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On weakly cyclic Ricci symmetric manifolds

by A. A. Shaikh and Sanjib Kumar Jana (Burdwan)

Abstract. We introduce a type of non-flat Riemannian manifolds called weakly cyclic

Ricci symmetric manifolds and study their geometric properties. The existence of such
manifolds is shown by several non-trivial examples.

1. Introduction. The notion of weakly Ricci symmetric manifold was
introduced by Tamássy and Binh [4]. A Riemannian manifold (Mn, g)
(n > 2) is called weakly Ricci symmetric if its Ricci tensor S of type (0, 2)
is not identically zero and satisfies the condition

(1.1) (∇XS)(Y, Z) = A(X)S(Y, Z) +B(Y )S(Z,X) + C(Z)S(X,Y ),

where A, B, C are 1-forms (not simultaneously zero) and ∇ denotes the
operator of covariant differentiation with respect to the metric tensor g.
Such an n-dimensional manifold was denoted by (WRS)n. If in (1.1) the
1-form A is replaced by 2A then the manifold is called a generalized pseudo

Ricci symmetric manifold, introduced by Chaki and Koley [1].
A Riemannian manifold (Mn, g) (n > 2) is called weakly cyclic Ricci

symmetric if its Ricci tensor S of type (0, 2) is not identically zero and
satisfies

(1.2) (∇XS)(Y, Z) + (∇Y S)(Z,X) + (∇ZS)(X,Y )

= A(X)S(Y, Z) +B(Y )S(Z,X) + C(Z)S(X,Y ),

where A, B, C are 1-forms (not simultaneously zero). Such an n-dimensional
manifold will be denoted by (WCRS)n.

Section 2 is concerned with some fundamental properties of (WCRS)n

and the observation that every (WRS)n is a special type of (WCRS)n. But
a (WCRS)n is not a (WRS)n in general. However, if the Ricci tensor is of
Codazzi type then a (WCRS)n is a (WRS)n. It is proved that if a (WCRS)n

is a (WRS)n then −r/2 is an eigenvalue of the Ricci tensor S corresponding
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to the eigenvector µ defined by g(X,µ) = D(X). But in a (WCRS)n, if the
scalar curvature r is constant then −r is an eigenvalue of the Ricci tensor S
corresponding to the eigenvector µ. Also, it is shown that in such a manifold
the length of the Ricci tensor S is r.

Section 3 is devoted to the Einstein (WCRS)n. It is proved that in an
Einstein (WCRS)n the sum of the associated 1-forms is zero everywhere.

Section 4 deals with some global properties of (WCRS)n and it is proved
that under certain conditions such a manifold is isometric to a sphere and it
does not admit a non-zero Killing vector field, a non-zero projective Killing
vector field or a non-zero conformal Killing vector field.

In Section 5 we investigate applications of (WCRS)n to general relativ-
ity and cosmology. It is shown that in a viscous fluid (WCRS)4 spacetime
obeying Einstein’s equation with cosmological constant, none of the isotropic
pressure and energy density can be a constant and the matter content of
such a spacetime is a non-thermalized fluid.

The last section provides several non-trivial examples of (WCRS)n which
are not (WRS)n.

2. Some fundamental properties of (WCRS)n (n > 2). Let Q be the
symmetric endomorphism of the tangent space at any point of the manifold
corresponding to the Ricci tensor S, i.e., S(X,Y ) = g(QX,Y ) for all vector
fields X and Y .

First we consider a (WRS)n (n > 2). Interchanging X, Y , Z cyclically
in (1.1) and adding the results we obtain

(2.1) (∇XS)(Y, Z) + (∇Y S)(Z,X) + (∇ZS)(X,Y )

= γ(X)S(Y, Z) + γ(Y )S(Z,X) + γ(Z)S(X,Y ),

where γ(X) = A(X)+B(X)+C(X) for all vector fields X. Comparing (2.1)
with (1.2) we can state the following:

Theorem 2.1. A (WRS)n (n> 2) is a special type of (WCRS)n (n > 2).

