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On a fun
tional equation with derivative and symmetrizationby Adam Bobrowski (Lublin and Katowi
e) and
Małgorzata Kubalińska (Lublin)

Abstra
t. We study existen
e, uniqueness and form of solutions to the equation
αg − βg′

+ γge = f where α, β, γ and f are given, and ge stands for the even part of asear
hed-for di�erentiable fun
tion g. This equation emerged naturally as a result of theanalysis of the distribution of a 
ertain random pro
ess modelling a population geneti
sphenomenon.1. Introdu
tion. Let BUC(R) be the spa
e of bounded, uniformly 
on-tinuous fun
tions on R. In [2℄ we were led (see below for more details) to
onsidering the following fun
tional equation in this spa
e:(1) αg − βg′ + γge = f,where g ∈ BUC(R) is a sear
hed-for di�erentiable fun
tion, ge is its even part
ge(t) = 1

2(g(t) + g(−t)), and the fun
tion f ∈ BUC(R) and the 
onstants
α, β > 0 and γ > −α are given. We showed that the unique solution to thisequation is(2) g =

1

β
(Rµf)′ +

α

β2
Rµfe +

µ

α
Rµfo =

1

β
(Rµf)′ +

α

β2
Rµf +

γ

β2
Rµfo,where µ = α(α + γ)/β2, fo = f − fe is the odd part of f, and(3) Rλf(t) =

1

2
√

λ

∞\
−∞

e−
√

λ|s|f(t + s) ds, λ > 0.

It is interesting that although (1) is a ��rst order� equation, its solutionsare given in terms of Rλ, λ > 0, whi
h is the resolvent of the se
ond orderdi�erential operator f 7→ f ′′ (with natural domain). The reason is that (1)2000 Mathemati
s Subje
t Classi�
ation: Primary 39B05; Se
ondary 60G35, 92D10,47D03.Key words and phrases: fun
tional equation, di�erential equation, Cau
hy problem,semigroups of operators, geneti
 drift. [13℄



14 A. Bobrowski and M. Kubali«skais equivalent to the system
{

αge − β(go)
′ + γge = fe,

αgo − β(ge)
′ = fo,of di�erential equations for the 
omponents ge and go of g.In this paper we show, by 
onsidering two generalizations of equation (1),that the result obtained in [2℄ is a parti
ular 
ase of a more general prin
iple.In Se
tion 2, we �nd the general solution of (1) for arbitrary real 
onstants

α, β and γ, in Se
tion 3 we 
onsider (1) with variable 
oe�
ients and inSe
tion 4 we 
onsider (1) in an abstra
t Bana
h spa
e.The origin of equation (1) is related to the work on mathemati
al des
rip-tion of geneti
 drift, a phenomenon known in population geneti
s. Geneti
drift is often de�ned as a loss of variability of geneti
 material in a �nitepopulation, 
aused by random events, su
h as death of a member 
arryingthis material. In the basi
 Fisher�Wright model of this phenomenon (see e.g.[3, 6, 17℄), the population 
onsists of a �xed number of individuals who live,ea
h independently of the others, for a random, exponential time. At thedeath of an individual, an exa
t 
opy of a randomly 
hosen member of pop-ulation repla
es the member just de
eased. In the absen
e of other geneti
for
es, this pro
edure leads to gradual loss of variability in the population.In the real populations and in more 
ompli
ated models, the a
tion of ge-neti
 drift is 
ountera
ted by other for
es su
h as mutation, re
ombinationand sele
tion, with the drift striving to redu
e the variability being 
on-stantly introdu
ed by these for
es. Viewed ba
kwards, geneti
 drift is seenas a sto
hasti
 pro
ess of 
oales
en
e of an
estral lines in the time runningba
kwards�this is the 
entral idea of the epo
h-making papers by King-man [12℄ and Tajima [16℄. To be more spe
i�
, the reprodu
tive me
hanismmakes it 
lear that some random time ago there lived a 
ommon an
estor ofthe whole Fisher�Wright population and the variability existing today is thesole result of the a
tion of other geneti
 for
es (su
h as mutations) on thegeneti
 material of his des
endants; the des
endants of the other membersof the population existing at the time of the 
ommon an
estor die out in themeantime and this material is lost from the population.In the 
ase of a sample of two individuals, we deal with two sto
hasti
pro
esses (modelling mutations on the genealogi
al lines) that, 
onditionalon their 
urrent states, evolve independently and with the same transitionprobabilities, and yet are dependent by the fa
t that some random timeago they evolved as a single pro
ess; their independent evolution started atthe random time of split in the past. It is interesting that although in the
ase where these pro
esses are Lévy pro
esses there is no stationary distri-bution for the pair, the distribution of the relative di�eren
e stabilizes intime (see [11℄). In [2℄ we show that the limit distribution of the pro
ess may



