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On a functional equation with derivative and symmetrization

by ApAM BoBROWSKI (Lublin and Katowice) and
MALGORZATA KUBALINSKA (Lublin)

Abstract. We study existence, uniqueness and form of solutions to the equation
ag — B9 + vge = f where o, 8,y and f are given, and g. stands for the even part of a
searched-for differentiable function g. This equation emerged naturally as a result of the
analysis of the distribution of a certain random process modelling a population genetics
phenomenon.

1. Introduction. Let BUC(R) be the space of bounded, uniformly con-
tinuous functions on R. In [2] we were led (see below for more details) to
considering the following functional equation in this space:

(1) ag — B9 +7ge = f,
where g € BUC(R) is a searched-for differentiable function, ge is its even part
ge(t) = 2(g(t) + g(—t)), and the function f € BUC(R) and the constants
o, >0 and v > —a are given. We showed that the unique solution to this
equation is

1 o 1 o

@) 9=3 52 5 (Bul) + 53

where = a(a +7v)/8%, fo = f — fo is the odd part of f, and

Ruf + = Ryufo,

(Ruf), + Rufe + g Rufo = ﬁ2

o0

(3) Raf(t) = % [ et +s)ds, A>o0.

It is interesting that although (1) is a “first order” equation, its solutions
are given in terms of Ry, A > 0, which is the resolvent of the second order
differential operator f — f” (with natural domain). The reason is that (1)
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2000 Mathematics Subject Classification: Primary 39B05; Secondary 60G35, 92D10,
47D03.

Key words and phrases: functional equation, differential equation, Cauchy problem,
semigroups of operators, genetic drift.

(13]



14 A. Bobrowski and M. Kubaliriska

is equivalent to the system

{ Qfge — /6(90)/ +7ge = fe,
ago — B(ge)" = fo,

of differential equations for the components g, and g, of g.

In this paper we show, by considering two generalizations of equation (1),
that the result obtained in [2] is a particular case of a more general principle.
In Section 2, we find the general solution of (1) for arbitrary real constants
a, 3 and 7, in Section 3 we consider (1) with variable coefficients and in
Section 4 we consider (1) in an abstract Banach space.

The origin of equation (1) is related to the work on mathematical descrip-
tion of genetic drift, a phenomenon known in population genetics. Genetic
drift is often defined as a loss of variability of genetic material in a finite
population, caused by random events, such as death of a member carrying
this material. In the basic Fisher—Wright model of this phenomenon (see e.g.
[3, 6, 17]), the population consists of a fixed number of individuals who live,
each independently of the others, for a random, exponential time. At the
death of an individual, an exact copy of a randomly chosen member of pop-
ulation replaces the member just deceased. In the absence of other genetic
forces, this procedure leads to gradual loss of variability in the population.
In the real populations and in more complicated models, the action of ge-
netic drift is counteracted by other forces such as mutation, recombination
and selection, with the drift striving to reduce the variability being con-
stantly introduced by these forces. Viewed backwards, genetic drift is seen
as a stochastic process of coalescence of ancestral lines in the time running
backwards—this is the central idea of the epoch-making papers by King-
man [12] and Tajima [16]. To be more specific, the reproductive mechanism
makes it clear that some random time ago there lived a common ancestor of
the whole Fisher—Wright population and the variability existing today is the
sole result of the action of other genetic forces (such as mutations) on the
genetic material of his descendants; the descendants of the other members
of the population existing at the time of the common ancestor die out in the
meantime and this material is lost from the population.