If the Ricci tensor is of Codazzi type [3] then

(∇XS)(Y, Z) = (∇Y S)(Z,X) = (∇ZS)(X,Y )

for all X, Y , Z, and hence the defining condition of a (WCRS)n reduces to

(∇XS)(Y, Z) = a(X)S(Y, Z) + b(Y )S(Z,X) + c(Z)S(X,Y ),

where a(X) = g
(

X, 1
3̺1

)

, b(X) = g
(

X, 1
3̺2

)

and c(X) = g
(

X, 1
3̺3

)

are
1-forms. Thus the manifold is a (WRS)n. This leads to the following:

Theorem 2.2. If the Ricci tensor of a (WCRS)n (n > 2) is of Codazzi

type then the manifold is a (WRS)n.
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Again if a (WRS)n (n > 2) is a (WCRS)n then from (1.2) and (2.1) it
follows that

(2.2) [B(X) + C(X)]S(Y, Z) + [A(Y ) + C(Y )]S(Z,X)

+ [A(Z) +B(Z)]S(X,Y ) = 0.

Contracting (2.2) with respect to Y and Z we have

(2.3) r[B(X) + C(X)] + 2A(QX) +B(QX) + C(QX) = 0.

Similarly contracting (2.2) with respect to Z and X we obtain

r[A(Y ) + C(Y )] +A(QY ) + 2B(QY ) + C(QY ) = 0

for all vector fields Y . Replacing Y by X in the last relation we get

(2.4) r[A(X) + C(X)] +A(QX) + 2B(QX) + C(QX) = 0.

Further, contraction of (2.2) with respect to X and Y yields

r[A(Z) +B(Z)] +A(QZ) +B(QZ) + 2C(QZ) = 0

for all vector fields Z. Replacing Z by X in the last relation we obtain

(2.5) r[A(X) +B(X)] +A(QX) +B(QX) + 2C(QX) = 0.

Adding (2.3), (2.4) and (2.5) we get

A(QX) +B(QX) + C(QX) = −
r

2
[A(X) +B(X) + C(X)],

which can be written as

(2.6) D(QX) = −
r

2
D(X)

where D(X) = A(X) + B(X) + C(X). Let µ be the vector field associated
with the 1-form D, i.e., g(X,µ) = D(X). Hence from (2.6) we have

S(X,µ) = −
r

2
g(X,µ).

Thus we can state the following:

Theorem 2.3. If we have (1.2) and (2.1), then −r/2 is an eigenvalue

of the Ricci tensor S corresponding to the eigenvector µ.

Let {ei : i = 1, . . . , n} be an orthonormal basis of the tangent space at
any point of the manifold. Then setting Y = Z = ei in (1.2) and summing
over i, 1 ≤ i ≤ n, we obtain

(2.7) 2dr(X) = rA(X) +B(QX) + C(QX)

where r is the scalar curvature of the manifold. Similarly, contracting (1.2)
with respect to Z and X we have

2dr(Y ) = A(QY ) + rB(Y ) + C(QY )

for all vector fields Y . Replacing Y by X in the above relation we get

(2.8) 2dr(X) = A(QX) + rB(X) + C(QX).
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Further, contraction of (1.2) with respect to X and Y yields

2dr(Z) = A(QZ) +B(QZ) + rC(Z)

for all vector fields Z. Replacing Z by X in the above relation we obtain

(2.9) 2dr(X) = A(QX) +B(QX) + rC(X).

From (2.7) and (2.8), it follows that

(2.10) H1(QX) = −rH1(X)

where H1(X) = A(X) − B(X). Let µ1 be the vector field associated with
the 1-form H1(X) defined by g(X,µ1) = H1(X). Thus (2.10) implies that

S(X,µ1) = −rg(X,µ1).

This leads to the following:

Theorem 2.4. In a (WCRS)n, −r is an eigenvalue of the Ricci tensor

S corresponding to the eigenvector µ1.

Similarly, from (2.8) and (2.9) we have

(2.11) H2(QX) = −rH2(X)

where H2(X) = B(X) − C(X). Let µ2 be the vector field associated with
the 1-form H2(X) defined by g(X,µ2) = H2(X). Thus (2.11) implies that

S(X,µ2) = −rg(X,µ2).

Hence we have the following:

Theorem 2.5. In a (WCRS)n, −r is an eigenvalue of the Ricci tensor

S corresponding to the eigenvector µ2.

