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Generalized shadowing for dis
rete semidynami
al systemsby Wojciech Jabłoński (Rzeszów), Jacek Tabor (Kraków)and Józef Tabor (Rzeszów)Abstra
t. We provide a uni�ed approa
h to di�erent types of shadowing. This en-ables us to generalize some known shadowing result.1. Introdu
tion. Shadowing is one of the 
ru
ial stability 
on
epts indynami
al systems [2, 3℄. Roughly speaking it 
on
erns the question if (andwhen) an approximate orbit 
an be approximated by an exa
t one. Thisis often important be
ause using numeri
al methods we 
an only obtainapproximate traje
tories.However, to pre
isely formulate shadowing one needs to know what isunderstood by an approximate traje
tory. This 
auses problems, as vari-ous de�nitions are applied in di�erent settings. The most 
ommonly usedis the notion of pseudoorbit, whi
h in a sense 
orresponds to stability inthe supremum norm. However, there also exists limit shadowing [3, p. 64℄,
Lp-shadowing [3, p. 68℄ and weighted shadowing [3, p. 71℄.The aim of this paper is to provide a uni�ed approa
h in whi
h all theabove mentioned shadowings 
an be studied. To do this we introdu
e a gen-eralization of a norm on a 
omplete sequen
e spa
e whi
h we 
all onorm. Inour opinion it gives the right setting to formulate general shadowing results.To illustrate this, using the method from [1℄ we prove some general shad-owing results for semi�ows with dis
rete time.2. Generalized norm. In this se
tion we introdu
e the notion of a 
om-plete onorm whi
h will be 
ru
ial in our 
onsiderations. A 
omplete onorm
an be understood as a generalization of a norm on a 
omplete sequen
espa
e.Let N be the set of all positive integers, R+ = [0,∞) and R+ = [0,∞].We assume that 0 · ∞ = 0.2000 Mathemati
s Subje
t Classi�
ation: Primary 35C30.Key words and phrases: orbit, pseudoorbit, shadowing.[263℄



264 W. Jabªo«ski et al.In the set R
N

+ of all sequen
es x = (xk)k∈N we introdu
e the relation 4in the following way:
(xk)k∈N 4 (yk)k∈N if and only if xk ≤ yk for every k ∈ N.Definition 1. By an onorm we mean a fun
tion ⌋·⌊ : R

N

+ → R+ su
hthat for x,y ∈ R
N

+ and α ∈ R+ the following 
onditions are satis�ed:(i) ⌋x⌊ = 0 ⇔ x = 0;(ii) ⌋x + y⌊ ≤ ⌋x⌊ + ⌋y⌊;(iii) ⌋αx⌊ = α⌋x⌊;(iv) x 4 y ⇒ ⌋x⌊ ≤ ⌋y⌊.If (xn) = (xn
k)k∈N is a sequen
e in R

N

+ and instead of (ii) the 
ondition(ii)′ ⌋ ∞∑

n=1

xn
⌊
≤

∞∑

n=1

⌋xn⌊, where ∞∑

n=1

xn :=
( ∞∑

n=1

xn
k

)
k∈N

,is satis�ed, then we say that ⌋·⌊ is a 
omplete onorm.We use the term onorm as the abbreviation of �ordered norm�. It turnsout that every �reasonable� norm ‖ · ‖ on a (
omplete) sequen
e spa
e Xde�nes a (
omplete) onorm. By a sequen
e spa
e we understand any ve
torsubspa
e of R
N.Proposition 1. Let X be a sequen
e spa
e with a norm satisfying the
ondition

0 4 x 4 y, x ∈ R
N

+, y ∈ X ⇒ x ∈ X, ‖x‖ ≤ ‖y‖.(1)Then the fun
tion ⌋·⌊X : R
N

+ → R+ de�ned by the formula
⌋x⌊X :=

{
‖x‖ if x ∈ X,
∞ otherwise,is an onorm on R

N

+.Moreover , if X is 
omplete and the following 
ondition holds:
(2) xn = (xn

k)k∈N ∈ X for n ∈ N, lim
n→∞

xn = 0 ⇒ lim
n→∞

xn
k = 0 for k ∈ N,then ⌋·⌊X is a 
omplete onorm.Proof. It is obvious that under 
ondition (1), ⌋·⌊ is an onorm.We show that (2) together with the 
ompleteness of X implies that ⌋·⌊Xis 
omplete.Let (xn) = (xn

k)k∈N be a sequen
e in R
N

+. If ∑
∞

n=1
⌋xn⌊ = ∞ then (ii)′holds trivially. So assume ∑

∞

n=1
⌋xn⌊ < ∞. This means that xn ∈ X for every

n ∈ N and ∑
∞

n=1
‖xn‖ < ∞. By the 
ompleteness of X the series ∑

∞

n=1
xnis 
onvergent (in the norm topology of X) to some z = (zk)k∈N ∈ X and
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‖z‖ ≤

∑
∞

n=1
‖xn‖. The proof of (ii)′ will be 
omplete if we show that

zk =

∞∑

n=1

xn
k for every k ∈ N.