In the case of a sample of two individuals, we deal with two stochastic
processes (modelling mutations on the genealogical lines) that, conditional
on their current states, evolve independently and with the same transition
probabilities, and yet are dependent by the fact that some random time
ago they evolved as a single process; their independent evolution started at
the random time of split in the past. It is interesting that although in the
case where these processes are Lévy processes there is no stationary distri-
bution for the pair, the distribution of the relative difference stabilizes in
time (see [11]). In [2] we show that the limit distribution of the process may
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be derived by means of the resolvent of a semigroup of operators related
to the process of differences between two independent Lévy processes start-
ing from the same initial state. As an example, we consider the telegraph
process

(4) p, = (0§ ()M ds, (~)MV), t>0,
0

where a and v are given positive constants and {M(t),¢ > 0} is a Poisson
process with E M (t) = at. (The reason why p;, t > 0, is called the tele-
graph process is that, as shown by M. Kac [10] inspired by S. Goldstein [§],
the solutions to the telegraph equation may be expressed by means of the
expected value of SE(—l)M(S) ds, t > 0.) The telegraph process is a Lévy
process when considered as a process with values in a non-commutative lo-
cally compact group G = R x {—1,1} with topology induced from R? and
multiplication rule (7,k)(§,1) = (It + &, kl) (see [14]). In [2] we show that
the generator A of the semigroup related to the process of differences is
given by A(f1, f2) = (2a(f2)e — 2af1,2vf} + 2a(f1)e — 2af2). The semigroup
acts in BUC(R) x BUC(R) (which is isometrically isomorphic to the space
of bounded functions on G that are uniformly continuous with respect to
the left and right uniform structures on G), and the domain D of A is the
set of pairs (f1, f2) where both f; belong to BUC(R), and f5 is differen-
tiable with f} € BUC(R). To find the resolvent of A we needed to find,
given A > 0 and (f1, f2) € BUC(R) x BUC(R), a pair (g1,g2) € D such
that

(5) { Ag1 — 2a(g2)e + 291 = fi,

Ag2 — 2vgy — 2a(g1)e + 2ag2 = fo.

Substituting g1 = %(92% + ﬁfl into the second equation, we ob-
tain
4a? 2a
A+2 — ugh — ——— = ,
( a)92 Vg2 A+ 24 (92)6 X+ 2a (fl)e + f2

This is equation (1) with & = A+ 2a, f = 2v, v =
f: )i%a(fl)e“‘f}

4a> _
“oa0 9 T 92 and

2. The general solution to (1) with constant coefficients. Con-
sider the differential equation

(6) ag(t) — By (t) +vge(t) = f(t) forallt € R,

where f is a given function, g is a searched-for differentiable function, g is
its even part: ge(t) = 3(g(t) + g(—t)), and «, 3 and v are real numbers with
a2+ B2 +42>0.
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Let g(t) = g(—t), t € R. Replacing ¢(t) by g(—t) in (6) we obtain

(7) ag(t) + 59 (t) +79e(t) = f(t), teR.
Adding (6) and (7) and dividing by 2 gives
(8) age(t) — Bgo(t) +7ge(t) = fe(t),

where g, is the odd part of g: go = g — ge. Analogously, subtracting (7) from
(6) and dividing by 2 yields

(9) Ozgo(t) - ﬂgé(t) = fo(t)'

Conversely, (8) and (9) imply (6). Hence, (6) is equivalent to the following
system of differential equations with constant coefficients:

{age(t) — Bgo(t) +7ge(t) = fe(t),
ago(t) = Bge(t) = fo(t).

In order to find the general solution to this system we need to consider the
following cases:

2.1. 8 = 0. This case splits naturally into the following three subcases.
(We note that & = 0 and o + v = 0 is impossible, for this would imply that

1. Suppose a # 0 and « + v # 0. Then the system takes the form
1

ge(t): a+7fe<t)>

4olt) = = fult),

and the solution of (6) is g = ge + go = a—i,yfe + éfo
2. Suppose a = 0 and « # 0. Then the system takes the form
{796(0 = fe(t),
fo(t) =0.
A solution to this system exists if and only if f is even. In that case
g is given by g = (1/v)fe + h = (1/7)f + h, where h is an arbitrary

odd function.
3. Suppose o # 0 and « + v = 0. Then the system takes the form

{ fe(t) =0,
1
o(t) = — £, (1).
9o(t) = = folt)
A solution to this system exists if and only if f is odd. In that case

g is given by g = (1/a)fo + h = (1/a) f + h, where h is an arbitrary
even function.
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2.2. 3 #£ 0. In this case we may write

