On the variational calculus in fibered-fibered manifolds

by W. M. Mikulski (Kraków)

Abstract

In this paper we extend the variational calculus to fibered-fibered manifolds. Fibered-fibered manifolds are surjective fibered submersions $\pi: Y \rightarrow X$ between fibered manifolds. For natural numbers $s \geq r \leq q$ with $r \geq 1$ we define (r, s, q) th order Lagrangians on fibered-fibered manifolds $\pi: Y \rightarrow X$ as base-preserving morphisms $\lambda: J^{r, s, q} Y \rightarrow \bigwedge^{\operatorname{dim} X} T^{*} X$. Then similarly to the fibered manifold case we define critical fibered sections of Y. Setting $p=\max (q, s)$ we prove that there exists a canonical "Euler" morphism $\mathcal{E}(\lambda): J^{r+s, 2 s, r+p} Y \rightarrow \mathcal{V}^{*} Y \otimes \bigwedge^{\operatorname{dim} X} T^{*} X$ of λ satisfying a decomposition property similar to the one in the fibered manifold case, and we deduce that critical fibered sections σ are exactly the solutions of the "Euler-Lagrange" equations $\mathcal{E}(\lambda) \circ$ $j^{r+s, 2 s, r+p} \sigma=0$. Next we study the naturality of the "Euler" morphism. We prove that any natural operator of the "Euler" morphism type is $c \mathcal{E}(\lambda), c \in \mathbb{R}$, provided $\operatorname{dim} X \geq 2$.

0. Introduction. The most important problem in the variational calculus is to characterize critical values. It is known that critical sections of a fibered manifold $p: X \rightarrow X_{0}$ with respect to an r th order Lagrangian $\lambda: J^{r} X \rightarrow \bigwedge^{\operatorname{dim} X_{0}} T^{*} X_{0}$ can be characterized by means of the solutions of the so-called Euler-Lagrange equations. There exists a unique Euler map $E(\lambda): J^{2 r} X \rightarrow V^{*} X \otimes \bigwedge^{\operatorname{dim} X_{0}} T^{*} X_{0}$ satisfying some decomposition formula. Then the Euler-Lagrange equations are $E(\lambda) \circ j^{2 r} \sigma=0$ with unknown section σ (see [2]).

Fibered-fibered manifolds generalize fibered manifolds. They are surjective fibered submersions $\pi: Y \rightarrow X$ between fibered manifolds. They appear naturally in differential geometry if we consider transverse natural bundles over foliated manifolds in the sense of R. Wolak [4] (see [3]).

A simple example of a fibered-fibered manifold is the following trivial fibered-fibered manifold. We consider four manifolds $X_{1}, X_{2}, X_{3}, X_{4}$. Then the obvious projection $\pi: X_{1} \times X_{2} \times X_{3} \times X_{4} \rightarrow X_{1} \times X_{2}$ is a fibered-fibered manifold (we consider $X_{1} \times X_{2} \times X_{3} \times X_{4}$ as the trivial fibered manifold

[^0]over $X_{1} \times X_{3}$ and $X_{1} \times X_{2}$ as the trivial fibered manifold over X_{1}). Taking $X_{1}, X_{2}, X_{3}, X_{4}$ compact we produce compact fibered-fibered manifolds.

In [3], for fibered-fibered manifolds, using the concept of (r, s, q)-jets on fibered manifolds [2], we extended the notion of r-jet prolongation bundle to the (r, s, q)-jet prolongation bundle $J^{r, s, q} Y$ for $r, s, q \in \mathbb{N} \backslash\{0\}, s \geq r \leq q$.

The purpose of the present paper is to construct the variational calculus in fibered-fibered manifolds.

In Section 2 we define (r, s, q) th order Lagrangians as base-preserving morphisms $\lambda: J^{r, s, q} Y \rightarrow \bigwedge^{\operatorname{dim} X} T^{*} X$. Then similarly to the fibered manifold case we define critical fibered sections of Y. Setting $p=\max (q, s)$ we prove that there exists a canonical "Euler" morphism $\mathcal{E}(\lambda): J^{2 p, 2 p, 2 p} Y \rightarrow$ $\mathcal{V}^{*} Y \otimes \bigwedge^{\operatorname{dim} X} T^{*} X$ of λ satisfying a decomposition property similar to the one in the fibered manifold case, where $\mathcal{V} Y \subset T Y$ is the vector subbundle of vectors vertical with respect to two obvious projections from Y (onto X and onto Y_{0}). Then we deduce that critical fibered sections σ are exactly the solutions of the "Euler-Lagrange" equations $\mathcal{E}(\lambda) \circ j^{2 p, 2 p, 2 p} \sigma=0$. Next we observe that $\mathcal{E}(\lambda)$ can be factorized through $J^{r+s, 2 s, r+p} Y$ and the "Euler-Lagrange" equations are in fact of the form $\mathcal{E}(\lambda) \circ j^{r+s, 2 s, r+p} \sigma=0$.

Section 1 provides some background on the variational calculus in fibered manifolds.

In [1], I. Kolář studied the naturality of the Euler operator $E(\lambda)$ on fibered manifolds. He showed that any natural operator of the Euler operator type is of the form $c E(\lambda), c \in \mathbb{R}$, provided $\operatorname{dim} X_{0} \geq 2$.

In Section 3 we study the naturality of the "Euler" operator $\mathcal{E}(\lambda)$ on fibered-fibered manifolds. We prove that any natural operator of the "Euler" operator type is of the form $c \mathcal{E}(\lambda), c \in \mathbb{R}$, provided $\operatorname{dim} X \geq 2$.

A 2-fibered manifold is a sequence of two surjective submersions $X \rightarrow$ $X_{1} \rightarrow X_{0}$. For example, given a fibered manifold $X \rightarrow M$ we have 2-fibered manifolds $T X \rightarrow X \rightarrow M, T^{*} X \rightarrow X \rightarrow M, J^{r} X \rightarrow X \rightarrow M$, etc. Every 2-fibered manifold $X \rightarrow X_{1} \rightarrow X_{0}$ can be considered as the fibered-fibered manifold $X \rightarrow X_{1}$, where we consider X as the fibered manifold $X \rightarrow X_{0}$ and X_{1} as the fibered manifold $X_{1} \rightarrow X_{0}$. So, the results of the paper can be obviously applied to produce the variational calculus on 2 -fibered manifolds.

A fibered manifold $X \rightarrow X_{0}$ can be considered as the 2-fibered manifold $X \rightarrow X_{0} \rightarrow \mathrm{pt}$ with the one-point manifold pt . So, we recover the known variational calculus on fibered manifolds.

All manifolds and maps are assumed to be of class \mathcal{C}^{∞}.