Now addition of (2.7), (2.8) and (2.9) yields

(2.12) 6dr(X) = rD(X) +D(QX)

where D(X) = A(X) + B(X) + C(X) for all vector fields X. This leads to
the following:

Proposition 2.1. In a (WCRS)n (n > 2) the relation (2.12) holds.

Now if we assume the scalar curvature to be constant, then (2.12) re-
duces to

D(QX) = −rD(X), i.e., S(X,µ) = −rg(X,µ).

Thus we can state the following:

Theorem 2.6. In a (WCRS)n with constant scalar curvature, −r is an

eigenvalue of the Ricci tensor S corresponding to the eigenvector µ.

We now prove the following lemmas.
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Lemma 2.1. In a (WCRS)n, the Ricci tensor S is of the following form:

(2.13) S = rα⊗ α

where α is a non-zero 1-form defined by α(X) = g(X, ̺), ̺ being a unit

vector field.

Proof. Interchanging Y and Z in (1.2) we obtain

(∇XS)(Z, Y ) + (∇ZS)(Y,X) + (∇Y S)(X,Z)

= A(X)S(Z, Y ) +B(Z)S(Y,X) + C(Y )S(X,Z).

Subtracting this relation from (1.2) we get

[B(Y ) − C(Y )]S(X,Z) = [B(Z) − C(Z)]S(X,Y )

where the symmetry property of S has been used. Let us consider E(X) =
g(X,λ) = B(X) − C(X) for all vector fields X where λ is a vector field
associated with the 1-form E. Then the above relation reduces to

(2.14) E(Y )S(Z,X) = E(Z)S(X,Y ).

Contraction of (2.14) with respect to X and Z yields

(2.15) rE(Y ) = E(QY ).

Also from (2.14) we have

E(λ)S(X,Y ) = E(Y )S(X,λ) = E(Y )g(QX,λ) = E(Y )E(QX),

which, in view of (2.15), yields

S(X,Y ) =
r

E(λ)
E(X)E(Y ) = rα(X)α(Y ),(2.16)

where α(X) = g(X, ̺) = (1/
√

E(λ))E(X), ̺ being a unit vector field asso-
ciated with the 1-form α. Hence the lemma is proved.

Lemma 2.2. In a (WCRS)n, the length of the Ricci tensor S is r.

Proof. Let s2 be the square of the length of the Ricci tensor S. Then
from (2.16) we obtain

s2 =

n
∑

i=1

S(Qei, ei) = r

n
∑

i=1

α(Qei)α(ei)(2.17)

= r
n

∑

i=1

g(Qei, ̺)g(ei, ̺) = rg(Q̺, ̺) = r2,

i.e., s = r. This proves the lemma.

3. Einstein (WCRS)n (n > 2). This section deals with a (WCRS)n

defined by (1.2) which is an Einstein manifold. Then we have

(3.1) S(X,Y ) =
r

n
g(X,Y ),
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from which it follows that

(3.2) dr(X) = 0 and (∇ZS)(X,Y ) = 0

for all vector fields X, Y , Z. In view of (3.1) and (3.2), from (1.2) we get

(3.3) r[A(X)g(Y, Z) +B(Y )g(Z,X) + C(Z)g(X,Y )] = 0,

which implies, on contraction with respect to Y and Z, that

(3.4) r[nA(X) +B(X) + C(X)] = 0.

Again contracting (3.3) with respect to Z and X, we obtain

r[A(Y ) + nB(Y ) + C(Y )] = 0

for all vector fields Y . Replacing Y by X in the last relation we obtain

(3.5) r[A(X) + nB(X) + C(X)] = 0.

Further, contracting (3.3) with respect to X and Y , we obtain

r[A(Z) +B(Z) + nC(Z)] = 0

for all vector fields Z. Replacing Z by X in the last relation we obtain

(3.6) r[A(X) +B(X) + nC(X)] = 0.

Adding (3.4), (3.5) and (3.6) we obtain

r(n+ 2)[A(X) +B(X) + C(X)] = 0,

which implies

(3.7) A(X) +B(X) + C(X) = 0,

since r 6= 0. If r = 0 then (3.1) yields S(X,Y ) = 0, which is inadmissible by
the definition of (WCRS)n. Thus we have the following:

Theorem 3.1. In an Einstein (WCRS)n the sum of the associated 1-
forms vanishes everywhere.

