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On the dynamics of extendable polynomial
endomorphisms of R?

by Ewa LicockA (Warszawa)

Abstract. We extend the results obtained in our previous paper, concerning quasireg-
ular polynomials of algebraic degree two, to the case of polynomial endomorphisms of R?
whose algebraic degree is equal to their topological degree. We also deal with some other
classes of polynomial endomorphisms extendable to CP?.

1. Introduction. The present paper is a continuation of our two previ-
ous papers [Lil] and [Li2|. In [Lil]| we proved that each quadratic quasiregular
polynomial mapping on R? can be complexified and extended to the com-
plex projective space CP? in such a way that this extension acts on CP?\ C?
as a Blaschke product. Using this fact we described the dynamics of ho-
mogeneous, degree two, quasiregular polynomial mappings on C. Moreover,
we proved the existence of Bottcher coordinates near oo for a nonhomoge-
neous quasiregular, degree two, polynomial mapping for which the Blaschke
product on CP? \ C? has a fixed point inside the unit disc.

In [Li2| we found a simple algebraic condition which is equivalent to the
extendability of a complexification of a polynomial mapping from R? into it-
self to a polynomial endomorphism of CP2. The polynomial endomorphisms
of R? which satisfy this condition will be called extendable polynomial en-
domorphisms.

The aim of the present paper is to extend the results of [Lil] to a wide
class of extendable polynomial endomorphisms of R? with an arbitrary alge-
braic degree.

It turns out that the following condition is crucial: The polynomial en-
domorphism () must be extendable and have the topological degree equal to
its algebraic degree. We shall always denote the algebraic degree by n.
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We shall prove that in this case the homogeneous leading term @),, must

be equal to .
a- H(z — DiZ)
i=1
where |p;| < 1 for all . (Hence @, is quasiregular.)

We shall show that all results of [Lil] remain true in this case. We shall
also study the dynamical behaviour of extendable () for which this condition
fails.

Everywhere in this paper C(0,1) will denote the unit circle.

2. Preliminaries. We shall identify R? with the complex plane C. Each
polynomial mapping of R? into itself can be written in complex coordinates

as n n k
Q(z) =) Qu(z) =) > az'z"".
k=0

k=0 i=0
We shall complexify Q(z) as in [Lil, Li2] and define

n k n k
flz,w) = ( Z Z apiz Wb, Z Z Ekiwizk*g .
k=0 =0 k=0 =0
We shall also consider the homogenization of f(z,w) equal to

n k n k
flzyw,t) = (Z (Zakiziwk_i)t”_k, Z ( Ekiwizk_i) tn_k,t”).
k=0 =0 k=0 =0
The leading term @, can be written as
0
Qn(2) = api, - 2" - H(z — PjZ).
j=1
The number ig is equal to the greatest ¢ for which a,; # 0 and p1,...,p;,
are the roots of the polynomial

=0

In [Li2] we proved the following

THEOREM 2.1. The complezified mapping [ extends to a polynomial en-
domorphism of CP? iff one of the following conditions holds:

(1) io = n and p;p; # 1 for each i, j=1,...,n;

(2) io <n, pi #0 fori=1,...,i0 and p;p; # 1 fori,j=1,... io.
The restriction of the extended map to CP?\ C? is a quotient of two finite
Blaschke products.
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Note that each rational map on C for which the unit circle is invariant is
a quotient of two finite Blaschke products.

DEFINITION 2.2. If one of the conditions in Theorem 2.1 is satisfied, then
Q@ will be called an extendable polynomial mapping.

REMARK 2.3. An extendable polynomial map ) need not map C onto C.
The mapping Q(z) = Z(z — pz), |p| < 1, p € R, maps C onto a closed sector
of C.

3. The homogeneous extendable mappings. Most of the results in
this section are analogous to the corresponding ones in [Lil]. The proofs are
the same or almost the same. However, we decided to give them here in order
to make the paper more readable and self-contained.

In this section we shall always assume that

20
Q(Z) = Qn(z) = Qnjg ° En—lo : H(Z - pjz)v n Z 27
j=1
and that @ is extendable. Then the complexified mapping f(z,w) is homo-
geneous and we can proceed as in [Lil], using Proposition 7.1 from [H-P] to
obtain

PropPOSITION 3.1. The basin of attraction of zero in C is a bounded
domain in C which is starlike with respect to zero and is given by
WQZ{ZG(C:hQ(Z)<0}
where

m times

hoz) = lim_ —logQ" ()], Q7(2) = QoM 0 Q2)

We have the same situation as in [Lil]: if hg(z) > 0, then
lim Q°™(z) = oc.
m—00
We have two superattractors: zero and oo, and the set
Jo={2€C:hg(z) =0}
which separates their basins of attractions.
We also have

THEOREM 3.2. The set Jq is a Jordan curve.