{ggof) = ) - 5 10
(10) , « 1
ge(t) = Bgo(t) ~3 Jo(2).
Introducing

s (a+7)/8 )

a/ﬂ 0
and using A%" = (a(a+v)/B*)"I, n > 1, we find that
etA:cosh< >I+ sin h(t a(a+'y)>A7
a +7 B
«

provided a(a +7) # 0. For a(a + ) = 0, we have e/4 = I + At. Hence, the

general solution (gegtg) (10) is

C cosh(t/ala T 7)/8) + Con/Ta T ) asinh(ty/ala T 7)/)
Civ/a/(a+v)sinh(ty/a(a+v)/6) + Cacosh(ty/a(a +v)/B)

S fe(t — s) cosh(s/a(a+7)/0)ds
af(a+7) Sofe (t — s) sinh(s\/a(a +~)/8) ds

1 ( (a+2)/a Sy folt = s)sinh(sy/ala +7)/8) ds )
5

R

o folt — s) cosh(sy/a(a +7)/8) ds

and so g is given by

(11) g(t) = (C1 + C2) cosh <tw>

(C1+ Cy)a+ Cyy sinh (t ala+ ”y))

Vala+9)
5 e (YD) 5

: oz—|—7 §ft—s smh( OZ(Oé—i_7)>ds
0

_'_

QI*—‘
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If (e +7v)a =0, then

t
gt) = (C1 + Ca) + <04;702+%01>t—%5f(75—5)d5
a+7t vt :
TR ésf(t—s)dS—i-@gsfe(t—s)ds.

EXAMPLE 1. Let f be a given member of BUC(R) and let o, 5 > 0,
~ > —a. Our result implies that in BUC(RR) there exists exactly one solution
to (1), given by (2). To see this, rewrite (11) as follows:

(12) g(t) = élet\/ﬁ + 626_t\/ﬁ

t t
CAV/IRA Y TR (RN A [ fu(s)e=IVF ds
0

203 232/
Y S T SO
4+ —— s)e SIVE ds — (s)e~ S)\/’jds,
where
5 _01+CQ aCl—i-(Oé-l-’}/)Cg 6 _Cl+C’2_aC’1+(a+’y)C’2
1= 2 2,6\/[_,6 ) 2 — 2 2,6\/[_,6 )

and 11 = a(a +7)/3% Asin [3, p. 244] we check that the only choice for C}
and Cy that leads to g in BUC(R) is

~ _ Byutat NP P R N

C, = 500 (S)f(s)e Hds BN §) fe(s)e Vi ds,
0 0

Cy = by —a S f(s)eVids — 7 S fo(s)e*VH ds.

203 262/ 3

For these constants equation (12) becomes

(13)  g(t) = ﬁ S f(s)e_‘t_s‘\/ﬁ ds + QQZ\/,E S fo(s)e—lt—s\\/ﬁ ds
t o
— % _Soof(s)e(ts)\/ﬁ ds + % § f(s)e(tfs)\/ﬁ ds.

Since (R,.f) (t)=—3 Sl:oo f(s)em =V ds+ 1 {7 f(s)elt=*)VH ds, this agrees
with (2).
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3. Equation (1) with variable coefficients. Let a,b,c : R — R be
bounded, continuous functions. Consider the equation

(14) g =ag+bge + c.

Given w > 0 we search for solutions of this problem in the class B, of
continuous functions g such that sup,cg e “"l|g(t)| is finite. We note that
B,, is a Banach space with the norm

lgll, = supe=g(t)].
teR
We refer to B, as the Bielecki space (see [1, 4]).
PROPOSITION 1. Fiz w > 2M where
M = max{sup |a(t)|,sup [b(t)|,sup |c(t)[}.
teR teR teR

The Cauchy problem for the equation (14) with initial condition g(0) = k € R
has a unique solution in the Bielecki space B,,.