1. Background: variational calculus in fibered manifolds

1.1. A fibered manifold is a surjective submersion $p: X \rightarrow X_{0}$ between manifolds. If $p^{\prime}: X^{\prime} \rightarrow X_{0}^{\prime}$ is another fibered manifold then a map $f: X \rightarrow X^{\prime}$
is called fibered if there exist a (unique) map $f_{0}: X_{0} \rightarrow X_{0}^{\prime}$ such that $p^{\prime} \circ f=f_{0} \circ p$.

Denote the set of (local) sections of p by ΓX. The r-jet prolongation

$$
J^{r} X=\left\{j_{x_{0}}^{r} \sigma \mid \sigma \in \Gamma X, x_{0} \in X_{0}\right\}
$$

of X is a fibered manifold over X_{0} with respect to the source projection $p^{r}: J^{r} X \rightarrow X_{0}$. If $p^{\prime}: X^{\prime} \rightarrow X_{0}^{\prime}$ is another fibered manifold and $f: X_{0} \rightarrow X^{\prime}$ is a fibered map covering a local diffeomorphism $f_{0}: X_{0} \rightarrow X_{0}^{\prime}$ then we have $J^{r} f: J^{r} X \rightarrow J^{r} X^{\prime}$ given by $J^{r} f\left(j_{x}^{r} \sigma\right)=j_{f_{0}(x)}^{r}\left(f \circ \sigma \circ f_{0}^{-1}\right)$ for $j_{x}^{r} \sigma \in J^{r} X$.
1.2. Let $p: X \rightarrow X_{0}$ be as above. A vector field V on X is projectable if there exists a vector field V_{0} on X_{0} such that V is p-related to V_{0}. If V is projectable on X, then its flow $\operatorname{Exp} t V$ is formed by local fibered diffeomorphisms, and we can define a vector field

$$
\mathcal{J}^{r} V=\frac{\partial}{\partial t}_{\mid t=0} J^{r}(\operatorname{Exp} t V)
$$

on $J^{r} X$. If V is p-vertical (i.e. $V_{0}=0$), then $\mathcal{J}^{r} V$ is p^{r}-vertical.
1.3. An r th order Lagrangian on a fibered manifold $p: X \rightarrow X_{0}$ with $\operatorname{dim} X_{0}=m$ is a base-preserving morphism

$$
\lambda: J^{r} X \rightarrow \bigwedge^{m} T^{*} X_{0}
$$

Given a section $\sigma \in \Gamma X$ and a compact subset $K \subset \operatorname{dom}(\sigma)$ contained in a chart domain, the action is

$$
S(\lambda, \sigma, K)=\int_{K} \lambda \circ j^{r} \sigma
$$

A section $\sigma \in \Gamma X$ is called critical if for any compact $K \subset \operatorname{dom}(\sigma)$ contained in a chart domain and any p-vertical vector field η on X with compact support in $p^{-1}(K)$ we have

$$
\left.\frac{d}{d t}\right|_{t=0} S(\lambda, \operatorname{Exp} t \eta \circ \sigma, K)=0
$$

By derivation inside the integral we see that σ is critical iff for any compact $K \subset \operatorname{dom}(\sigma)$ contained in a chart domain and any p-vertical vector field η on X with compact support in $p^{-1}(K)$ we have

$$
\int_{K}\left\langle\delta \lambda, \mathcal{J}^{r} \eta\right\rangle \circ j^{r} \sigma=0
$$

where $\delta \lambda: V J^{r} X \rightarrow \bigwedge^{m} T^{*} X_{0}$ is the p^{r}-vertical part of the differential of λ.
1.4. Given a base-preserving morphism $\varphi: J^{q} X \rightarrow \bigwedge^{k} T^{*} X_{0}$, its formal exterior differential $D \varphi: J^{q+1} X \rightarrow \bigwedge^{k+1} T^{*} X_{0}$ is defined by

$$
D \varphi\left(j_{x_{0}}^{q+1} \sigma\right)=d\left(\varphi \circ j^{q} \sigma\right)\left(x_{0}\right)
$$

for every local section σ of X, where d means the exterior differential at $x_{0} \in X_{0}$ of the local k-form $\varphi \circ j^{q} \sigma$ on X_{0}.
1.5. In the following assertion we do not indicate explicitly the pull back to $J^{2 r} X$.

Proposition 1 ([2, Prop. 49.3]). For every rth order Lagrangian λ : $J^{r} X \rightarrow \bigwedge^{m} T^{*} X_{0}, m=\operatorname{dim} X_{0}$, there exists a morphism $K(\lambda): J^{2 r-1} X$ $\rightarrow V^{*} J^{r-1} X \otimes \bigwedge^{m-1} T^{*} X_{0}$ over the identity of $J^{r-1} X$ and a unique Euler morphism $E(\lambda): J^{2 r} X \rightarrow V^{*} X \otimes \bigwedge^{m} T^{*} X_{0}$ over the identity of X such that

$$
\begin{equation*}
\left\langle\delta \lambda, \mathcal{J}^{r} \eta\right\rangle=D\left(\left\langle K(\lambda), \mathcal{J}^{r-1} \eta\right\rangle\right)+\langle E(\lambda), \eta\rangle \tag{1}
\end{equation*}
$$

for any vertical vector field η on X.
Remark 1. The morphism $E(\lambda)$ is called the Euler morphism. If f : $J^{q} X \rightarrow \mathbb{R}$ is a function, we have a coordinate decomposition

$$
D f=\left(D_{i} f\right) d x^{i}
$$

where

$$
D_{i} f=\frac{\partial f}{\partial x^{i}}+\sum_{|\alpha| \leq q} \frac{\partial f}{\partial y_{\alpha}^{p}} y_{\alpha+1_{i}}^{p}: J^{q+1} X \rightarrow \mathbb{R}
$$

is the so-called formal (or total) derivative of f and $\left(x^{i}, y^{k}\right)$ are fiber coordinates on X and $\left(x^{i}, y_{\alpha}^{k}\right)$ are the induced coordinates on $J^{q} X$. The local coordinate form of $E(\lambda)$ is

$$
E(\lambda)=\sum_{k=1}^{n} \sum_{|\alpha| \leq r}(-1)^{|\alpha|} D_{\alpha} \frac{\partial L}{\partial y_{\alpha}^{k}} d y^{k} \otimes d^{m} x
$$

(see the proof of Proposition 49.3 in [2]), where $d^{m} x=d x^{1} \wedge \cdots \wedge d x^{m}$, $\lambda=L \otimes d^{m} x$ and D_{α} means the iterated formal derivative with respect to the multiindex α.

Proposition 1 yields immediately the following well known fact.
Proposition 2. A section $\sigma \in \Gamma X$ is critical iff it satisfies the EulerLagrange equations $E(\lambda) \circ j^{2 r} \sigma=0$.

