This causes problems, as vari-
ous definitions are applied in different settings. The most commonly used
is the notion of pseudoorbit, which in a sense corresponds to stability in
the supremum norm. However, there also exists limit shadowing [3, p. 64],
LP-shadowing [3, p. 68] and weighted shadowing [3, p. 71].

The aim of this paper is to provide a unified approach in which all the
above mentioned shadowings can be studied. To do this we introduce a gen-
eralization of a norm on a complete sequence space which we call onorm. In
our opinion it gives the right setting to formulate general shadowing results.

To illustrate this, using the method from [1| we prove some general shad-
owing results for semiflows with discrete time.

2. Generalized norm. In this section we introduce the notion of a com-
plete onorm which will be crucial in our considerations. A complete onorm
can be understood as a generalization of a norm on a complete sequence
space.

Let N be the set of all positive integers, R = [0,00) and Ry = [0, c0].
We assume that 0-co = 0.
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=N . .
In the set R, of all sequences x = ()ren We introduce the relation <
in the following way:

(xk)ken < (Yk)ken if and only if  xp < yj for every k € N.

DEFINITION 1. By an onorm we mean a function |-| : Elj — Ry such
that for x,y € Elj and « € R, the following conditions are satisfied:
(i) x| =0< x=0;
(i) Jx+y[ < Jx[+ ]yl;
Em) ax| = alx|;

iv) x <y = |x| < |yl

If (x") = (mk)keN is a sequence in R and instead of (ii) the condition

(i1)’ Jniojl { ZJX"L where nz::lx" = (ng)kEN,

is satisfied, then we say that |-| is a complete onorm.

We use the term onorm as the abbreviation of “ordered norm”. It turns
out that every “reasonable” norm || - || on a (complete) sequence space X
defines a (complete) onorm. By a sequence space we understand any vector
subspace of RY.

PROPOSITION 1. Let X be a sequence space with a norm satisfying the
condition

(1) O<x<y,xeR,, yeX = xeX, |x|<|yl.
Then the function |-| 5 :@T — Ry defined by the formula
o {1 X<
X =

00 otherwise,

18 an onorm on @Ij.
Moreover, if X is complete and the following condition holds:

(2) x"=(2)ken € X forn €N, lim x" =0 = lim z} =0 for k € N,

n—oo n—~oo

then |-| y is a complete onorm.

Proof. 1t is obvious that under condition (1), |-| is an onorm.

We show that (2) together with the completeness of X implies that |-|
is complete.

Let (x") = («}})ren be a sequence in RN If >°0° ]x™| = oo then (ii)’
holds trivially. So assume > | |x™| < oo. ThlS means that x" € X for every
n € Nand > >, ||x"]| < co. By the completeness of X the series > 2 | x"
is convergent (in the norm topology of X) to some z = (zx)reny € X and
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llz|]| <>°>°, [|x"||. The proof of (ii)" will be complete if we show that
oo
2 = sz for every k € N.
n=1

But limy_o0(z — 27]:7:1 x") = 0, which by (2) means that for every k € N
we have limy_, o (2 — 27]1\[:1 z}) = 0. Consequently, Y >, ' = z, for each
keN. n
Making use of Proposition 1 we give a few examples of complete onorms.
If X =1P, p€[l,00], then the onorm defined in Proposition 1 takes the
form

Jaly = (X)) pelloo). (@il =supai

k keN

More generally, if X is a weighted [P-space with p € [1,00] then the corre-
sponding onorm has the form

[l = (X 0*mr) " itpe o)  J(m)lom = suprta,

& keN
where r > 0 is fixed.
If X = ¢y then
SUPpen Tk if limyg_ oo 25 = 0,
Jau)l, = { P o
00 otherwise.

We have proved in Proposition 1 that a (reasonable) norm on a complete
sequence space produces a complete onorm. Now we prove that a complete
onorm can be used to define a complete metric on some set of sequences.

PROPOSITION 2. Assume that |-| is a complete onorm. Let (X,d) be
a complete metric space and let x = (xk)ken be a fived sequence in X. Let

X == {(zr)ren : [(d(@, 2k) Jren| < oo}
Then the function d : X x X — Ry defined by

d(y’ Z) = J (d(ykv zk))kEN\_

is a complete metric on X.