Proof. A function g satisfies (14) with initial condition ¢(0) = & iff it is
a fixed point of the operator F' in B, given by

(15)  [F(9l(t) = s+ {a(s)g(s) ds + | b(s)ge(s) ds + | e(s)ds, teR.
0 0 0

We note that F' indeed maps B, into itself. For, clearly, F'(g) is a continuous
function. Moreover, |x + Sl(t) c(s)ds| < |k| + M]t|, so that t — k + SE c(s)ds is
a member of B, w > 0. Also, for any t € R and g € B,

t t
(16)  [emI1 b(s)ge(s) ds| < M |femI-lDeel g, (s) ay]
0 0

t
< MngHw‘Se—w(\ﬂ—\S\)ds‘ < ]Mw—luguw7
0

which shows that the third term in (15) is a member of B,. Similarly, we
show that so is the second term there.

A calculation similar to the one in (16) shows that ||F'(f) — F(g9)|l. <
(2M/w)||f — gllw- Hence, for w > 2M, F' is a contraction in B, and so, by
the Banach fixed point theorem, there exists a unique fixed point of F.

REMARK 1. Since B, C B,/ for w < w’, by Proposition 1, there can be
no more than one solution to (14) in B,, where w < 2M. Moreover, if g is a
fixed point of F'in B, for some w then it is a fixed point of F' in all B, where
w’ > w. Hence our proposition states that there exists a unique solution to
the Cauchy problem related to (14) and this solution belongs to B,, for all
w>2M. u



20 A. Bobrowski and M. Kubaliriska

Although it seems that a closed form of the general solution to (14) is
not available, we can still show that this equation is equivalent to a system
of two ordinary differential equations for the even and odd parts of g. To
this end we note first that, as can be checked directly, for any functions f
and g on R, (fg)e = fge — 9fo and (fg)o = fge — gfe. Hence, calculating
the even part of both sides of equation (14) and noting that (¢')e = g/, we
obtain

94/3 = gQe — zL\go + Gebe + Ce = Gelle + golle — Zq’/\go + gebe + ce
= ge[a + b]e + golo + Ce.

Analogously, g/ = ge[a+blo + aego + co. Conversely, the equations for g, and
Jo determine the equation for g. In other words, (14) is equivalent to the
following system of differential equations:

o ! ao, (a+0b)e o Ce
a G- et -C)

Je Qe (CL + b)o Ge Co
Clearly, if a and b are constants equal to o/ and v/, respectively, this
system reduces to (2) with ¢ = —(1/3)f. Formula (17) may be used as a

starting point for investigation of (14) in a more general case, where, for
example, a,b and ¢ are continuous but unbounded.

4. Equation (1) in an abstract Banach space. Suppose that X is a
Banach space and G is the generator (see e.g. [9]) of a strongly continuous
group {U(t), t € R} of equibounded operators in X:

(18) sup [|[U(t)]| =: M < oc.
teR

Recall that the operators C(t) = 3(U(t) + U(—t)), t € R, form a strongly
continuous cosine operator function (see e.g. [7, 15]) so that the cosine func-
tional equation 2C(t)C(s) = C(t +s) + C(t — s), s,t € R, is satisfied. The
generator of {C(t), t € R}, defined as limj, .o ;%[C(h)f — f] for all f € X
for which this limit exists, can be checked to be equal to G? with natural
domain (see e.g. |7, p. 77|, cf. [13]). By the Sova generation theorem (|7, 15]),
all positive A belong to the resolvent set of G? and

(19) AN =G = [ e Mo at
0
_1 OSOe AU () dt + ! OSOe_’\tU(—t) dt
2 2
0 0
1

(all integrals in the strong topology).
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Suppose also that X is a direct sum of two subspaces: Xp and Xy where
the projections P (on Xp) and @ (on Xg) are bounded in norm by 1. By
the Phillips perturbation theorem [9], for any a € R, both G, := G + aP
and —G, generate strongly continuous semigroups, say {S,(t), t > 0} and
{S.(t), t > 0}, respectively, such that ||S,(¢)|,[|S; (t)|| < Melelt ¢ > o.
Hence, by the Hille-Yosida generation theorem for groups ([5, 9]), G, is the
generator of a strongly continuous group {S,(¢),t € R} of operators in X
and ||S,(t)|| < Mel*!l| ¢ € R. In particular, any A € R such that |\ > |a]
belongs to the resolvent set of GG,.