2. The variational calculus in fibered-fibered manifolds

2.1. In [3], we generalized the concept of fibered manifolds as follows. A fibered-fibered manifold is a fibered surjective submersion $\pi: Y \rightarrow X$ between fibered manifolds $p^{Y}: Y \rightarrow Y_{0}$ and $p^{X}: X \rightarrow X_{0}$, i.e. a surjective submersion which sends fibers into fibers such that the restricted maps (between fibers) are submersions. If $\pi^{\prime}: Y^{\prime} \rightarrow X^{\prime}$ is another fibered-fibered manifold then a fibered map $f: Y \rightarrow Y^{\prime}$ is called fibered-fibered if there exists a (unique) fibered map $f_{0}: X \rightarrow X^{\prime}$ such that $\pi^{\prime} \circ f=f_{0} \circ \pi$.

Let $r, s, q \in \mathbb{N} \backslash\{0\}, s \geq r \leq q$.
Denote the set of local fibered maps $\sigma: X \rightarrow Y$ with $\pi \circ \sigma=\mathrm{id}_{\operatorname{dom}(\sigma)}$ (fibered sections) by $\Gamma_{\text {fib }} Y$. By 12.19 in [1], $\sigma, \varrho \in \Gamma_{\text {fib }} Y$ represent the same (r, s, q)-jet $j_{x}^{r, s, q} \sigma=j_{x}^{r, s, q} \varrho$ at a point $x \in X$ iff

$$
j_{x}^{r} \sigma=j_{x}^{r} \varrho, \quad j_{x}^{s}\left(\sigma \mid X_{x_{0}}\right)=j_{x}^{s}\left(\varrho \mid X_{x_{0}}\right), \quad j_{x_{0}}^{q} \sigma_{0}=j_{x_{0}}^{q} \varrho_{0}
$$

where X_{0} and Y_{0} are the bases of fibered manifolds X and $Y, x_{0} \in X_{0}$ is the element under $x, X_{x_{0}}$ is the fiber of X over x_{0} and $\sigma_{0}, \varrho_{0}: X_{0} \rightarrow Y_{0}$ are the underlying maps of σ, ϱ. The (r, s, q)-jet prolongation

$$
J^{r, s, q} Y=\left\{j_{x}^{r, s, q} \sigma \mid \sigma \in \Gamma_{\text {fib }} Y, x \in X\right\}
$$

of Y is a fibered manifold over X with respect to the source projection $\pi_{X}^{r, s, q}: J^{r, s, q} Y \rightarrow X$ (see [3]). We also have the target projection $\pi_{Y}^{r, s, q}:$ $J^{r, s, q} Y \rightarrow Y$. If $\pi^{\prime}: Y^{\prime} \rightarrow X^{\prime}$ is another fibered-fibered manifold and $f:$ $Y \rightarrow Y^{\prime}$ is a fibered-fibered map covering a local fibered diffeomorphism $f_{0}: X \rightarrow X^{\prime}$ then we have a map $J^{r, s, q} f: J^{r, s, q} Y \rightarrow J^{r, s, q} Y^{\prime}$ given by $J^{r, s, q} f\left(j_{x}^{r, s, q} \sigma\right)=j_{f_{0}(x)}^{r, s, q}\left(f \circ \sigma \circ f_{0}^{-1}\right)$ for any $j_{x}^{r, s, q} \sigma \in J^{r, s, q} Y$.
2.2. Let $\pi: Y \rightarrow X$ be a fibered-fibered manifold which is a fibered submersion between fibered manifolds $p^{Y}: Y \rightarrow Y_{0}$ and $p^{X}: X \rightarrow X_{0}$. A projectable vector field W on the fibered manifold Y is projectable-projectable if there exists a π-related (to W) projectable vector field \underline{W} on X. If W is projectable-projectable on Y, then its flow $\operatorname{Exp} t W$ is formed by local fibered-fibered diffeomorphisms, and we define a vector field

$$
\left.\mathcal{J}^{r, s, q} W=\frac{\partial}{\partial t} \right\rvert\, t=0 J^{r, s, q}(\operatorname{Exp} t W)
$$

on $J^{r, s, q} Y$. If additionally W is π-vertical and p^{Y}-vertical (i.e. W is π related and p^{Y}-related to zero vector fields), then $\mathcal{J}^{r, s, q} W$ is $\pi_{X}^{r, s, q}$-vertical and $p^{Y} \circ \pi_{Y}^{r, s, q}$-vertical.
2.3. Let r, s, q be as above. An (r, s, q) th order Lagrangian on a fiberedfibered manifold $\pi: Y \rightarrow X$ with $\operatorname{dim} X=m$ is a base-preserving (covering the identity of X) morphism

$$
\lambda: J^{r, s, q} Y \rightarrow \bigwedge^{m} T^{*} X
$$

Given a fibered section $\sigma \in \Gamma_{\mathrm{fib}} Y$ and a compact subset $K \subset \operatorname{dom}(\sigma) \subset X$ contained in a chart domain, the action is

$$
S(\lambda, \sigma, K)=\int_{K} \lambda \circ j^{r, s, q} \sigma
$$

A fibered section $\sigma \in \Gamma_{\text {fib }} Y$ is called critical (with respect to λ) if for any compact $K \subset \operatorname{dom}(\sigma)$ contained in a chart domain and any π-vertical and
p^{Y}-vertical vector field η on Y with compact support in $\pi^{-1}(K)$ we have

$$
\frac{d}{d t}{ }_{\mid t=0} S(\lambda, \operatorname{Exp} t \eta \circ \sigma, K)=0
$$

By derivation inside the integral we see that σ is critical iff for any compact $K \subset \operatorname{dom}(\sigma)$ contained in a chart domain and any π-vertical and p^{Y}-vertical vector field η on Y with compact support in $\pi^{-1}(K)$ we have

$$
\int\left\langle\delta \lambda, \mathcal{J}^{r, s, q} \eta\right\rangle j^{r, s, q} \sigma=0
$$

where $\delta \lambda: \mathcal{V} J^{r, s, q} X \rightarrow \bigwedge^{m} T^{*} X$ is the restriction of the differential of λ to the vector subbundle $\mathcal{V} J^{r, s, q} \subset T J^{r, s q} Y$ of vectors vertical with respect to the projections from $J^{r, s, q} Y$ onto X and onto Y_{0}.
2.4. Given a base-preserving morphism $\varphi: J^{\widetilde{p}, \widetilde{p}, \widetilde{p}} Y \rightarrow \bigwedge^{k} T^{*} X$, its formal exterior differential $\mathcal{D} \varphi: J^{\widetilde{p}+1, \widetilde{p}+1, \widetilde{p}+1} Y \rightarrow \bigwedge^{k+1} T^{*} X$ is defined by

