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The symmetrized polydisc cannot be exhausted

by domains biholomorphic to convex domains

by Nikolai Nikolov (Sofia)

Abstract. We prove that the symmetrized polydisc cannot be exhausted by domains
biholomorphic to convex domains.

Let D be the unit disc in C. Let σn = (σn,1, . . . , σn,n) : C
n → C

n be
defined as follows:

σn,k(z1, . . . , zn) =
∑

1≤j1<···<jk≤n

zj1 · · · zjk
, 1 ≤ k ≤ n.

The set Gn = σn(Dn) is called the symmetrized n-disc. The symmetrized
bidisc G2 is the first example of a bounded pseudoconvex domain which is
not biholomorphic to any convex domain and on which the Carathéodory
and Kobayashi distances coincide (see [1]). Moreover, it cannot be exhausted
by domains biholomorphic to convex domains (see [2]). It has been asked in
[4] whether the last result remains true for Gn, n ≥ 3. The aim of this note
is to give a positive answer to the above question.

Let us begin with the following definition. Let k1 ≤ . . . ≤ kn be positive
integers and

πλ(z1, . . . , zn) = (λk1z1, . . . , λ
knzn).

A domain D in C
n is called (k1, . . . , kn)-balanced if πλ(z) ∈ D for z ∈ D,

λ ∈ D. For such a domain D one has

D = {z ∈ C
n : h(z) < 1},

where
h(z) = inf{λ > 0 : π1/λ(z) ∈ D}, z ∈ C

n.

It is easy to see that h is an upper semicontinuous, non-negative function
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on C
n with

h(πλ(z)) = |λ|h(z), λ ∈ C, z ∈ C
n.

Note that the (1, . . . , 1)-balanced domains are exactly the balanced do-
mains in the usual sense (cf. [3]). As in the case of balanced domains one
has the following

Proposition 1. A (k1, . . . , kn)-balanced domain D is pseudoconvex if

and only if log h is a plurisubharmonic function.

Proof. It is clear that if log h is a plurisubharmonic function, then D is
a pseudoconvex domain.

To prove the converse, define Φ : C
n ∋ (z1, . . . , zn) 7→ (zk1

1
, . . . , zkn

n ) ∈ C
n

and set D̃ := Φ−1(D), h̃ = h ◦ Φ. Note that D̃ = {z ∈ C
n : h̃(z) < 1} and

h̃(λz) = |λ|h(z), λ ∈ C, z ∈ C
n. Therefore D̃ is a pseudoconvex balanced

domain whose Minkowski functional is equal to h̃. Consequently, log h̃ is
a plurisubharmonic function (cf. [3]). On the other hand, one has h(z) =

h̃( k1

√
z1, . . . , kn

√
zn), z ∈ C

n
∗ , where the roots are arbitrarily chosen. Thus

log h is a plurisubharmonic function on C
n
∗ and hence, by the removable

singularities theorem (cf. [3]), it is plurisubharmonic on C
n.

The crucial step in the proof of our main result is the following

Proposition 2. Let D be a (k1, . . . , kn)-balanced domain which can be

exhausted by domains biholomorphic to convex domains. If 2km+1 > kn for

some m, 0 ≤ m ≤ n−1, then the intersection Dm = D∩{z1 = · · · = zm = 0}
is a convex set (we assume that Dm = D if m = 0).

Proof. The proof is similar to that of Theorem 1 in [2].
Take two points a, b ∈ Dm. We may find a domain D′ ⊂ D which is

biholomorphic to a convex domain G and such that λa, λb ∈ D′ for λ ∈ D.
Let Ψ : D′ → G be the corresponding biholomorphic mapping. We may
assume that Ψ(0) = 0 and Ψ ′(0) = id. If

gab(λ) =
Ψ(πλ(a)) + Ψ(πλ(b))

2
,

then Ψ−1 ◦ gab is a holomorphic mapping from a neighborhood of D into D.
Set fab(λ) = π1/λ◦Ψ−1◦gab(λ). We shall see later that fab(λ) can be extended
at 0 by proving that

lim
λ→0

fab(λ) =
a + b

2
.(1)

If (1) holds, then h ◦ fab is a subharmonic function by Proposition 1, and
the maximum principle implies that

h(fab(0)) ≤ max
|λ|=1

h(fab(λ)) < 1.

Hence (a + b)/2 ∈ Dm if a, b ∈ Dm, i.e. Dm is a convex set.
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To prove (1), note that Ψ−1(0) = 0 and (Ψ−1)′(0) = id imply that, for
any j = 1, . . . , n, one has

Ψ−1

j ◦ gab(λ) = gabj(λ) + O(|gab(λ)|2).
Since Ψ(0) = 0, Ψ ′(0) = id and a, b ∈ Dm, it follows that

gabj(λ) =
aj + bj

2
λkj + O(|λ|2km+1).

Now the inequality 2km+1 > kn shows that

Ψ−1

j ◦ gab(λ)

λkj
=

aj + bj

2
+ O(|λ|)

and letting λ → 0 we obtain (1).

A consequence of Proposition 2 is that any balanced domain which can
be exhausted by domains biholomorphic to convex domains is convex itself.

Note also that the condition 2km+1 > kn is essential, as the following
simple example shows. The (1, 2)-balanced domain

D = {z ∈ C
2 : |z1|2 + |z2 + z2

1 | < 1}
is not convex, but it is biholomorphic to the (1, 2)-balanced convex domain

G = {z ∈ C
2 : |z1|2 + |z2| < 1}.