A fun
tional equation 15be derived by means of the resolvent of a semigroup of operators relatedto the pro
ess of di�eren
es between two independent Lévy pro
esses start-ing from the same initial state. As an example, we 
onsider the telegraphpro
ess(4) pt =
(
v

t\
0

(−1)M(s) ds, (−1)M(t)
)
, t ≥ 0,where a and v are given positive 
onstants and {M(t), t ≥ 0} is a Poissonpro
ess with E M(t) = at. (The reason why pt, t ≥ 0, is 
alled the tele-graph pro
ess is that, as shown by M. Ka
 [10℄ inspired by S. Goldstein [8℄,the solutions to the telegraph equation may be expressed by means of theexpe
ted value of Tt0(−1)M(s) ds, t ≥ 0.) The telegraph pro
ess is a Lévypro
ess when 
onsidered as a pro
ess with values in a non-
ommutative lo-
ally 
ompa
t group G = R × {−1, 1} with topology indu
ed from R

2 andmultipli
ation rule (τ, k)(ξ, l) = (lτ + ξ, kl) (see [14℄). In [2℄ we show thatthe generator A of the semigroup related to the pro
ess of di�eren
es isgiven by A(f1, f2) = (2a(f2)e − 2af1, 2vf ′
2 + 2a(f1)e − 2af2). The semigroupa
ts in BUC(R) × BUC(R) (whi
h is isometri
ally isomorphi
 to the spa
eof bounded fun
tions on G that are uniformly 
ontinuous with respe
t tothe left and right uniform stru
tures on G), and the domain D of A is theset of pairs (f1, f2) where both fi belong to BUC(R), and f2 is di�eren-tiable with f ′

2 ∈ BUC(R). To �nd the resolvent of A we needed to �nd,given λ > 0 and (f1, f2) ∈ BUC(R) × BUC(R), a pair (g1, g2) ∈ D su
hthat(5) {
λg1 − 2a(g2)e + 2g1 = f1,

λg2 − 2vg′2 − 2a(g1)e + 2ag2 = f2.Substituting g1 = 2a
λ+2a

(g2)e + 1
λ+2a

f1 into the se
ond equation, we ob-tain
(λ + 2a)g2 − 2vg′2 −

4a2

λ + 2a
(g2)e =

2a

λ + 2a
(f1)e + f2.This is equation (1) with α = λ + 2a, β = 2v, γ = − 4a2

λ+2a
, g = g2 and

f = 2a
λ+2a

(f1)e + f2.2. The general solution to (1) with 
onstant 
oe�
ients. Con-sider the di�erential equation(6) αg(t) − βg′(t) + γge(t) = f(t) for all t ∈ R,where f is a given fun
tion, g is a sear
hed-for di�erentiable fun
tion, ge isits even part: ge(t) = 1
2(g(t) + g(−t)), and α, β and γ are real numbers with

α2 + β2 + γ2 > 0.