$$
\mathcal{D} \varphi\left(j_{x}^{\widetilde{p}+1, \widetilde{p}+1, \widetilde{p}+1} \sigma\right)=d\left(\varphi \circ j^{\widetilde{p}, \widetilde{p}, \widetilde{p}} \sigma\right)(x)
$$

for every local fibered section σ of Y, where d means the exterior differential at $x \in X$ of the local k-form $\varphi \circ j^{\tilde{p}, \tilde{p}, \widetilde{p}} \sigma$ on X.
(We remark that if $\widetilde{s}>\widetilde{r} \leq \widetilde{q}$ then given a base-preserving morphism φ : $J^{\widetilde{r}, \widetilde{s}, \widetilde{q}} Y \rightarrow \bigwedge^{k} T^{*} X$ the value $d\left(\varphi \circ j^{\widetilde{r}, \widetilde{s}, \widetilde{q}} \sigma\right)(x)$ is usually not determined by $j_{x}^{\widetilde{r}+1, \widetilde{s}+1, \widetilde{q}+1} \sigma$. Then the corresponding formal exterior differential does not exist. One can see that the above-mentioned value depends on $j_{x}^{\widetilde{p}+1, \widetilde{p}+1, \widetilde{p}+1} \sigma$ for $\widetilde{p}=\max (\widetilde{s}, \widetilde{q})$, but the relevant formal exterior differential will not be used.)
2.5. In the following assertion we do not indicate explicitly the pull back to $J^{2 p, 2 p, 2 p} Y$.

Proposition 3. Let r, s, q be natural numbers with $s \geq r \leq q, r \geq 1$, $p=\max (q, s)$. For every (r, s, q) th order Lagrangian $\lambda: J^{r, s, q} Y \rightarrow \bigwedge^{m} T^{*} X$, there are a morphism $\mathcal{K}(\lambda): J^{2 p-1,2 p-1,2 p-1} Y \rightarrow \mathcal{V}^{*} J^{p-1, p-1, p-1} Y \otimes$ $\bigwedge^{m-1} T^{*} X$ over the identity of $J^{p-1, p-1, p-1} Y$ and a canonical "Euler" morphism $\mathcal{E}(\lambda): J^{2 p, 2 p, 2 p} Y \rightarrow \mathcal{V}^{*} Y \otimes \bigwedge^{m} T^{*} X$ over the identity of Y satisfying

$$
\begin{equation*}
\left\langle\delta \lambda, \mathcal{J}^{r, s, q} \eta\right\rangle=\mathcal{D}\left(\left\langle\mathcal{K}(\lambda), \mathcal{J}^{p-1, p-1, p-1} \eta\right\rangle\right)+\langle\mathcal{E}(\lambda), \eta\rangle \tag{2}
\end{equation*}
$$

for every π-vertical and p^{Y}-vertical vector field η on Y. Here $\mathcal{V} Y$ is the vector subbundle of $T Y$ of vectors that are π-vertical and p^{Y}-vertical, and $\mathcal{V} J^{p-1, p-1, p-1} Y$ is the vector subbundle of $T J^{p-1, p-1, p-1} Y$ of vectors vertical with respect to the obvious projections from $J^{p-1, p-1, p-1} Y$ onto X and onto Y_{0}.

Proof. Let $\pi_{r, s, q}^{p, p, p}: J^{p, p, p} Y \rightarrow J^{r, s, q} Y$ be the jet projection and let $i_{p}: J^{p, p, p} Y \rightarrow J^{p} Y$ be the canonical inclusion, where in $J^{p} Y$ we consider Y as a fibered manifold over X. Using a suitable partition of unity
on X and local fibered-fibered coordinate arguments we produce a p th order Lagrangian $\Lambda: J^{p} Y \rightarrow \bigwedge^{m} T^{*} X$ such that $\Lambda \circ i_{p}=\lambda \circ \pi_{r, s, q}^{p, p, p}$. Then by the decomposition formula (Proposition 1) there exists a morphism $K(\Lambda): J^{2 p-1} Y \rightarrow V^{*} J^{p-1} Y \otimes \bigwedge^{m-1} T^{*} X$ and the Euler morphism $E(\Lambda): J^{2 p} X \rightarrow V^{*} Y \otimes \bigwedge^{m} T^{*} X$ satisfying

$$
\left\langle\delta \Lambda, \mathcal{J}^{p} \eta\right\rangle=D\left(\left\langle K(\Lambda), \mathcal{J}^{p-1} \eta\right\rangle\right)+\langle E(\Lambda), \eta\rangle
$$

for every π-vertical vector field η on Y. Composing both sides of the last formula with $i_{2 p}$ and using the obvious equality $D(\varphi) \circ i_{2 p}=\mathcal{D}\left(\varphi \circ i_{2 p-1}\right)$ for $\varphi: J^{2 p-1} Y \rightarrow \bigwedge^{k} T^{*} X$ we easily obtain (2) for any π-vertical and p^{Y} vertical vector field η on Y, provided we put $\mathcal{E}(\lambda)=$ the restriction of $E(\Lambda) \circ$ $i_{2 p}$ to $\mathcal{V} Y$ and $\mathcal{K}(\lambda)=$ the restriction of $K(\Lambda) \circ i_{2 p-1}$ to $\mathcal{V} J^{p-1, p-1, p-1} Y \subset$ $V J^{p-1} Y$. Using Remark 1 it is easy to see (see Remark 2) that the definition of $\mathcal{E}(\lambda)$ does not depend on the choice of Λ.

Remark 2. Let $\left(x^{i}, X^{I}, y^{k}, Y^{K}\right)$ for $i=1, \ldots, m_{1}, I=1, \ldots, m_{2}, k=$ $1, \ldots, n_{1}$ and $K=1, \ldots, n_{2}$ be a fibered-fibered local coordinate system on a fibered-fibered manifold Y. If $f: J^{\widetilde{p}, \widetilde{p}, \widetilde{p}} Y \rightarrow \mathbb{R}$ is a function we have the decomposition

$$
\mathcal{D}(f)=\mathcal{D}_{i}(f) d x^{i}+\mathcal{D}_{I}(f) d X^{I},
$$

where $\mathcal{D}_{i}(f): J^{\widetilde{p}+1, \tilde{p}+1, \tilde{p}+1} Y \rightarrow \mathbb{R}$ and $\mathcal{D}_{I}(f): J^{\widetilde{p}+1, \tilde{p}+1, \tilde{p}+1} Y \rightarrow \mathbb{R}$ are the "total" derivatives of f. Let $F: J^{\widetilde{p}} Y \rightarrow \mathbb{R}$ be such that $F \circ i_{\widetilde{p}}=f$. From the clear equality $D(F) \circ i_{\tilde{p}+1}=\mathcal{D}(f)$ we easily deduce that

$$
\mathcal{D}_{i}(f)=D_{i}(F) \circ i_{\widetilde{p}+1} \quad \text { and } \quad \mathcal{D}_{I}(f)=D_{I}(F) \circ i_{\widetilde{p}+1} .
$$