Now from (1.2) we have

(3.8) (∇XS)(X,X) =
1

3
[A(X) +B(X) + C(X)]S(X,X).

Therefore, by (3.7), equation (3.8) reduces to

(3.9) (∇XS)(X,X) = 0,

which implies that the Ricci curvature S(X,X) is covariantly constant in
the direction of X. Further, if (3.9) holds then (3.8) implies

A(X) +B(X) + C(X) = 0 provided that S(X,X) 6= 0.

This leads to the following:

Theorem 3.2. In an Einstein (WCRS)n with non-vanishing Ricci cur-

vature, the sum of the associated 1-forms is zero if and only if the Ricci

curvature S(X,X) is covariantly constant in the direction of X.
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4. Some global properties of (WCRS)n (n > 2). This section is
concerned with compact, orientable (WCRS)n (n > 2) without boundary.
We prove the following:

Theorem 4.1. A compact , orientable (WCRS)n (n > 2) without bound-

ary of constant scalar curvature is isometric to a sphere provided that it

admits a non-isometric conformal transformation.

Proof. We assume that the scalar curvature of a compact, orientable
(WCRS)n (n > 2) without boundary is constant. Then, in view of (2.17)
the length s of the Ricci tensor S is constant. We also suppose that the man-
ifold under consideration admits a non-isometric conformal transformation
generated by a vector field X. Hence we have

LXs
2 = 0

where L is the operator of Lie differentiation. By [6], M is isometric to a
sphere. This proves the theorem.

Theorem 4.2. In a compact , orientable (WCRS)n (n > 2) without

boundary there exists no non-zero Killing vector field.

Proof. It is known [5] that for a vector field X in a Riemannian mani-
fold M , the following relation holds:

(4.1)
\
M

[S(X,X) − |∇X|2 − (divX)2] dv ≤ 0

where dv denotes the volume element of M . If X is a Killing vector field,
then divX = 0 (see [6]). Hence (4.1) takes the form

(4.2)
\
M

[S(X,X) − |∇X|2] dv = 0.

Let θ be the angle between the vector field ̺ associated with the 1-form
α and any vector X of (WCRS)n. Then cos θ = g(X, ̺)/

√

g(X,X) ≤ 1.

Therefore g(X, ̺) ≤
√

g(X,X) and consequently from (1.2) it follows that

(4.3) S(X,X) ≤ |r| |X|2.

Hence \
M=(WCRS)n

[|r| |X|2 − |∇X|2] dv ≥
\

M

[S(X,X) − |∇X|2] dv,

which implies by (4.2) that\
M

[|r| |X|2 − |∇X|2] dv ≥ 0,

which in turn, by virtue of (4.1) and (4.2), leads to\
M

[|r| |X|2 − |∇X|2] dv = 0.

Hence X = 0. This proves the theorem.
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Definition 4.1 ([6]). A vector field X is said to be a projective Killing

vector field in a Riemannian manifold (Mn, g) (n > 2) if it satisfies

(LX∇)(Y, Z) = ω(Y )Z + ω(Z)Y

for any vector fields Y and Z, where ω is a projective Killing form and L is
the operator of Lie differentiation.

Theorem 4.3. In a compact , orientable (WCRS)n (n > 2) without

boundary , there exists no non-zero projective Killing vector field provided

that the Ricci curvature is negative.

Proof. We know [5] that for a vector field X in a Riemannian mani-
fold M , the following relation holds:

(4.4)
\

M

[

S(X,X) −
1

4
|dξ|2 −

n− 1

2(n+ 1)
(divX)2

]

dv = 0,

where ξ is a 1-form corresponding to the vector field X. We now assume
that S(X,X) < 0 and hence from (4.4) we obtain dξ = 0 and divX = 0.
This implies that X is harmonic as well as a Killing vector field. This proves
the theorem.

Definition 4.2 ([6]). A vector field X is said to be a conformal Killing

vector field in a Riemannian manifold (Mn, g) (n > 2) if it satisfies

LXg = 2ψg

for any vector field X, where ψ is given by ψ = n−1(divX) and L is the
operator of Lie differentiation.

Theorem 4.4. In a compact , orientable (WCRS)n (n > 2) without

boundary there exists no non-zero conformal Killing vector field provided

that the Ricci curvature is negative.