16 A. Bobrowski and M. Kubali«skaLet ĝ(t) = g(−t), t ∈ R. Repla
ing g(t) by g(−t) in (6) we obtain(7) αĝ(t) + βĝ ′(t) + γge(t) = f̂(t), t ∈ R.Adding (6) and (7) and dividing by 2 gives(8) αge(t) − βg′o(t) + γge(t) = fe(t),where go is the odd part of g: go = g− ge. Analogously, subtra
ting (7) from(6) and dividing by 2 yields(9) αgo(t) − βg′e(t) = fo(t).Conversely, (8) and (9) imply (6). Hen
e, (6) is equivalent to the followingsystem of di�erential equations with 
onstant 
oe�
ients:
{

αge(t) − βg′o(t) + γge(t) = fe(t),

αgo(t) − βg′e(t) = fo(t).In order to �nd the general solution to this system we need to 
onsider thefollowing 
ases:2.1. β = 0. This 
ase splits naturally into the following three sub
ases.(We note that α = 0 and α + γ = 0 is impossible, for this would imply that
α = β = γ = 0.)1. Suppose α 6= 0 and α + γ 6= 0. Then the system takes the form





ge(t) =
1

α + γ
fe(t),

go(t) =
1

α
fo(t),and the solution of (6) is g = ge + go = 1

α+γ
fe + 1

α
fo.2. Suppose α = 0 and γ 6= 0. Then the system takes the form

{
γge(t) = fe(t),

fo(t) = 0.A solution to this system exists if and only if f is even. In that 
ase
g is given by g = (1/γ)fe + h = (1/γ)f + h, where h is an arbitraryodd fun
tion.3. Suppose α 6= 0 and α + γ = 0. Then the system takes the form

{
fe(t) = 0,

go(t) =
1

α
fo(t).A solution to this system exists if and only if f is odd. In that 
ase

g is given by g = (1/α)fo + h = (1/α)f + h, where h is an arbitraryeven fun
tion.
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tional equation 172.2. β 6= 0. In this 
ase we may write
(10) 




g′o(t) =
α + γ

β
ge(t) −

1

β
fe(t),

g′e(t) =
α

β
go(t) −

1

β
fo(t).Introdu
ing

A =

(
0 (α + γ)/β

α/β 0

)

and using A2n = (α(α + γ)/β2)nI, n ≥ 1, we �nd that
etA = cosh

(
t

√
α(α + γ)

β

)
I +

β√
α(α + γ)

sinh

(
t

√
α(α + γ)

β

)
A,provided α(α + γ) 6= 0. For α(α + γ) = 0, we have etA = I + At. Hen
e, thegeneral solution (go(t)

ge(t)

) to (10) is

 C1 cosh(t

√
α(α + γ)/β) + C2

√
(α + γ)/α sinh(t

√
α(α + γ)/β)

C1

√
α/(α + γ) sinh(t

√
α(α + γ)/β) + C2 cosh(t

√
α(α + γ)/β)




− 1

β




Tt
0 fe(t − s) cosh(s

√
α(α + γ)/β) ds

√
α/(α + γ)

Tt
0 fe(t − s) sinh(s

√
α(α + γ)/β) ds




− 1

β




√
(α + γ)/α

Tt
0 fo(t − s) sinh(s

√
α(α + γ)/β) dsTt

0 fo(t − s) cosh(s
√

α(α + γ)/β) ds




and so g is given by
g(t) = (C1 + C2) cosh

(
t

√
α(α + γ)

β

)(11)
+

(C1 + C2)α + C2γ√
α(α + γ)

sinh

(
t

√
α(α + γ)

β

)

− 1

β

t\
0

f(t − s) cosh

(
s

√
α(α + γ)

β

)
ds

−
√

α(α + γ)

αβ

t\
0

f(t − s) sinh

(
s

√
α(α + γ)

β

)
ds

+
γ

β
√

α(α + γ)

t\
0

fe(t − s) sinh

(
s

√
α(α + γ)

β

)
ds.



18 A. Bobrowski and M. Kubali«skaIf (α + γ)α = 0, then
g(t) = (C1 + C2) +

(
α + γ

β
C2 +

α

β
C1

)
t − 1

β

t\
0

f(t − s) ds

− α + γ

β2

t\
0

sf(t − s) ds +
γ

β2

t\
0

sfe(t − s) ds.