But limN→∞(z −
∑N

n=1
xn) = 0, whi
h by (2) means that for every k ∈ Nwe have limN→∞(zk −

∑N
n=1

xn
k) = 0. Consequently, ∑

∞

n=1
xn

k = zk for ea
h
k ∈ N.Making use of Proposition 1 we give a few examples of 
omplete onorms.If X = lp, p ∈ [1,∞], then the onorm de�ned in Proposition 1 takes theform

⌋(xk)⌊lp :=
( ∑

k

xp
k

)1/p if p ∈ [1,∞), ⌋(xk)⌊l∞ := sup
k∈N

xk.More generally, if X is a weighted lp-spa
e with p ∈ [1,∞] then the 
orre-sponding onorm has the form
⌋(xk)⌊r,lp :=

( ∑

k

(rkxk)
p
)1/p if p ∈ [1,∞), ⌋(xk)⌊r,l∞ := sup

k∈N

rkxk,where r > 0 is �xed.If X = c0 then
⌋(xk)⌊c0

:=

{
supk∈N xk if limk→∞ xk = 0,
∞ otherwise.We have proved in Proposition 1 that a (reasonable) norm on a 
ompletesequen
e spa
e produ
es a 
omplete onorm. Now we prove that a 
ompleteonorm 
an be used to de�ne a 
omplete metri
 on some set of sequen
es.Proposition 2. Assume that ⌋·⌊ is a 
omplete onorm. Let (X, d) bea 
omplete metri
 spa
e and let x = (xk)k∈N be a �xed sequen
e in X. Let

X := {(zk)k∈N : ⌋(d(xk, zk))k∈N⌊ < ∞}.Then the fun
tion d : X × X → R+ de�ned by
d(y, z) = ⌋(d(yk, zk))k∈N⌊is a 
omplete metri
 on X .Proof. Clearly d is a metri
 on X . We show that (X ,d) is 
omplete.Let ei = (δi

k)k∈N, where δi
k is the Krone
ker delta. Clearly ⌋ei⌊ > 0 for

i ∈ N.Consider an arbitrary Cau
hy sequen
e (zn)n∈N = ((zn
k )k∈N)n∈N in X .To show that (zn) is 
omponentwise 
onvergent, �x k ∈ N. For n, m ∈ N wehave

d(zn
k , zm

k )ek 4 (d(zn
l , zm

l ))l∈N,
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onsequently
d(zn

k , zm
k ) · ⌋ek⌊ = ⌋d(zn

k , zm
k ) · ek⌊ ≤ ⌋(d(zn

l , zm
l ))l∈N⌊ = d(zn, zm).Sin
e (zn)n∈N is a Cau
hy sequen
e and ⌋ek⌊ > 0 we infer that (zn

k )n∈N is aCau
hy sequen
e in X, and hen
e it is 
onvergent.Let zk := limn→∞ zn
k and z := (zk)k∈N. We will prove that z ∈ X and

limn→∞ d(zn, z) = 0. Sin
e (zn)n∈N is a Cau
hy sequen
e it has a subse-quen
e (znl)l∈N su
h that
d(znl , znl+1) = ⌋(d(znl

k , z
nl+1

k ))k∈N⌊ < 1/2l for l ∈ N.But liml→∞ znl

k = zk, so
d(z

nj

k , zk) ≤
∞∑

i=j

d(zni

k , z
ni+1

k ) for every k, j ∈ N.Thus
(d(z

nj

k , zk))k∈N 4

( ∞∑

i=j

d(zni

k , z
ni+1

k )
)

k∈N

for j ∈ N,and hen
e
⌋(d(z

nj

k , zk))k∈N⌊ ≤
⌋( ∞∑

i=j

d(zni

k , z
ni+1

k )
)