In particular, since D_{i} and D_{I}, and $D_{i^{\prime}}$ and $D_{I^{\prime}}$, commute, so do \mathcal{D}_{i} and \mathcal{D}_{I}, and $\mathcal{D}_{i^{\prime}}$ and $\mathcal{D}_{I^{\prime}}$. From the formulas for D_{i} and D_{I} (see Remark 1) and from the above formulas for \mathcal{D}_{i} and \mathcal{D}_{I} we easily see that in local coordinates

$$
\mathcal{D}_{i}(f)=\frac{\partial f}{\partial x^{i}}+\sum_{k=1}^{n_{1}} \sum_{|\tilde{\alpha}| \leq \tilde{p}} \frac{\partial f}{\partial y_{\tilde{\alpha}}^{k}} y_{\tilde{\alpha}+1_{i}}^{k}+\sum_{K=1}^{n_{2}} \sum_{|\widetilde{\beta}|+|\tilde{\gamma}| \leq \tilde{p}} \frac{\partial f}{\partial Y_{(\tilde{\beta}, \tilde{\gamma})}^{K}} Y_{\left(\tilde{\beta}+1_{i}, \tilde{\gamma}\right)}^{K}
$$

and

$$
\mathcal{D}_{I}(f)=\frac{\partial f}{\partial X^{I}}+\sum_{K=1}^{n_{2}} \sum_{|\widetilde{\tilde{\beta}}|+|\tilde{\gamma}| \leq \tilde{p}} \frac{\partial f}{\partial Y_{(\tilde{\beta}, \tilde{\gamma})}^{K}} Y_{\left(\widetilde{\beta}, \tilde{\gamma}+1_{I}\right)}^{K},
$$

where $\left(x^{i}, X^{I}, y_{\widetilde{\alpha}}^{k}, Y_{(\widetilde{\beta}, \widetilde{\gamma})}^{K}\right)$ is the induced coordinate system on $J^{\widetilde{p}, \widetilde{p}, \widetilde{p}} Y, \widetilde{\alpha}=$ $\left(\widetilde{\alpha}^{1}, \ldots, \widetilde{\alpha}^{m_{1}}\right), \widetilde{\beta}=\left(\widetilde{\beta}^{1}, \ldots, \widetilde{\beta}^{m_{1}}\right)$ and $\widetilde{\gamma}=\left(\widetilde{\gamma}^{1}, \ldots, \widetilde{\gamma}^{m_{2}}\right)$.

Let $\left(x^{i}, X^{I}, y_{\alpha}^{k}, Y_{(\beta, \gamma)}^{K}\right)$ be the induced coordinates on $J^{p, p, p} Y$. Then using the formula of Remark 1 it is easy to see that the local coordinate form of
$\mathcal{E}(\lambda)$ is

$$
\mathcal{E}(\lambda)=\sum_{K=1}^{n_{2}} \sum_{|\beta|+|\gamma| \leq p}(-1)^{|\beta|+|\gamma|} \mathcal{D}_{(\beta, \gamma)} \frac{\partial L}{\partial Y_{(\beta, \gamma)}^{K}} d Y^{K} \otimes\left(d^{m_{1}} x \wedge d^{m_{2}} X\right),
$$

where $d^{m_{1}} x=d x^{1} \wedge \cdots \wedge d x^{m_{1}}, d^{m_{2}} X=d X^{1} \wedge \cdots \wedge d X^{m_{2}}, \lambda \circ \pi_{r, s, q}^{p, p, p}=$ $L \otimes\left(d^{m_{1}} \wedge d^{m_{2}} X\right)$ and $\mathcal{D}_{(\beta, \gamma)}$ denotes the iterated "total" derivative with index $(\beta, \gamma), \beta=\left(\beta^{1}, \ldots, \beta^{m_{1}}\right), \gamma=\left(\gamma^{1}, \ldots, \gamma^{m_{2}}\right)$.

From the above local formula it follows that $\mathcal{E}(\lambda)$ can be factorized through $J^{r+s, 2 s, r+p} Y$.

Proposition 3 implies the following fact.
Proposition 4. A fibered section $\sigma \in \Gamma_{\text {fib }} Y$ is critical iff it satisfies the "Euler-Lagrange" equations $\mathcal{E}(\lambda) \circ j^{2 p, 2 p, 2 p} \sigma=0$. In view of Remark 2 these equations are $\mathcal{E}(\lambda) \circ j^{r+s, 2 s, r+p} \sigma=0$.

Remark 3. In the proof of Proposition 4 we use the fact that if η is a π-vertical and p_{Y}-vertical vector field on Y and $f: X \rightarrow \mathbb{R}$ is a map with compact support then $(f \circ \pi) \eta$ is π-vertical and p_{Y}-vertical. If η is only π-vertical projectable-projectable then $(f \circ \pi) \eta$ may not be projectableprojectable. That is why in the definition of critical fibered sections we consider the η 's which are π-vertical and p_{Y}-vertical.
3. On naturality of the "Euler" operator. We say that a fibered manifold $p: X \rightarrow X_{0}$ is of dimension (m, n) if $\operatorname{dim} X_{0}=m$ and $\operatorname{dim} X=$ $m+n$. All (m, n)-dimensional fibered manifolds and their local fibered diffeomorphisms form a category which we denote by $\mathcal{F} \mathcal{M}_{m, n}$ and which is local and admissible in the sense of [2].

Similarly, we say that a fibered-fibered manifold $\pi: Y \rightarrow X$ is of dimen$\operatorname{sion}\left(m_{1}, m_{2}, n_{1}, n_{2}\right)$ if the fibered manifold X is of dimension $\left(m_{1}, n_{1}\right)$ and the fibered manifold Y is of dimension $\left(m_{1}+n_{1}, m_{2}+n_{2}\right)$. All $\left(m_{1}, m_{2}, n_{1}, n_{2}\right)$ dimensional fibered-fibered manifolds and their fibered-fibered local diffeomorphisms form a category which we denote by $\mathcal{F} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$ and which is local and admissible in the sense of [2]. The standard ($m_{1}, m_{2}, n_{1}, n_{2}$)dimensional trivial fibered-fibered manifold $\pi: \mathbb{R}^{m_{1}} \times \mathbb{R}^{m_{2}} \times \mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}} \rightarrow$ $\mathbb{R}^{m_{1}} \times \mathbb{R}^{m_{2}}$ will be denoted by $\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$. Any $\left(m_{1}, m_{2}, n_{1}, n_{2}\right)$-dimensional fibered-fibered manifold is locally $\mathcal{F} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-isomorphic to $\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$.