Example 1. Let f be a given member of BUC(R) and let α, β > 0,
γ > −α. Our result implies that in BUC(R) there exists exa
tly one solutionto (1), given by (2). To see this, rewrite (11) as follows:

g(t) = C̃1e
t
√

µ + C̃2e
−t

√
µ(12)

− β
√

µ + α

2αβ

t\
0

f(s)e(t−s)
√

µ ds +
γ

2β2√µ

t\
0

fe(s)e
(t−s)

√
µ ds

+
β
√

µ − α

2αβ

t\
0

f(s)e−(t−s)
√

µ ds − γ

2β2√µ

t\
0

fe(s)e
−(t−s)

√
µ ds,

where
C̃1 =

C1 + C2

2
+

αC1 + (α + γ)C2

2β
√

µ
, C̃2 =

C1 + C2

2
− αC1 + (α + γ)C2

2β
√

µ
,

and µ = α(α + γ)/β2. As in [3, p. 244℄ we 
he
k that the only 
hoi
e for C̃1and C̃2 that leads to g in BUC(R) is
C̃1 =

β
√

µ + α

2αβ

∞\
0

f(s)e−s
√

µ ds − γ

2β2√µ

∞\
0

fe(s)e
−s

√
µ ds,

C̃2 =
β
√

µ − α

2αβ

0\
−∞

f(s)es
√

µ ds − γ

2β2√µ

0\
−∞

fe(s)e
s
√

µ ds.

For these 
onstants equation (12) be
omes
g(t) =

α

2β2√µ

∞\
−∞

f(s)e−|t−s|√µ ds +
γ

2β2√µ

∞\
−∞

fo(s)e
−|t−s|√µ ds(13)

− 1

2β

t\
−∞

f(s)e−(t−s)
√

µ ds +
1

2β

∞\
t

f(s)e(t−s)
√

µ ds.

Sin
e (Rµf)′(t)=−1
2

Tt
−∞ f(s)e−(t−s)

√
µ ds+ 1

2

T∞
t

f(s)e(t−s)
√

µ ds, this agreeswith (2).



A fun
tional equation 193. Equation (1) with variable 
oe�
ients. Let a, b, c : R → R bebounded, 
ontinuous fun
tions. Consider the equation(14) g′ = ag + bge + c.Given ω > 0 we sear
h for solutions of this problem in the 
lass Bω of
ontinuous fun
tions g su
h that supt∈R e−ω|t||g(t)| is �nite. We note that
Bω is a Bana
h spa
e with the norm

‖g‖ω = sup
t∈R

e−ω|t||g(t)|.We refer to Bω as the Biele
ki spa
e (see [1, 4℄).Proposition 1. Fix ω > 2M where
M = max{sup

t∈R

|a(t)|, sup
t∈R

|b(t)|, sup
t∈R

|c(t)|}.The Cau
hy problem for the equation (14) with initial 
ondition g(0) = κ ∈ Rhas a unique solution in the Biele
ki spa
e Bω.Proof. A fun
tion g satis�es (14) with initial 
ondition g(0) = κ i� it isa �xed point of the operator F in Bω given by(15) [F (g)](t) = κ +

t\
0

a(s)g(s) ds +

t\
0

b(s)ge(s) ds +

t\
0

c(s) ds, t ∈ R.We note that F indeed maps Bω into itself. For, 
learly, F (g) is a 
ontinuousfun
tion. Moreover, |κ +
Tt
0 c(s) ds| ≤ |κ|+ M |t|, so that t 7→ κ +

Tt
0 c(s) ds isa member of Bω, ω > 0. Also, for any t ∈ R and g ∈ Bω,

∣∣∣e−ω|t|
t\
0

b(s)ge(s) ds
∣∣∣ ≤ M

∣∣∣
t\
0

e−ω(|t|−|s|)e−ω|s||ge(s)| dy
∣∣∣(16)

≤ M‖ge‖ω

∣∣∣
t\
0

e−ω(|t|−|s|) ds
∣∣∣ ≤ Mω−1‖g‖ω,whi
h shows that the third term in (15) is a member of Bω. Similarly, weshow that so is the se
ond term there.A 
al
ulation similar to the one in (16) shows that ‖F (f) − F (g)‖ω <

(2M/ω)‖f − g‖ω. Hen
e, for ω > 2M , F is a 
ontra
tion in Bω and so, bythe Bana
h �xed point theorem, there exists a unique �xed point of F.Remark 1. Sin
e Bω ⊂ Bω′ for ω < ω′, by Proposition 1, there 
an beno more than one solution to (14) in Bω where ω ≤ 2M. Moreover, if g is a�xed point of F in Bω for some ω then it is a �xed point of F in all Bω′ where
ω′ > ω. Hen
e our proposition states that there exists a unique solution tothe Cau
hy problem related to (14) and this solution belongs to Bω for all
ω > 2M.