Proof. Clearly d is a metric on X'. We show that (X, d) is complete.

Let €; = (0%)ren, where % is the Kronecker delta. Clearly |e;| > 0 for
i eN.

Consider an arbitrary Cauchy sequence (z")nen = ((2})reN)nen in X.
To show that (z") is componentwise convergent, fix £ € N. For n,m € N we
have

d(zi;, 2z )er < (A2 2") iens
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and consequently

d(zr,21") - Jerl = Jd(z¢, 2¢") - ex| < J(d(21", 21") Jien| = d(2",2"™).
Since (z")nen is a Cauchy sequence and |e,| > 0 we infer that (2})nen is a
Cauchy sequence in X, and hence it is convergent.
Let 2 := lim, . 2} and z := (z)ren. We will prove that z € X' and
lim,, o d(z",z) = 0. Since (z"),en is a Cauchy sequence it has a subse-
quence (z™);en such that

d(z™,z"+) = |(d (zk ,zZ“l))keNL < 1/2l for € N.

But limy_ 2" = 2, so
d(z,”, 2) < Zd 2, 2 ) for every k,j € N.
Thus

n; n; .
(d(z,”, 2k))ken < (Zd 2tz ) )keN for j € N,

and hence

12,7 26) enl < J (Zd Girt ™ )

) ien

k
0@ 2y ren| < 30 (@ 2 )renl

i=j i=j
=1 1 ,
S Z 2— = ﬁ fOI' Vi & N,
i=j
so we have
(3) J(d(z), 2))ken| < 1/2771 for j €N,

Making use of this inequality with a fixed j € N we obtain

J(d(@k, 21) )hen | < J(d(@r, 27 ) )ken | + 1 (d(z7, 21) Jwen | < o0,
which means that x € X.
In virtue of (3) we have

lim d(z",z) = lim |(d(2,’, zx))ken| = 0.
j—00 j—00
Since (2"),en is a Cauchy sequence, this implies that lim, ., d(z",z) = 0. =
DEFINITION 2. We call a complete onorm |-| K-contractive if

—N
J(@p1)ren| < K| (z1)ren|  for every (z3)ren € R

EXAMPLE 1. As one can see, the onorms |-[;, and |-[, are 1-contractive,
and |-|;» is 1/r-contractive.
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3. Orbits and generalized shadowing. In this section we general-
ize the classical definition of shadowing with the use of a complete onorm.
One can easily see that specifying a complete onorm we can obtain all the
previously mentioned notions of shadowing.

If not specified otherwise, |-| denotes a fixed complete onorm. Let (X, d)
be a metric space and let ¢ : X — X be given.

DEFINITION 3. We say that a sequence x = (x)ren is an orbit for ¢ (or
a ¢-orbit) provided xp41 = ¢(xy) for every k € N.

DEFINITION 4. Let 6 > 0 be given. A sequence x = (zj)ken is called
a (9, |-|)-pseudoorbit for ¢ provided

J(d(@k+1, d(zk)))Jken| < 0.
A sequence x = (z)ken is called a pseudoorbit for ¢ provided

J(d(xg41, d(zk)))Ren| < o0.

DEFINITION 5. We say that a |-|-pseudoorbit x = (xp)ken for ¢ is
(e, ]-])-shadowed (or traced) by a ¢-orbit y = (yx)ken if

J(d(@ks yr))ken| < e.

REMARK 1. The case most often considered (and simplest) is |-| :=
J-|joo- Then we speak simply of pseudoorbits. Thus x = (xy)ken is a -
pseudoorbit for ¢ if

d(xgy1, p(xg)) <6 for ke N.

Analogously, a pseudoorbit x = (zj)ren is e-shadowed by a ¢-orbit y =

(Y Jken if
d(zp,yp) <e for k€N,

Any (6, |-|)-pseudoorbit can be considered as a result of a numerical
computation of a trajectory, where § represents the error.

DEFINITION 6. We say that a discrete semidynamical system ¢ has the
|-|-shadowing property if for any given € > 0 there exists a § > 0 such that
for every (4, |-|)-pseudoorbit x = (zj)ren there exists an orbit y such that
x is (g, |-|)-shadowed by y.