Proof. It is known from [5] that for a vector field X in a Riemannian
manifold M , the following relation holds:

(4.5)
\
M

[

S(X,X) − |∇X|2 −
n− 2

n
(divX)2

]

dv = 0.

Now we assume that S(X,X) < 0. Then proceeding as before we obtain

∇X = 0, divX = 0.

This proves the theorem.

Theorem 4.5. In a compact , orientable (WCRS)n (n > 2) without

boundary , any harmonic vector field is orthogonal to the vector field ̺ as-

sociated with the 1-form α and also it is a parallel vector field provided that

the Ricci curvature and the scalar curvature are positive.



Weakly cyclic Ricci symmetric manifolds 281

Proof. It is known from [5] that for a vector field X in a Riemannian
manifold M , the following relation holds:

(4.6)
\
M

[S(X,X) + |∇X|2] dv = 0.

Now we assume that S(X,X) > 0 and hence (4.6) reduces to\
M

[r|g(X, ̺)|2 + |∇X|2] dv = 0,

which implies that
g(X, ̺) = 0, ∇X = 0.

Hence the theorem follows.

5. General relativistic viscous fluid (WCRS)4 spacetime. A vis-
cous fluid spacetime is a connected semi-Riemannian manifold (M4, g) with
signature (−,+,+,+). In general relativity, the key role is played by Ein-
stein’s equation

(5.1) S(X,Y ) −
r

2
g(X,Y ) + λg(X,Y ) = kT (X,Y )

for all vector fields X, Y , where S is the Ricci tensor of type (0, 2), r is
the scalar curvature, λ is the cosmological constant, k is the gravitational
constant and T is the energy-momentum tensor of type (0, 2). The matter
content of the spacetime is described by the energy-momentum tensor T
which is to be determined from physical considerations dealing with the
distribution of matter and energy.

Let us consider the energy-momentum tensor T of a viscous fluid space-
time in the following form (cf. [2]):

(5.2) T (X,Y ) = pg(X,Y ) + (σ + p)α(X)α(Y )

where σ, p are the energy density and isotropic pressure respectively, and α
is the 1-form associated with the unit timelike flow vector field ̺ of the fluid
given by g(X, ̺) = α(X) for all X. Then because of (5.2), equation (5.1)
can be written as

(5.3) S(X,Y ) = (r/2 + kp− λ)g(X,Y ) + k(σ + p)α(X)α(Y ).

Setting Y = ̺ in (5.3) we deduce by (2.13) that

(5.4) σ =
3r − 2λ

2k
.

Again contracting (5.3) we get

(5.5) p =
r + 6λ

6k
.

We now assume that the scalar curvature r of the spacetime is constant.
Then from (5.4) and (5.5), it follows that σ and p are constants. Hence we
can state the following:
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Theorem 5.1. If a viscous fluid (WCRS)4 spacetime obeys Einstein’s

equation with cosmological constant then the energy density and isotropic

pressure of the fluid are constants provided that the scalar curvature of the

spacetime is constant.

Now since σ > 0 and p > 0, we see from (5.4) and (5.5) that

λ < 3r/2 and λ > −r/6
and hence

(5.6) −r/6 < λ < 3r/2.

This leads to the following:

Theorem 5.2. In a viscous fluid (WCRS)4 spacetime obeying Einstein’s

equation, the cosmological constant λ satisfies the relation (5.6).

We now discuss whether a viscous fluid (WCRS)4 spacetime with ̺ as
the unit timelike flow vector field can admit heat flux or not. Therefore, if
possible, let the energy-momentum tensor T be of the following form (cf. [2]):

T (X,Y ) = pg(X,Y ) + (σ + p)α(X)α(Y ) + α(X)β(Y ) + α(Y )β(X),

where β(X) = g(X,V ) for all vector fields X, and V is the heat flux vector
field, and σ, p are the energy density and isotropic pressure respectively.
Thus we have g(̺, V ) = 0, i.e., β(̺) = 0. Hence by the last relation, (5.1)
yields

(5.7) S(X,Y ) −
r

2
g(X,Y ) + λg(X,Y )

= k[pg(X,Y ) + (σ + p)α(X)α(Y ) + α(X)β(Y ) + α(Y )β(X)].