20 A. Bobrowski and M. Kubali«skaAlthough it seems that a 
losed form of the general solution to (14) isnot available, we 
an still show that this equation is equivalent to a systemof two ordinary di�erential equations for the even and odd parts of g. Tothis end we note �rst that, as 
an be 
he
ked dire
tly, for any fun
tions fand g on R, (fg)e = fge − ĝfo and (fg)o = fge − ĝfe. Hen
e, 
al
ulatingthe even part of both sides of equation (14) and noting that (g′)e = g′o, weobtain
g′o = gae − âgo + gebe + ce = geae + goae − âgo + gebe + ce

= ge[a + b]e + goao + ce.Analogously, g′e = ge[a+ b]o +aego + co. Conversely, the equations for ge and
go determine the equation for g. In other words, (14) is equivalent to thefollowing system of di�erential equations:(17) (

go

ge

)′
=

(
ao (a + b)e

ae (a + b)o

)(
go

ge

)
+

(
ce

co

)
.Clearly, if a and b are 
onstants equal to α/β and γ/β, respe
tively, thissystem redu
es to (2) with c = −(1/β)f. Formula (17) may be used as astarting point for investigation of (14) in a more general 
ase, where, forexample, a, b and c are 
ontinuous but unbounded.4. Equation (1) in an abstra
t Bana
h spa
e. Suppose that X is aBana
h spa
e and G is the generator (see e.g. [9℄) of a strongly 
ontinuousgroup {U(t), t ∈ R} of equibounded operators in X:(18) sup

t∈R

‖U(t)‖ =: M < ∞.Re
all that the operators C(t) = 1
2(U(t) + U(−t)), t ∈ R, form a strongly
ontinuous 
osine operator fun
tion (see e.g. [7, 15℄) so that the 
osine fun
-tional equation 2C(t)C(s) = C(t + s) + C(t − s), s, t ∈ R, is satis�ed. Thegenerator of {C(t), t ∈ R}, de�ned as limh→0

2
h2 [C(h)f − f ] for all f ∈ Xfor whi
h this limit exists, 
an be 
he
ked to be equal to G2 with naturaldomain (see e.g. [7, p. 77℄, 
f. [13℄). By the Sova generation theorem ([7, 15℄),all positive λ belong to the resolvent set of G2 and

λ(λ2 − G2)−1 =

∞\
0

e−λtC(t) dt(19)
=

1

2

∞\
0

e−λtU(t) dt +
1

2

∞\
0

e−λtU(−t) dt

=
1

2
(λ − G)−1 +

1

2
(λ + G)−1(all integrals in the strong topology).



A fun
tional equation 21Suppose also that X is a dire
t sum of two subspa
es: XP and XQ wherethe proje
tions P (on XP ) and Q (on XQ) are bounded in norm by 1. Bythe Phillips perturbation theorem [9℄, for any a ∈ R, both Ga := G + aPand −Ga generate strongly 
ontinuous semigroups, say {Sa(t), t ≥ 0} and
{S−

a (t), t ≥ 0}, respe
tively, su
h that ‖Sa(t)‖, ‖S−
a (t)‖ ≤ Me|a|t, t ≥ 0.Hen
e, by the Hille�Yosida generation theorem for groups ([5, 9℄), Ga is thegenerator of a strongly 
ontinuous group {Sa(t), t ∈ R} of operators in Xand ‖Sa(t)‖ ≤ Me|at|, t ∈ R. In parti
ular, any λ ∈ R su
h that |λ| > |a|belongs to the resolvent set of Ga.Suppose �nally that for f in the domain D(G) of G, Pf belongs to D(G)and GPf = QGf . This implies that Qf belongs to D(G) and