Given two fibered manifolds $Z_{1} \rightarrow M$ and $Z_{2} \rightarrow M$ over the same base M, we denote the space of all base-preserving fibered manifold morphisms of Z_{1} into Z_{2} by $\mathcal{C}_{M}^{\infty}\left(Z_{1}, Z_{2}\right)$. In [1], I. Kolář studied the r th order Euler morphism $E(\lambda)$ of the variational calculus on an (m, n)-dimensional fibered manifold $p: X \rightarrow X_{0}$ as the Euler operator

$$
E: \mathcal{C}_{X_{0}}^{\infty}\left(J^{r} X, \bigwedge^{m} T^{*} X_{0}\right) \rightarrow \mathcal{C}_{X}^{\infty}\left(J^{2 r} X, V^{*} X \otimes \bigwedge^{m} T^{*} X_{0}\right)
$$

He deduced the following classification theorem:
Theorem 1 ([1]). Any $\mathcal{F} \mathcal{M}_{m, n}$-natural operator (in the sense of [2]) of the type of the Euler operator is of the form $c E, c \in \mathbb{R}$, provided $m \geq 2$.

In the present section we obtain a similar result in the fibered-fibered manifold case. Namely, we study the "Euler" morphism $\mathcal{E}(\lambda)$ of the variational calculus on an $\left(m_{1}, m_{2}, n_{1}, n_{2}\right)$-dimensional fibered-fibered manifold $\pi: Y \rightarrow X$ as the "Euler" operator

$$
\mathcal{E}: \mathcal{C}_{X}^{\infty}\left(J^{r, s, q} Y, \bigwedge^{m} T^{*} X\right) \rightarrow \mathcal{C}_{Y}^{\infty}\left(J^{2 p, 2 p, 2 p} Y, \mathcal{V}^{*} Y \otimes \bigwedge^{m} T^{*} X\right)
$$

Here and from now on $s \geq r \leq q$ are natural numbers, $r \geq 1, p=\max (s, q)$ and $m=m_{1}+m_{2}=\operatorname{dim} X$. We prove the following classification theorem.

Theorem 2. Any $\mathcal{F} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-natural operator A (in the sense of [2]) of the type of the "Euler" operator is of the form $c \mathcal{E}, c \in \mathbb{R}$, provided $m \geq 2$.

REMARK 4. The assumption of the last theorem means that for any $\mathcal{F} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-morphism $f: Y \rightarrow Y^{\prime}$ and any (r, s, q) th order Lagrangians $\lambda \in \mathcal{C}_{X}^{\infty}\left(J^{r, s, q} Y, \bigwedge^{m} T^{*} X\right)$ and $\lambda^{\prime} \in \mathcal{C}_{X^{\prime}}^{\infty}\left(J^{r, s, q} Y^{\prime}, \bigwedge^{m} T^{*} X^{\prime}\right)$, if λ and λ^{\prime} are f-related then so are $A(\lambda)$ and $A\left(\lambda^{\prime}\right)$. Moreover A is regular and local. The regularity means that A transforms any smoothly parametrized family of Lagrangians into a smoothly parametrized family of suitable type morphisms. The locality means that $A(\lambda)_{u}$ depends on the germ of λ at $\pi_{r, s, q}^{2 p, 2 p, 2 p}(u)$.

Proof of Theorem 2. From now on let $\left(x^{i}, X^{I}, y^{k}, Y^{K}\right), i=1, \ldots, m_{1}$, $I=1, \ldots, m_{2}, k=1, \ldots, n_{1}, K=1, \ldots, n_{2}$, be the usual fibered-fibered coordinates on $\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$.

An $\mathcal{F} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-morphism $\left(x^{i}, X^{I}, y_{k}-\sigma^{k}\left(x^{i^{\prime}}\right), Y^{K}-\Sigma^{K}\left(x^{i^{\prime}}, X^{I^{\prime}}\right)\right)$ sends $j_{(0,0)}^{2 p, 2 p, 2 p}\left(x^{i}, X^{I}, \sigma^{k}, \Sigma^{K}\right)$ into

$$
\Theta=j_{(0,0)}^{2 p, 2 p, 2 p}\left(x^{i}, X^{I}, 0,0\right) \in\left(J^{2 p, 2 p, 2 p} \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)_{(0,0,0,0)}
$$

Then A is uniquely determined by the evaluations

$$
\left\langle A(\lambda)_{\Theta}, v\right\rangle \in \bigwedge^{m} T_{0}^{*} \mathbb{R}^{m}
$$

for all $\lambda \in \mathcal{C}_{\mathbb{R}^{m_{1}} \times \mathbb{R}^{m_{2}}}^{\infty}\left(J^{r, s, q} \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}, \bigwedge^{m} T^{*} \mathbb{R}^{m}\right)$ and $v \in T_{0} \mathbb{R}^{n_{2}}=$ $\mathcal{V}_{(0,0,0,0)} \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$.

Using the invariance of A with respect to $\mathcal{F} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-morphisms of the form $\operatorname{id}_{\mathbb{R}^{m}} \times \operatorname{id}_{\mathbb{R}^{n_{1}}} \times \psi$ for linear $\psi: \mathbb{R}^{n_{2}} \rightarrow \mathbb{R}^{n_{2}}$ we see that A is uniquely determined by the evaluations

$$
\left\langle A(\lambda)_{\Theta}, \frac{\partial}{\partial Y^{1}}{ }_{0}\right\rangle \in \Lambda^{m} T_{0}^{*} \mathbb{R}^{m}
$$

for all $\lambda \in \mathcal{C}_{\mathbb{R}^{m_{1}} \times \mathbb{R}^{m_{2}}}^{\infty}\left(J^{r, s, q} \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}, \bigwedge^{m} T_{0}^{*} \mathbb{R}^{m}\right)$.

Consider an arbitrary non-vanishing $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$. There is $F: \mathbb{R}^{m} \rightarrow \mathbb{R}$ such that $\partial F / \partial X^{1}=f$ and $F(0)=0$. Then the $\mathcal{F} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-map

$$
\left(x^{1}, \ldots, x^{m_{1}}, F, X^{2}, \ldots, X^{m_{2}}, y^{1}, \ldots, y^{n_{1}}, Y^{1}, \ldots, Y^{n_{2}}\right)
$$

preserves $\Theta, \frac{\partial}{\partial Y^{1}}{ }_{0}$ and sends $\operatorname{germ}_{0}\left(f d^{m_{1}} x \wedge d^{m_{2}} X\right)$ into germ ${ }_{0}\left(d^{m_{1}} x \wedge\right.$ $d^{m_{2}} X$), where $d^{m_{1}} x$ and $d^{m_{2}} X$ are as in Remark 2. Then by naturality A is uniquely determined by the evaluations

$$
\left\langle A\left(\lambda+b d^{m_{1}} x \wedge d^{m_{2}} X\right)_{\Theta}, \frac{\partial}{\partial Y^{1}}{ }_{0}\right\rangle \in \bigwedge^{m} T_{0}^{*} \mathbb{R}^{m}
$$

for all $\lambda \in \mathcal{C}_{\mathbb{R}^{m_{1}} \times \mathbb{R}^{m_{2}}}^{\infty}\left(J^{r, s, q} \mathbb{R}^{m_{1}, m_{2}, n_{2}, n_{2}}, \bigwedge^{m} T^{*} \mathbb{R}^{m}\right)$ satisfying the condition $\lambda\left(j_{\left(x_{0}, X_{0}\right)}^{r, s, q}\left(x^{i}, X^{I}, 0\right)\right)=0$ for any $\left(x_{0}, X_{0}\right) \in \mathbb{R}^{m_{1}, m_{2}}$ and all $b \in \mathbb{R}$.