Setting Y = ̺ in (5.7) we deduce by (2.13) that

(5.8) (−3r/2 + kσ + λ)α(X) = −kβ(X) for all X.

Putting X = U in (5.8) we obtain

−3r/2 + kσ + λ = 0.

Using the last relation in (5.8) we obtain

β(X) = 0, since k 6= 0.

Thus we have the following:

Theorem 5.3. A viscous fluid (WCRS)4 spacetime obeying Einstein’s

equation cannot admit heat flux.

6. Some examples of (WCRS)n (n > 2). This section deals with sev-
eral non-trivial examples of (WCRS)n. On the real number space R

n (with
coordinates x1, . . . , xn) we define a suitable Riemannian metric g such that
R

n becomes a Riemannian manifold (Mn, g). We calculate the components
of the Ricci tensor and then we verify the defining condition (1.2).
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Example 1. We define a Riemannian metric g on R
4 by the formula

ds2 = gijdx
idxj(6.1)

= ex1

(dx1)2 + (x1)2(dx2)2 + (x1 sinx2)2(dx3)2 + p2(dx4)2

(i, j = 1, 2, 3, 4), where p is an arbitrary constant and 0 < x1 < 1. Then
the only non-vanishing components of the Christoffel symbols and the Ricci
tensor and its covariant derivatives are as follows:

Γ 1
11 =

1

2
, Γ 2

12 = Γ 3
13 =

1

x1
, Γ 1

22 = −x1e−x1

, Γ 2
33 = − sinx2 cosx2,

Γ 3
23 = cotx2, Γ 1

33 = −x1e−x1

(sinx2)2,

S11 = −
1

x1
, S22 = e−x1

(

1 −
x1

2

)

− 1,

S33 = (sinx2)2
[

e−x1

(

1 −
x1

2

)

− 1

]

,

S11,1 =
1

(x1)2
+

1

x1
, S22,1 = e−x1

(

x1

2
−

1

2
−

2

x1

)

+
2

x1
,

S33,1 = (sinx2)2
[

e−x1

(

x1

2
−

1

2
−

2

x1

)

+
2

x1

]

,

where “,” denotes the covariant differentiation with respect to the metric
tensor g. It can be easily found that the scalar curvature of the resulting
manifold (M4, g) is non-zero. We shall now show that M4 is a (WCRS)4,
i.e., it satisfies the defining condition (1.2).

The associated 1-forms are as follows:

Ai(x) =







x1(x1 − 1) + 4(ex1

− 1)

x1(2 − x1 − ex1)
for i = 1,

0 otherwise,

(6.2)

Bi(x) =







x1(x1 − 1) + 4(ex1

− 1)

x1(ex1 + x1 − 2)
for i = 1,

0 otherwise,

(6.3)

Ci(x) =

{

−
3

x1
(x1 + 1) for i = 1,

0 otherwise,
(6.4)

at any point x ∈M . In our M4, (1.2) reduces to the following equations:

S11,1 + S11,1 + S11,1 = A1S11 +B1S11 + C1S11,(i)

S22,1 + S21,2 + S12,2 = A1S22 +B2S21 + C2S12,(ii)

S33,1 + S31,3 + S13,3 = A1S33 +B3S31 + C3S13,(iii)

since for the other cases the components of each term of (1.2) vanish iden-
tically and (1.2) holds trivially. Now from (6.2)–(6.4) we get the following
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relations for the right hand sides (R.H.S.) and left hand sides (L.H.S.):

R.H.S. of (i) = A1S11 +B1S11 + C1S11 =
1

(x1)2
+

1

x1

= S11,1 + S11,1 + S11,1 = L.H.S. of (i),

R.H.S. of (ii) = A1S22 +B2S21 + C2S12 = e−x1

(

x1

2
−

1

2
−

2

x1

)

+
2

x1

= S22,1 + S21,2 + S12,2 = L.H.S. of (ii).

By a similar argument it can be shown that (iii) is true. Therefore, (M4, g)
is a (WCRS)4 which is neither Ricci recurrent nor (WRS)4. Hence we can
state the following:

Theorem 6.1. Let (M4, g) be a Riemannian manifold endowed with the

metric given by

ds2 = gijdx
idxj = ex1

(dx1)2 + (x1)2(dx2)2 + (x1 sinx2)2(dx3)2 + p2(dx4)2

(i, j = 1, 2, 3, 4), where p is an arbitrary constant and 0 < x1 < 1. Then

(M4, g) is a (WCRS)4 with non-vanishing scalar curvature which is neither

Ricci recurrent nor (WRS)4.