GQf = G(f − Pf) = Gf − QGf = PGf.Proposition 2. Under the above assumptions, for f ∈ X and |λ| > |a|,the resolvent Rλ,a := (λ − Ga)
−1 of Ga is given by

Rλ,af = G(µ − G2)−1f + (µ − G2)−1(λ−1µQf + λPf)(20)
= G(µ − G2)−1f + (µ − G2)−1(λf − aQf),where µ = λ(λ − a) > 0.Proof. In view of the above remarks, for any f ∈ X, the resolvent equa-tion of Ga,(21) λg − Gag = f,has a unique solution. We are to 
he
k that g = Rλ,af de�ned in (20) solvesthis equation. Clearly, g ∈ D(G). Moreover, a dire
t 
al
ulation shows thatfor any h ∈ X, k = P (µ − G2)−1h solves µk − G2k = Ph. Sin
e the uniquesolution to the last equation is k = (µ−G2)−1Ph, we see that P 
ommuteswith (µ − G2)−1. Hen
e, so does Q. Using

G2(µ − G2)−1f = µ(µ − G2)−1f − f,we obtain
Gag = Gg + aPg = G2(µ − G2)−1f + G(µ − G2)−1[λf − aQf + aQf ]

+ aλ(µ − G2)−1Pf

= (µ − G2)−1[µf + aλPf ] + λG(µ − G2)−1f − f.Sin
e λg = λG(µ − G2)−1f + (µ − G2)−1[µQf + λ2Pf ], the left-hand sideof (21) with g = Rλ,af equals
[−µ + λ2 − aλ](µ − G2)−1Pf + f = f,as desired.



22 A. Bobrowski and M. Kubali«skaRemark 2. Clearly, the way to derive relation (20) is to note that ap-plying P and Q to both sides of (21) we obtain the following system of twoequations that is equivalent to (21):(22) {
λPg − GQg − aPg = Pf,

λQg − GPg = Qf.This system, under the additional assumption that f ∈D(G), 
an be solvedby plugging Qg = λ−1[Qf + GPg] into the �rst equation, and this leadsto (20).Example 2. Let X = BUC(R) be the spa
e of uniformly 
ontinuousfun
tions on R with the supremum norm, and {U(t), t ∈ R} be the group oftranslations U(t)f(s) = f(s + t), s, t ∈ R. Clearly, ‖U(t)‖ = 1, t ∈ R. Thein�nitesimal generator G of this group is G = d/ds with natural (maximal)domain.Let P be the proje
tion of X onto the subspa
e XP of even fun
tionsin X, and Q be the proje
tion on the spa
e of odd fun
tions in X. Obviously,
Pf = fe and Qf = fo and ‖P‖ = ‖Q‖ = 1. Note that P leaves the setof di�erentiable fun
tions invariant and we have GPf = QGf for all di�er-entiable fun
tions f. In other words, the assumptions of Proposition 2 aresatis�ed. Therefore, the solution to equation (1) is given by g = (1/β)Rλ,afwith a = −γ/β and λ = α/β. To be more spe
i�
,

g =
1

β
(Rµ)′ +

α

β2
Rµf +

γ

β2
Rµfo,where

µ = λ(λ − a) = α(α + γ)/β2 and Rµ = (µ − G2)−1.Sin
e
(λ − G)−1f(t) =

∞\
0

e−λsf(t + s) ds,

(λ + G)−1f(t) =

0\
−∞

eλsf(s + t) dt,relation (19) gives
Rµf(t) =

1

2
√

µ

∞\
−∞

e−
√

µ|t|f(t + s) ds.This establishes (2) on
e again.Remark 3. For γ = 0, (1) redu
es to an ordinary linear di�erentialequation of �rst order with 
onstant 
oe�
ients. Hen
e, in that 
ase, (2)should redu
e to the resolvent of a �rst-order di�erential operator. More
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tional equation 23generally, for a = 0, (20) should redu
e to the resolvent of G. To 
he
k thiswe note that, by (19), G(λ−G)−1f = λ(λ−G)−1f − f and G(λ+G)−1f =
f − λ(λ + G)−1f, and relation (20) may be written in the form
Rλ,af =