Suppose finally that for f in the domain D(G) of G, P f belongs to D(G)
and GPf = QG f. This implies that @ f belongs to D(G) and

GQf=G(f-Pf)=Gf -QGf = PGY.

PROPOSITION 2. Under the above assumptions, for f € X and |\| > |al,
the resolvent Ry o := (A — Go) ™1 of G, is given by

(20)  Raaf =Glp—G)7'f+ (n=G)T (AT uQf + AP)
=G(p— G+ (u—=G)THAf — aQf),
where = XA —a) > 0.

Proof. In view of the above remarks, for any f € X, the resolvent equa-
tion of G,

(21) Ag—Gag = [,

has a unique solution. We are to check that g = R, ,f defined in (20) solves
this equation. Clearly, g € D(G). Moreover, a direct calculation shows that
for any h € X, k = P(u — G?)"1h solves pk — G?k = Ph. Since the unique
solution to the last equation is k = (u — G2)~1Ph, we see that P commutes
with (1 — G?)~!. Hence, so does Q. Using

G*(u—G) ' f=pp—-GH'f -,
we obtain
Gag=Gg+aPg=G*(n—G*) "' f+G(u—G*) '\ — aQf + aQ ]
+ aX(p — GQ)*le
= (p—G*) M uf + a PfI+AG(u—G*) ' f - f.

Since A\g = AG(u — G2) 7 f + (u — G?)~HuQf + N2Pf], the left-hand side
of (21) with g = R) o f equals

[+ XN —aX(p—G)'Pf+ f=f,

as desired. =
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REMARK 2. Clearly, the way to derive relation (20) is to note that ap-
plying P and @ to both sides of (21) we obtain the following system of two
equations that is equivalent to (21):

{ APg—GQg —aPg=Pf,
AQg —GPg=Qf.
This system, under the additional assumption that f€D(G), can be solved

by plugging Qg = A"1[Qf + GPg] into the first equation, and this leads
to (20).

ExAMPLE 2. Let X = BUC(R) be the space of uniformly continuous
functions on R with the supremum norm, and {U(t), t € R} be the group of
translations U(t)f(s) = f(s+t), s,t € R. Clearly, ||U(t)|| =1, t € R. The
infinitesimal generator G of this group is G = d/ds with natural (maximal)
domain.

(22)

Let P be the projection of X onto the subspace Xp of even functions
in X, and @) be the projection on the space of odd functions in X. Obviously,
Pf = foand Qf = f, and |P|| = ||Q]| = 1. Note that P leaves the set
of differentiable functions invariant and we have GPf = QG f for all differ-
entiable functions f. In other words, the assumptions of Proposition 2 are
satisfied. Therefore, the solution to equation (1) is given by g = (1/8) Rz o.f
with a = —y/f and A = «/3. To be more specific,

1 « d

g = B (RM), + @ Ruf + ﬂZ Rﬂfo’
where
p=M\—a)=ala+y)/F* and R,=(u—G*)"
Since
A =@ ()= | e f(t+5)ds,
00
A+ ) = | eMf(s+t)at,

relation (19) gives

(e 9]

Ruf(t):ﬁ e VEllp(t+ s)ds.

This establishes (2) once again.

REMARK 3. For v = 0, (1) reduces to an ordinary linear differential
equation of first order with constant coefficients. Hence, in that case, (2)
should reduce to the resolvent of a first-order differential operator. More
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generally, for a = 0, (20) should reduce to the resolvent of GG. To check this
we note that, by (19), GA—G) ' f = XA —G)"'f — fand GO+ G) 71 f =
f— A\ + G)~1f, and relation (20) may be written in the form

1

Raaf = 5 [(VE=G) ' f = (VE+G) ]+ (= G I (A pQf + APS).

For ¢ = 0 this reduces to

S =G) A+ @)+ (2 - )RS + AP)

= S0 =G = A+ G AN @) = (A= G)
(where we used (19) again), as expected.
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