Let λ and b be as above. Using the invariance of A with respect to $\mathcal{F} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-maps $\psi_{\tau, \mathcal{T}}=\left(x^{i}, X^{I}, \frac{1}{\tau^{k}} y^{k}, \frac{1}{\mathcal{T}^{K}} Y^{K}\right)$ for $\tau^{k}>0$ and $\mathcal{T}^{K}>0$ we get the homogeneity condition

$$
\begin{aligned}
&\left\langle A\left(\left(\psi_{\tau, \mathcal{T}}\right)_{*} \lambda+b d^{m_{1}} x \wedge d^{m_{2}} X\right)_{\Theta}, \frac{\partial}{\partial Y^{1}}{ }_{0}\right\rangle \\
&=\mathcal{T}^{1}\left\langle A\left(\lambda+b d^{m_{1}} x \wedge d^{m_{2}} X\right)_{\Theta}, \frac{\partial}{\partial Y^{1}}{ }_{0}\right\rangle
\end{aligned}
$$

By Corollary 19.8 in [2] of the non-linear Peetre theorem we can assume that λ is a polynomial. The regularity of A implies that $\left\langle A\left(\lambda+b d^{m_{1}} x \wedge\right.\right.$ $\left.\left.d^{m_{2}} X\right)_{\Theta}, \frac{\partial}{\partial Y^{1}}{ }_{0}\right\rangle$ is smooth in the coordinates of λ and b. Then by the homogeneous function theorem (and the above type of homogeneity) we deduce that $\left\langle A\left(\lambda+b d^{m_{1}} x \wedge d^{m_{2}} X\right)_{\Theta}, \frac{\partial}{\partial Y^{1}}{ }_{0}\right\rangle$ is a linear combination of the coordinates of λ on all $x^{\widetilde{\beta}} X^{\tilde{\gamma}} Y_{(\beta, \gamma)}^{1} d^{m_{1}} x \wedge d^{m_{2}} X$ and $x^{\widetilde{\beta}} X^{\tilde{\gamma}} Y_{((0), \varrho)}^{1} d^{m_{1}} x \wedge d^{m_{2}} X$ with coefficients being smooth functions in b, where $\left(x^{i}, X^{I}, y_{\alpha}^{k}, Y_{(\beta, \gamma)}^{K}, Y_{((0), \varrho)}^{K}\right)$ is the induced coordinate system on $J^{r, s, q} \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$. (Here and from now on, α and β are m_{1}-tuples, and γ and ϱ are m_{2}-tuples with $|\alpha| \leq q,|\beta|+|\gamma| \leq r$ and $r+1 \leq|\varrho| \leq s$.) In other words, A is determined by the values

$$
\left\langle A\left(\left(a x^{\widetilde{\beta}} X^{\tilde{\gamma}} Y_{(\beta, \gamma)}^{1}+b\right) d^{m_{1}} x \wedge d^{m_{2}} X\right)_{\Theta}, \frac{\partial}{\partial Y^{1}{ }_{0}}\right\rangle=a f_{\beta, \gamma}^{\widetilde{\beta}, \tilde{\gamma}}(b) d^{m_{1}} x \wedge d^{m_{2}} X
$$

and

$$
\left\langle A\left(\left(a x^{\tilde{\beta}} X^{\tilde{\gamma}} Y_{((0), \varrho)}^{1}+b\right) d^{m_{1}} x \wedge d^{m_{2}} X\right)_{\Theta}, \frac{\partial}{\partial Y^{1}}{ }_{0}\right\rangle=a f_{\varrho}^{\tilde{\beta}, \tilde{\gamma}}(b) d^{m_{1}} x \wedge d^{m_{2}} X
$$

for all $a, b \in \mathbb{R}$, all m_{1}-tuples $\widetilde{\beta}$, all m_{2}-tuples $\widetilde{\gamma}$ and all β, γ, ϱ as above.
By the invariance of A with respect to $\mathcal{F} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-maps of the form $\left(\tau^{i} x^{i}, \mathcal{T}^{I} X^{I}, y^{k}, Y^{K}\right)$ for $\tau^{i} \neq 0$ and $\mathcal{T}^{I} \neq 0$ we get the homogeneity conditions

$$
\tau^{\widetilde{\beta}} \mathcal{T}^{\tilde{\gamma}} \tau^{-\beta} \mathcal{T}^{-\gamma} f_{\beta, \gamma}^{\tilde{\beta}, \tilde{\gamma}}\left(\tau^{(1, \ldots, 1)} \mathcal{T}^{(1, \ldots, 1)} b\right)=f_{\beta, \gamma}^{\tilde{\beta}, \tilde{\gamma}}(b)
$$

and

$$
\tau^{\widetilde{\beta}} \mathcal{T}^{\widetilde{\gamma}} \mathcal{T}^{-\varrho} f_{\varrho}^{\widetilde{\beta}, \widetilde{\gamma}}\left(\tau^{(1, \ldots, 1)} \mathcal{T}^{(1, \ldots, 1)} b\right)=f_{\varrho}^{\widetilde{\beta}, \widetilde{\gamma}} f(b)
$$

By the homogeneous function theorem these types of homogeneity imply that $(+) \quad f_{\beta, \gamma}^{\beta, \gamma}$ are constant, $f_{\varrho}^{(0), \varrho}$ are constant, $f_{\beta+(a, \ldots, a), \gamma+(a, \ldots, a)}^{\beta, \gamma}$ may possibly be not zero for natural numbers $a \geq 1$ with $|\beta|+|\gamma|+m a \leq r$, and all other f 's are zero.