k∈N

⌊

=
⌋ ∞∑

i=j

(d(zni

k , z
ni+1

k ))k∈N

⌊
≤

∞∑

i=j

⌋(d(zni

k , z
ni+1

k ))k∈N⌊

≤
∞∑

i=j

1

2i
=

1

2j−1
for j ∈ N,so we have

⌋(d(z
nj

k , zk))k∈N⌊ ≤ 1/2j−1 for j ∈ N.(3)Making use of this inequality with a �xed j ∈ N we obtain
⌋(d(xk, zk))k∈N⌊ ≤ ⌋(d(xk, z

nj

k ))k∈N⌊ + ⌋(d(z
nj

k , zk))k∈N⌊ < ∞,whi
h means that x ∈ X .In virtue of (3) we have
lim

j→∞

d(znj , z) = lim
j→∞

⌋(d(z
nj

k , zk))k∈N⌊ = 0.Sin
e (zn)n∈N is a Cau
hy sequen
e, this implies that limn→∞ d(zn, z) = 0.Definition 2. We 
all a 
omplete onorm ⌋·⌊ K-
ontra
tive if
⌋(xk+1)k∈N⌊ ≤ K⌋(xk)k∈N⌊ for every (xk)k∈N ∈ R

N

+.Example 1. As one 
an see, the onorms ⌋·⌊lp and ⌋·⌊c0
are 1-
ontra
tive,and ⌋·⌊lpr

is 1/r-
ontra
tive.
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al systems 2673. Orbits and generalized shadowing. In this se
tion we general-ize the 
lassi
al de�nition of shadowing with the use of a 
omplete onorm.One 
an easily see that spe
ifying a 
omplete onorm we 
an obtain all thepreviously mentioned notions of shadowing.If not spe
i�ed otherwise, ⌋·⌊ denotes a �xed 
omplete onorm. Let (X, d)be a metri
 spa
e and let φ : X → X be given.Definition 3. We say that a sequen
e x = (xk)k∈N is an orbit for φ (ora φ-orbit) provided xk+1 = φ(xk) for every k ∈ N.Definition 4. Let δ > 0 be given. A sequen
e x = (xk)k∈N is 
alleda (δ, ⌋·⌊)-pseudoorbit for φ provided
⌋(d(xk+1, φ(xk)))k∈N⌊ ≤ δ.A sequen
e x = (xk)k∈N is 
alled a pseudoorbit for φ provided
⌋(d(xk+1, φ(xk)))k∈N⌊ < ∞.Definition 5. We say that a ⌋·⌊-pseudoorbit x = (xk)k∈N for φ is

(ε, ⌋·⌊)-shadowed (or tra
ed) by a φ-orbit y = (yk)k∈N if
⌋(d(xk, yk))k∈N⌊ ≤ ε.Remark 1. The 
ase most often 
onsidered (and simplest) is ⌋·⌊ :=

⌋·⌊l∞ . Then we speak simply of pseudoorbits. Thus x = (xk)k∈N is a δ-pseudoorbit for φ if
d(xk+1, φ(xk)) ≤ δ for k ∈ N.Analogously, a pseudoorbit x = (xk)k∈N is ε-shadowed by a φ-orbit y =

(yk)k∈N if
d(xk, yk) ≤ ε for k ∈ N.Any (δ, ⌋·⌊)-pseudoorbit 
an be 
onsidered as a result of a numeri
al
omputation of a traje
tory, where δ represents the error.Definition 6. We say that a dis
rete semidynami
al system φ has the

⌋·⌊-shadowing property if for any given ε > 0 there exists a δ > 0 su
h thatfor every (δ, ⌋·⌊)-pseudoorbit x = (xk)k∈N there exists an orbit y su
h that
x is (ε, ⌋·⌊)-shadowed by y.We mention that usually when one talks about shadowing one has inmind shadowing of the whole orbit, and not only of the positive traje
tory.Thus what we here 
all shadowing is sometimes 
alled shadowing+ (see [1℄).However, sin
e we do not 
onsider the general shadowing at all, for simpli
itywe speak of shadowing and not of shadowing+.Remark 2. Using onorms we are able to unify some results 
on
erningseveral 
lassi
al shadowings. For example, for the onorm ⌋·⌊l∞ we obtain thestandard shadowing; ⌋·⌊c0

de�nes limits shadowing (
f. [3, p. 63℄); the onorm
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⌋·⌊lp gives us Lp-shadowing (
f. [3, p. 68℄); and for the onorm ⌋·⌊r,lp we getweighted Lr,p shadowing with the sequen
e r = (rk)k∈N (
f. [3, p. 71℄).4. Shadowing. Now we are ready to formulate the main result of thispaper. It is a generalization of the result from [1℄. We show that the notionof an onorm 
an be useful in proving 
lassi
al shadowing results in a moregeneral setting.Theorem 1. Let (X, d) be a 
omplete metri
 spa
e. Let φ : X → X bea bije
tion, let l = lip(φ−1) and let ⌋·⌊ be a K-
ontra
tive 
omplete onormon R