We mention that usually when one talks about shadowing one has in
mind shadowing of the whole orbit, and not only of the positive trajectory.
Thus what we here call shadowing is sometimes called shadowing™ (see [1]).
However, since we do not consider the general shadowing at all, for simplicity
we speak of shadowing and not of shadowing™.

REMARK 2. Using onorms we are able to unify some results concerning
several classical shadowings. For example, for the onorm |-|;.. we obtain the
standard shadowing; |-[,, defines limits shadowing (cf. [3, p. 63]); the onorm

C
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1-1;» gives us Ly-shadowing (cf. 3, p. 68]); and for the onorm |-|, , we get
weighted L7, shadowing with the sequence 7 = (7¥)en (cf. [3, p. 71]).

4. Shadowing. Now we are ready to formulate the main result of this
paper. It is a generalization of the result from [1]. We show that the notion
of an onorm can be useful in proving classical shadowing results in a more
general setting.

THEOREM 1. Let (X,d) be a complete metric space. Let ¢ : X — X be
a bijection, let | = lip(¢p~') and let |-| be a K-contractive complete onorm

on Eﬁ. Assume that Kl < 1. If x = (xg)ken s an |-|-pseudoorbit then
there exists a unique orbit'y = (yr)ken which |-|-shadows x. Moreover, if
x = (z)ken 18 an (g, |-|)-pseudoorbit for some £ > 0, then

le

J(d(zr, yr))ren| < T

REMARK 3. We underline that in Theorem 1 the continuity of ¢ is not
assumed.

Proof of Theorem 1. Fix an e-pseudoorbit x = (xj)ren. Define
X = {Z = (Zk)kEN : j(d(mk,zk))keNL < OO}
By Proposition 2 we know that

d(y,z) = |(d(yk, 2k))ken|

defines a complete metric on X'. Define a mapping P : X — X by
P((z)ren) == (¢~ (2h41))ken-

We will show now that P is a well defined contraction. Since ¢! is Lipschitz
with Lipschitz constant [, we have

J(d(@r, ¢~ @nrr)ren| = J (@7 (S(@r)), ¢~ (@rs1)) ren
< JUd(p(zk), Thv1) Jken| = L(d(d(xk), Tpt1))ren| < le.
This proves that P(x) € X and

(4) d(x,P(x)) < le.
Consider an arbitrary z = (zx)ren € X. Then we have

J(d(r, ¢ (2k4+1)))ken |

< J(d (9% Yarg1)) + (@ (@ha1), 0 (2041)) Jren |
= J(d(@r, ¢~ (@rs1)ken + (A(@ (@rr1), ¢ (241)) Jen|
< J(d (xk, Y@rr1)))kenl + 1 (d(@ (@ha1) 7 (2h41)) ken |

< d(x,P(x)) + 1 (d(@p+1, 2p41)) ken| < le + LK ] (d(g, 2))ren| < oo
Thus P(z) € X



Shadowing for semidynamical systems 269

Now we show that P is a contraction. Fix w = (wg)ren, 2 = (2k)ken € X.
Then

d(P(w), P(2))

(A&~ (wrt1), ¢~ (z141))ren
Hd(wkt1, zk1) Jwen| = U (d(wrt1, 2r41) Jwen|
K |(d(wg, zx) Jken| = Kld(w, z).
Hence P is a contraction with constant KI! < 1. Thus using the Banach
Contraction Principle we derive that P has a unique fixed point y € X, and
on account of (4) we get
d(x,P(x)) < le

dxy) s == S1-wmr
Since P(y) =y, we get (¢~ (yr11))ren = (Uk)ren, which means that y is an
orbit for ¢. To prove uniqueness of y suppose that ¥ = (Jx)ren is a ¢-orbit
which shadows x. Then y € X and
P((Gr)ken) = (97 (Tr+1))ken = (Uk)ken,
which means that y is a fixed point for P. Hence y = y. =

]
]
IK

<
<

As a corollary we obtain a classical shadowing result [1, Proposition 3]
in a slightly more general setting.

COROLLARY 1. Let ¢ : X — X be a bijection such that ¢~' is a con-
traction. Then ¢ has the shadowing property and ¢ has the limit shadowing

property.
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