Now we are ready to prove our main result. To do this, we shall apply
Proposition 2 and the Cohn criterion which states that (see e.g. [5]) all the
roots of a polynomial f(ζ) =

∑n
j=0

ajζ
n−j, n ≥ 2, a0 6= 0, belong to D if

and only if |a0| > |an| and all the roots of the polynomial

f⋆(ζ) =
a0f(ζ) − anζnf(1/ζ)

ζ

belong to D.

Proposition 3. The symmetrized n-disc Gn, n ≥ 3, cannot be ex-

hausted by domains biholomorphic to convex domains.

Proof. Note that Gn is a (1, . . . , n)-balanced domain. Hence, by Propo-
sition 2, it is enough to show that if m = [n/2], then the set Gn of points
(am+1, . . . , an) ∈ C

n−m such that all the zeros of the polynomial fn(ζ) =
ζn +

∑n
j=m+1

ajζ
n−j belong to D is not convex.

We shall first settle the cases n = 3 and n = 4, and then reduce the
general case to them.

The case n = 3. For f3(ζ) = ζ3 + pζ + q one has

f⋆
3 (ζ) =

f3(ζ) − qζ3f3(1/ζ)

ζ
= (1 − |q|2)ζ2 − pqζ + p,
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f⋆⋆
3 (ζ) =

(1 − |q|2)f⋆
3 (ζ) − pζ2f⋆

3
(1/ζ)

ζ

= ((1 − |q|2)2 − |p|2)ζ − pq(1 − |q|2) + p2q.

It follows from the Cohn criterion that

G3 = {(p, q) ∈ C
2 : |q| < 1, r(p, q) < 0},

where

r(p, q) = |pq(1 − |q|2) − p2q| + |p|2 − (1 − |q|2)2.
It is easy to see that if q′ ∈ (−1, 1) and p′ = 1 − q′2, then (p1, q1) =
(p′e2πi/3, q′) and (p2, q2) = (p′eπi/3, q′eπi/2) are boundary points of D, since
r(p′, q′) = 0 and r(p, q′) < 0 if p ∈ (|q′| − 1, p′). Then for

(p0, q0) =

(
p1 + p2

2
,
q1 + q2

2

)
=

(
p′ cos

π

6
eπi/2, q′ cos

π

4
eπi/4

)

one has

|p0q0(1 − |q0|2) − p2
0q0| = |p0q0|(1 − |q0|2 + |p0|).

Therefore

r(p0, q0) = (1 − |q0|2 + |p0|)(1 + |q0|)(|p0| + |q0| − 1).

So r(p0, q0) > 0 if and only if |p0| + |q0| > 1. For q′ = 1/2 it follows that

|p0| + |q0| =
3
√

3 + 2
√

2

8
> 1.

Thus (p0, q0) 6∈ G3 and hence G3 is not a convex set.

The case n = 4. Calculations similar to the previous case lead to

G4 = {(p, q) ∈ C
2 : |p| + |q|2 < 1, s(p, q) < 0},

where

s(p, q) = (1−|q|2)|pq((1−|q|2)2−|p|2)−p3q2|+ |p|4|q|2−((1−|q|2)2−|p|2)2.
It is easy to see that if q′ ∈ [0, 1) and p′ = (1 − q′)

√
1 + q′, then (p1, q1) =

(p′eπi/2, q′) ∈ ∂D and (p2, q2) = (p′eπi/4, q′eπi/3) ∈ ∂D, since s(p′, q′) = 0
and s(p′, q) < 0 if p ∈ (−p′, p′). Then for

(p0, q0) =

(
p1 + q1

2
,
p2 + q2

2

)
=

(
p′ cos

π

8
e3πi/8, q′ cos

π

6
eπi/6

)

one has

|p0q0((1 − |q0|2)2 − |p0|2) − p3
0q

2
0| = |p0q0|((1 − |q0|2)2 − |p0|2 + |p0|2|q0|).

Therefore

s(p0, q0) = (1−|q0|2)(1−|q0|2)(1+|q0|)−|p0|2)(1+|p0|−|q0|2)(|p0|+|q0|−1).
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So s(p0, q0) > 0 if and only if |p0| + |q0| > 1. For q′ = 2/5 it follows that

|p0| + |q0| =
1

10

(
3

√
7(2 +

√
2)

5
+ 2

√
3

)
> 1.

Thus (p0, q0) 6∈ G4 and hence G4 is not a convex set.

The case n ≥ 5. Let j ∈ {0, 1, 2}. Observe that the non-convex set G3

coincides with the set of points (p, q) ∈ C
2 such that all the zeros of the

polynomial zjf3(z
k), k ≥ 1, belong to the unit disc. It follows that if either

n = 3k + 2 and k ≥ 3, n = 3k + 1 and k ≥ 2, or n = 3k and k ≥ 1, then
G3 can be considered as an intersection of Gn and a complex hyperplane.
Therefore Gn is not a convex set in these cases.

In the remaining cases n = 5 and n = 8 it is enough to observe that the
non-convex set G4 coincides with the set of points (p, q) ∈ C

2 such that all
the zeros of either of the polynomials ζf4(ζ) and f4(ζ

2) belong to the unit
disc and then to complete the proof as above.
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