N

+. Assume that Kl < 1. If x = (xk)k∈N is an ⌋·⌊-pseudoorbit thenthere exists a unique orbit y = (yk)k∈N whi
h ⌋·⌊-shadows x. Moreover , if
x = (xk)k∈N is an (ε, ⌋·⌊)-pseudoorbit for some ε > 0, then

⌋(d(xk, yk))k∈N⌊ ≤
lε

1 − Kl
.Remark 3. We underline that in Theorem 1 the 
ontinuity of φ is notassumed.Proof of Theorem 1. Fix an ε-pseudoorbit x = (xk)k∈N. De�ne

X := {z = (zk)k∈N : ⌋(d(xk, zk))k∈N⌊ < ∞}.By Proposition 2 we know that
d(y, z) = ⌋(d(yk, zk))k∈N⌊de�nes a 
omplete metri
 on X . De�ne a mapping P : X → X by

P((zk)k∈N) := (φ−1(zk+1))k∈N.We will show now that P is a well de�ned 
ontra
tion. Sin
e φ−1 is Lips
hitzwith Lips
hitz 
onstant l, we have
⌋(d(xk, φ

−1(xk+1)))k∈N⌊ = ⌋(d(φ−1(φ(xk)), φ
−1(xk+1)))k∈N⌊

≤ ⌋l(d(φ(xk), xk+1))k∈N⌊ = l⌋(d(φ(xk), xk+1))k∈N⌊ ≤ lε.This proves that P(x) ∈ X and
d(x,P(x)) ≤ lε.(4)Consider an arbitrary z = (zk)k∈N ∈ X . Then we have

⌋(d(xk, φ
−1(zk+1)))k∈N⌊

≤ ⌋(d(xk, φ
−1(xk+1)) + d(φ−1(xk+1), φ

−1(zk+1)))k∈N⌊

= ⌋(d(xk, φ
−1(xk+1)))k∈N + (d(φ−1(xk+1), φ

−1(zk+1)))k∈N⌊

≤ ⌋(d(xk, φ
−1(xk+1)))k∈N⌊ + ⌋(d(φ−1(xk+1), φ

−1(zk+1)))k∈N⌊

≤ d(x,P(x)) + l⌋(d(xk+1, zk+1))k∈N⌊ ≤ lε + lK⌋(d(xk, zk))k∈N⌊ < ∞.Thus P(z) ∈ X .
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al systems 269Now we show that P is a 
ontra
tion. Fix w = (wk)k∈N, z = (zk)k∈N ∈ X .Then
d(P(w),P(z)) = ⌋(d(φ−1(wk+1), φ

−1(zk+1)))k∈N⌊

≤ ⌋l(d(wk+1, zk+1))k∈N⌊ = l⌋(d(wk+1, zk+1))k∈N⌊

≤ lK⌋(d(wk, zk))k∈N⌊ = Kld(w, z).Hen
e P is a 
ontra
tion with 
onstant Kl < 1. Thus using the Bana
hContra
tion Prin
iple we derive that P has a unique �xed point y ∈ X , andon a

ount of (4) we get
d(x,y) ≤

d(x,P(x))

1 − Kl
≤

lε

1 − Kl
.Sin
e P(y) = y, we get (φ−1(yk+1))k∈N = (yk)k∈N, whi
h means that y is anorbit for φ. To prove uniqueness of y suppose that ỹ = (ỹk)k∈N is a φ-orbitwhi
h shadows x. Then ỹ ∈ X and

P((ỹk)k∈N) = (φ−1(ỹk+1))k∈N = (ỹk)k∈N,whi
h means that ỹ is a �xed point for P. Hen
e ỹ = y.As a 
orollary we obtain a 
lassi
al shadowing result [1, Proposition 3℄in a slightly more general setting.Corollary 1. Let φ : X → X be a bije
tion su
h that φ−1 is a 
on-tra
tion. Then φ has the shadowing property and φ has the limit shadowingproperty.
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