Example 2. We define a Riemannian metric g on R
4 by

ds2 = gijdx
idxj = (1 + 2q)[(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2](6.5)

(i, j = 1, 2, 3, 4), where q = ex1

/k2 and k is a non-zero constant. Then the
only non-vanishing components of the Christoffel symbols and the curvature
tensor are

Γ 1
22 = Γ 1

33 = −
q

1 + 2q
, Γ 1

11 = Γ 2
12 = Γ 3

13 =
q

1 + 2q
,

R1221 = R1331 = R1441 =
q

1 + 2q

and the components which can be obtained from these by symmetry proper-
ties. Using the above relations, we find that the non-vanishing components
of the Ricci tensor and their covariant derivatives are as follows:

S11 =
3q

(1 + 2q)2
, S22 =

q

(1 + 2q)2
,

S33 =
q

(1 + 2q)2
, S44 =

q

(1 + 2q)2
,

S11,1 =
3q(1 − 4q)

(1 + 2q)3
, S22,1 =

q(1 − 4q)

(1 + 2q)3
,

S33,1 =
q(1 − 4q)

(1 + 2q)3
, S44,1 =

q(1 − 4q)

(1 + 2q)3
.

Also it can be easily shown that the scalar curvature of the resulting manifold
(M4, g) is r = 6q/(1 + 2q)3, which is non-vanishing and non-constant. We
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shall now show thatM4 is a (WCRS)4. The associated 1-forms are as follows:

Ai(x) =

{

1 − 4q

1 + 2q
for i = 1,

0 otherwise,
(6.6)

Bi(x) =

{

2

1 + 2q
for i = 1,

0 otherwise,
(6.7)

Ci(x) =

{

−
8q

1 + 2q
for i = 1,

0 otherwise,
(6.8)

at any point x ∈M . Now, (1.2) reduces to the equations

S11,1 + S11,1 + S11,1 = A1S11 +B1S11 + C1S11,(i)

S22,1 + S21,2 + S12,2 = A1S22 +B2S21 + C2S12,(ii)

S33,1 + S31,3 + S13,3 = A1S33 +B3S31 + C3S13,(iii)

S44,1 + S41,4 + S14,4 = A1S44 +B4S41 + C4S14,(iv)

since for the other cases (1.2) holds trivially. From (6.6)–(6.8) we get

R.H.S. of (i) = A1S11 +B1S11 + C1S11 =
9q(1 − 4q)

(1 + 2q)3

= S11,1 + S11,1 + S11,1 = L.H.S. of (i).

By a similar argument it can be shown that (ii)–(iv) are true. Therefore,
(M4, g) is a (WCRS)4 which is neither Ricci recurrent nor (WRS)4. Thus
we can state the following:

Theorem 6.2. Let (M4, g) be a Riemannian manifold endowed with the

metric given by

ds2 = gijdx
idxj = (1 + 2q)[(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2]

(i, j = 1, 2, 3, 4), where q = ex1

/k2 and k is a constant. Then (M4, g) is a

(WCRS)4 which is neither Ricci recurrent nor (WRS)4.

Example 3. We define a Riemannian metric g on R
4 by

ds2 = gijdx
idxj = (x4)

4

3 [(dx1)2 + (dx2)2 + (dx3)2] + (dx4)2(6.9)

(i, j = 1, 2, 3, 4). Then the only non-vanishing components of the Christoffel
symbols and the curvature tensor are

Γ 1
14 = Γ 2

24 = Γ 3
34 =

2

3x4
, Γ 4

11 = Γ 4
22 = Γ 4

33 = −
2

3
(x4)1/3,

R1441 = R2442 = R3443 =
2

9(x4)2/3
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and the components obtained by symmetry properties. The non-vanishing
components of the Ricci tensor and their covariant derivatives are:

S11 =
2

9(x4)2/3
, S22 =

2

9(x4)2/3
,

S33 =
2

9(x4)2/3
, S44 =

2

3(x4)2
,

S11,4 = −
4

9(x4)2/3
, S22,4 = −

4

9(x4)2/3
,

S33,4 = −
4

9(x4)2/3
, S44,4 = −

4

3(x4)3
.