Hence A is determined by the values

$$
\begin{equation*}
\left\langle A\left(x^{\beta} X^{\gamma} Y_{(\beta, \gamma)}^{1} d^{m_{1}} x \wedge d^{m_{2}} X\right)_{\Theta}, \frac{\partial}{\partial Y_{0}^{1}}\right\rangle \tag{*}
\end{equation*}
$$

$$
\begin{equation*}
\left\langle A\left(X^{\varrho} Y_{((0), \varrho)}^{1} d^{m_{1}} x \wedge d X^{m_{2}} X\right)_{\Theta}, \frac{\partial}{\partial Y^{1}}{ }_{0}\right\rangle \tag{**}
\end{equation*}
$$

$(* * *) \quad\left\langle A\left(\left(x^{\beta} X^{\gamma} Y_{(\beta+(a, \ldots, a), \gamma+(a, \ldots, a))}^{1}+1\right) d^{m_{1}} x \wedge d^{m_{2}} X\right)_{\Theta}, \frac{\partial}{\partial Y^{1}}{ }_{0}\right\rangle$
for all β, γ, ϱ as above and natural numbers $a \geq 1$ with $|\beta|+|\gamma|+m a \leq r$, or (equivalently) if the above values are zero then $A=0$.

Let $\beta_{i_{0}} \neq 0$ for some i_{0}. We are going to use the invariance of A with respect to the locally defined $\mathcal{F} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-map

$$
\psi^{i_{0}}=\left(x^{i}, X^{I}, y^{k}, Y^{1}+x^{i_{0}} Y^{1}, Y^{2}, \ldots, Y^{n_{2}}\right)^{-1}
$$

preserving $x^{i}, X^{I}, \Theta, \frac{\partial}{\partial Y^{1}}{ }_{0}$ and sending $Y_{(\beta, \gamma)}^{1}$ into $Y_{(\beta, \gamma)}^{1}+x^{i_{0}} Y_{(\beta, \gamma)}^{1}+$ $Y_{\left(\beta-1_{i_{0}}, \gamma\right)}^{1}$ (because we have

$$
\begin{aligned}
Y_{(\beta, \gamma)}^{1} & \circ J^{r, s, q}\left(\left(\psi^{i_{0}}\right)^{-1}\right)\left(j_{\left(x_{0}^{i}, X_{0}^{I}\right)}^{r, q, q}\left(x^{i}, X^{I}, \sigma^{k}, \Sigma^{K}\right)\right) \\
& =\partial_{(\beta, \gamma)}\left(\Sigma^{1}+x^{i_{0}} \Sigma^{1}\right)\left(x_{0}^{i}, X_{0}^{I}\right) \\
& =\partial_{(\beta, \gamma)} \Sigma^{1}\left(x_{0}^{i}, X_{0}^{I}\right)+x^{i_{0}} \partial_{(\beta, \gamma)} \Sigma^{1}\left(x_{0}^{i}, X_{0}^{I}\right)+\partial_{\left(\beta-1_{i_{0}}, \gamma\right)} \Sigma^{1}\left(x_{0}^{i}, X_{0}^{I}\right) \\
& =\left(Y_{(\beta, \gamma)}^{1}+x^{i_{0}} Y_{(\beta, \gamma)}^{1}+Y_{\left(\beta-1_{i_{0}}, \gamma\right)}^{1}\right)\left(j_{\left(x_{0}^{i}, X_{0}^{I}\right)}^{r, s, q}\left(x^{i}, X^{I}, \sigma^{k}, \Sigma^{K}\right)\right),
\end{aligned}
$$

where $\partial_{(\beta, \gamma)}$ is the iterated partial derivative as indicated multiplied by $\left.\frac{1}{\beta!\gamma!}\right)$. Using this invariance, from

$$
\left\langle A\left(x^{\beta-1_{i_{0}}} X^{\gamma} Y_{(\beta, \gamma)}^{1}\right)_{\Theta}, \frac{\partial}{\partial Y^{1}}{ }_{0}\right\rangle=0
$$

(see $(+))$ it follows that $(*)$ is zero if it is zero for $\beta-1_{i}$ in place of β. Continuing this procedure and a similar procedure with the $\mathcal{F} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}{ }^{-}$ morphism

$$
\Psi^{I_{0}}=\left(x^{i}, X^{I}, y^{k}, Y^{1}+X^{I_{0}} Y^{1}, Y^{2}, \ldots, Y^{n_{2}}\right)^{-1}
$$

in place of $\psi^{i_{0}}$ we see that $(*)$ is zero if it is zero for $\beta=(0)$ and $\gamma=(0)$.

Similarly, $(* *)$ is zero if it is zero for $\varrho=(0)$. Similarly, $(* * *)$ is zero if it is zero for $\beta=(0)$ and $\gamma=(0)$.

Applying $\left\langle A\left(\left(Y_{(2 a, \ldots, a, 0)}^{1}+1\right) d^{m_{1}} x \wedge d^{m_{2}} X\right)_{\Theta}, \frac{\partial,}{\partial Y^{1}{ }_{0}}\right\rangle$ to the $\mathcal{F} \mathcal{M}_{m_{1}, m_{2}, n_{2}}$ map $\operatorname{id}+\left(0, \ldots, 0, x^{1}, 0, \ldots, 0\right)$, where x^{1} is in the m th position and where $(2 a, a, \ldots, a, 0) \in(\mathbb{N} \cup\{0\})^{m_{1}} \times(\mathbb{N} \cup\{0\})^{m_{2}}$, and using $(+)$, since $m \geq 2$, we see that the values $(* * *)$ for $\beta=(0)$ and $\gamma=(0)$ are zero.

Hence A is uniquely determined by the value

$$
\left\langle A\left(Y_{((0),(0))}^{1} d^{m_{1}} x \wedge d^{m_{2}} X\right)_{\Theta}, \frac{\partial}{\partial Y^{1}}{ }_{0}\right\rangle \in \Lambda^{m} T_{0}^{*} \mathbb{R}^{m}
$$

Therefore the vector space of all the A in question is 1 -dimensional. This ends the proof of Theorem 2.

Remark 5. In view of Remark 2 we note that Theorem 2 holds for $(r+s, 2 s, r+p)$ in place of $(2 p, 2 p, 2 p)$.

References

[1] I. Kolář, Natural operators related with the variational calculus, in: Differential Geometry and its Applications (Opava, 1992), Silesian Univ. Opava, 1993, 461-472.
[2] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, Berlin, 1993.
[3] W. M. Mikulski, The jet prolongations of fibered fibered manifolds and the flow operator, Publ. Math. Debrecen 59 (2001), 441-458.
[4] R. Wolak, On transverse structures on foliations, Suppl. Rend. Circ. Mat. Palermo 9 (1985), 227-243.

Institute of Mathematics
Jagiellonian University
Reymonta 4
30-059 Kraków, Poland
E-mail: mikulski@im.uj.edu.pl

[^0]: 2000 Mathematics Subject Classification: Primary 58A20.
 Key words and phrases: fibered-fibered manifold, (r, s, q)-jet prolongation bundle, (r, s, q) th order Lagrangian, Euler morphism, natural operator.