1

2
[(
√

µ − G)−1f − (
√

µ + G)−1f ] + (µ − G2)−1(λ−1µQf + λPf).For a = 0 this redu
es to
1

2
[(λ − G)−1f − (λ + G)−1f ] + (λ2 − G2)−1(λQf + λPf)

=
1

2
[(λ − G)−1f − (λ + G)−1f ] + λ(λ2 − G2)−1f = (λ − G)−1f(where we used (19) again), as expe
ted.A
knowledgements. This work was supported by the Polish Govern-ment resear
h fund for 2005-2008, grant no. 1 P03A 044 29 (0356/P03/2005/29).

Referen
es[1℄ A. Biele
ki, Une remarque sur la méthode de Bana
h�Ca

ioppoli�Tikhonov, Bull.A
ad. Polon. S
i. 4 (1956), 261�268.[2℄ A. Bobrowski, A Feller evolution family of operators that des
ribes dynami
s of
hara
teristi
s of two individuals sampled from a Fisher�Wright population withvarying size, in preparation.[3℄ �, Fun
tional Analysis for Probability and Sto
hasti
 Pro
esses, Cambridge, 2005.[4℄ R. E. Edwards, Fun
tional Analysis. Theory and Appli
ations, Holt, Rinehart andWinston, 1965, republished by Dover Publ., 1995.[5℄ K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equa-tions, Springer, 2000.[6℄ W. Ewens, Mathemati
al Population Geneti
s. I. Theoreti
al Introdu
tion, 2nd ed.,Springer, 2004.[7℄ H. O. Fattorini, Se
ond Order Linear Di�erential Equations in Bana
h Spa
es,North-Holland Math. Stud. 108, Elsevier, 1985.[8℄ S. Goldstein, On di�usion of dis
ontinuous movements, and on the telegraph equa-tion, Quart. J. Me
h. Appl. Math. 4 (1951), 129-156.[9℄ E. Hille and R. S. Phillips, Fun
tional Analysis and Semigroups, rev. ed., Amer.Math. So
. Collloq. Publ. 31, 1957.[10℄ M. Ka
, Some Sto
hasti
 Problems in Physi
s and Mathemati
s, Magnolia Petro-leum Co. Colloq. Le
t. 2, 1956.[11℄ J. F. C. Kingman, Coherent random walks arising in some geneti
 models, Pro
.Roy. So
. London Se
t. A 351 (1976), 19�31.[12℄ �, The 
oales
ent, Sto
hasti
 Pro
ess. Appl. 13 (1982), 235�248.[13℄ J. Kisy«ski, On operator-valued solutions of d'Alembert's fun
tional equation, I,Colloq. Math. 23 (1971), 107�114.[14℄ �, On M. Ka
's probabilisti
 formula for the solution of the telegraphist's equation,Ann. Polon. Math. 29 (1974), 259�272.[15℄ M. Sova, Cosine operator fun
tions, Dissertationes Math. 49 (1966).



24 A. Bobrowski and M. Kubali«ska[16℄ F. Tajima, Evolutionary relationship of DNA sequen
es in �nite populations, Ge-neti
s 105 (1983), 437�460.[17℄ S. Tavaré and O. Zeitouni, Le
tures on Probability Theory and Statisti
s (É
oled'Été de Probabilités de Saint-Flour XXXI, 2001), Le
ture Notes in Math. 1837,Springer, 2004.Institute of Mathemati
sPolish A
ademy of S
ien
esKatowi
e bran
hBankowa 1440-007 Katowi
e, Polandon leave fromDepartment of Mathemati
sFa
ulty of Ele
tri
al Engineeringand Computer S
ien
eLublin University of Te
hnologyNadbystrzy
ka 38A20-618 Lublin, PolandE-mail: a.bobrowski�pollub.pl

Department of Computer S
ien
esFa
ulty of Managementand Fundamentals of Te
hnologyLublin University of Te
hnologyNadbystrzy
ka 3820-618 Lublin, PolandE-mail: m.kubalinska�pollub.pl

Re
eived 13.10.2005and in �nal form 19.2.2006 (1643)