It can be easily shown that the scalar curvature of the resulting manifold
(M4, g) is r = 4/3(x4)2, which is non-vanishing and non-constant. We shall
now show that M4 is a (WCRS)4. The associated 1-forms are

Ai(x) =

{

−
2

x4
for i = 4,

0 otherwise,
(6.10)

Bi(x) =

{

−
1

x4
for i = 4,

0 otherwise,
(6.11)

Ci(x) =

{

−
3

x4
for i = 4,

0 otherwise,
(6.12)

at any point x ∈M . Now, (1.2) reduces to the equations

S11,4 + S14,1 + S41,1 = A4S11 +B1S14 + C1S41,(i)

S22,4 + S24,2 + S42,2 = A4S22 +B2S24 + C2S42,(ii)

S33,4 + S34,3 + S43,3 = A4S33 +B3S34 + C3S43,(iii)

S44,4 + S44,4 + S44,4 = A4S44 +B4S44 + C4S44,(iv)

since for the other cases (1.2) holds trivially. By (6.10)–(6.12) we get

R.H.S. of (i) = A4S11 +B1S14 + C1S41 = −
4

9(x4)5/3

= S11,4 + S14,1 + S41,1 = L.H.S. of (i).

By a similar argument it can be shown that (ii)–(iv) are true. Therefore,
(M4, g) is a (WCRS)4 which is neither Ricci recurrent nor (WRS)4. Thus
we can state the following:

Theorem 6.3. Let (M4, g) be a Riemannian manifold endowed with the

metric given by

ds2 = gijdx
idxj = (x4)4/3[(dx1)2 + (dx2)2 + (dx3)2] + (dx4)2
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(i, j = 1, 2, 3, 4). Then (M4, g) is a (WCRS)4 which is neither Ricci recur-

rent nor (WRS)4.

Example 4. Let M be an open subset of R
n (n ≥ 4) endowed with the

metric

ds2 = gijdx
idxj = [(x4)4/3− 1][(dx1)2+(dx2)2+(dx3)2]+δabdx

adxb(6.13)

(i, j = 1, . . . , n), where δab is the Kronecker delta and a, b run from 1 to n.
Then the only non-vanishing components of the Christoffel symbols and

the curvature tensor are

Γ 1
14 = Γ 2

24 = Γ 3
34 =

2

3x4
, Γ 4

11 = Γ 4
22 = Γ 4

33 = −
2

3
(x4)1/3,

R1441 = R2442 = R3443 =
2

9(x4)2/3

and the components obtained by symmetry properties. Now the non-vanish-
ing components of the Ricci tensor and their covariant derivatives are

S11 = S22 = S33 =
2

9(x4)2/3
, S44 =

2

3(x4)2
,

S11,4 = −
4

9(x4)2/3
, S22,4 = −

4

9(x4)2/3
,

S33,4 = −
4

9(x4)
2

3

, S44,4 = −
4

3(x4)3
,

It can be easily shown that the scalar curvature of the resulting manifold
(Mn, g) is r = 4/3(x4)2, which is non-vanishing and non-constant. We shall
now show that this Mn is a (WCRS)n.

The associated 1-forms are

Ai(x) =







−
2

x4
for i = 4,

0 otherwise,

Bi(x) =







−
3

x4
for i = 4,

0 otherwise,

Ci(x) =







−
1

x4
for i = 4,

0 otherwise,

at any point x ∈ M . Then proceeding as in Example 3, it can be easily
shown that the manifold under consideration is a (WCRS)n which is neither
Ricci recurrent nor (WRS)n. Hence we can state the following:
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Theorem 6.4. Let (Mn, g) (n ≥ 4) be a Riemannian manifold endowed

with the metric given by

ds2 = gijdx
idxj = [(x4)4/3 − 1][(dx1)2 + (dx2)2 + (dx3)2] + δabdx

adxb

(i, j = 1, . . . , n), where δab is the Kronecker delta and a, b run from 1 to n.
Then (Mn, g) (n ≥ 4) is a (WCRS)n which is neither Ricci recurrent nor

(WRS)n.
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