Proof. The polynomial @) is R-homogeneous and hence
hq(tz) = log [t| + hg(2).
This implies that on each halfline issuing from zero there is exactly one point
2o for which hg(zg) = 0.
Take ¢ € C(0,1) and define 1 (e”) = 2(e?) to be the unique point on
the halfline with origin at zero passing through e? for which h(z(e)) = 0.
It follows from Proposition 7.1 of [H-P| that hg is continuous. Hence % is
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also continuous and univalent. The circle C(0,1) is compact and thus 1) is a
homeomorphism from C(0,1) onto Jg. =

We are now going to describe the dynamics of () on Jg. Similarly to
[Lil], we have the following situation:

Let ¢(&) denote the restriction of the complexified map f(z,w) to CP?\
C2. According to Theorem 2.1, ¢(¢) is a quotient of two finite Blaschke
products. As in [Lil] we have

PROPOSITION 3.3. Assume that n is even. There is a one-to-one corre-
spondence between the fized points of ¢ on the unit circle and the nonzero
fized points of Q. If the fized point &y is repelling, then so is the correspond-
ing point zg. If the fixed point &y is attracting or neutral with one Leau leaf,
then the corresponding point is a saddle point.

Proof. We proceed in exactly the same way as in the proof of Proposition

4.4 of [Lil]. If £ € C(0, 1), then we can take z; € C(0,1) with 21/Z; = £. We
have

21

=9(8) =
1

I

Hence z1/Q(z1) is a real number. Let

B < 2 )1/(n—1)
oA Q(z1) .

2 n/(n—1) 2 - z%/(n—l)
Q(ZO) Q<Z1)<Q(zl)> (Q(zl))l/(nfl)
If Q(z0) = 20, then ¢(&) = & for & = 29/Zo. In the neighbourhood of the
fixed point zg, Q(z) is conjugate to ¢ via the map z — z/Z = £ and the
inverse branch of this map which maps & on zy. This implies the rest of
Proposition 3.3. =

We have

= 2.

If n is odd, then the conclusion of Proposition 3.3 is not valid.

If Q(z0) = 20, then Q(—2zp) = —zp. Both zp and —z( correspond to the
same fixed point {y = 20/Zo = —20/(—Z0) of ¢(§).

If Q(z0) = —20, then Q(—zp) = 29. Both zp and —z correspond to the
fixed point & = 29/20 = —z20/(—20) of ¢(§) but no fixed point of Q(z)
corresponds to &.

Let &y be a fixed point of ¢(§). Assume that n is odd. If £y = z9/Zo and
20/Q(z0) > 0, then there exist two fixed points of Q(z) corresponding to £p;
if 20/Q(20) < 0, then there exist two points corresponding to &y for which
Q(z) = —z. However, they are fixed points of Q°?(z).
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We shall now consider the branches of

(6(&%)"/2.
We can assume that for i = 1,...,s we have |p;| < 1, and fori = s+1,..., 49
we have |p;| > 1. Hence
Bi(§
o(6) = 21
Bs(§)

where

. i M. 4 i = —1/7.
Big) = Mo T[E2B, pye =g [ 22U

Tnig 5 1 =156 iZe i 1=&/p;
It can be checked that _ )
By (¢
¢(£2) — <~1( )>
Bs(§)
where
g - |1 _p'£2’ 2 Qng
Bl(é.):C- <£—_J ) c :__Oa
j=1 1 _p]€2 anio
20 2 —
5 e e 1-€/pl\ o _ T
By(e) =g ( b W01 B S
j:lll T 1-8/py Top

This implies that we can find a continuous branch of (p(£2))/? (equal to
B1(£)/Ba(§) or —B1(§)/B2(&)) for which the following is true:

PROPOSITION 3.4. On C(0,1) there ezists a continuous branch g(§) of
(p(€2))/? such that Q(z) = Yogory™'(2) on Jg. The mapping ¢ was defined
in the proof of Theorem 3.2.

Proof. We have

Let z € Jg. Then

We can take g(¢) for which ¥~ 1(Q(2)) = g(v"1(2)). =

Since ¢(&) is semiconjugate to ¢(§), we can see that the dynamics of
Q(z) on Jg is closely related to the dynamics of ¢(£) on C(0,1). If ¢(§) is
not equal to a Blaschke product, it can be completely different from those
described in [Lil].

Let Q(z) =Z(z —pz), p € R, =1 < p < 1/3. In this case we have

1 &-p
¢@)—§ e
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The Julia set J is a Cantor set contained in R and C(0,1) N7, = 0. The

set C \ Jy is attracted by ¢°" to the unique attracting point § = 1. The
point & corresponds to zp = 1/(1 — p). Hence the whole set Jg is attracted
to zg and there is no chaotic dynamics at all.

More details on such mappings will be given in Section 6.

4. The nonhomogeneous case

DEFINITION 4.1. Let Q(z) be an extendable polynomial mapping. We
define the filled-in Julia set Kg as the set of all z € C whose forward orbit
{Q°™(2)}m=12,... is bounded.

We have the following

PROPOSITION 4.2. If Q(z) is an extendable polynomial mapping of alge-
braic degree n > 2, then

1
Ko = {z : lim n—mlog(l +1Q°"(2)]) = O}'

Proof. 1f z € K¢, then there exists M > 0 such that |Q°™(z)| < M for
all m. Hence
1 1
< . - om < : - —
0< n%gnoo o log(1 4 |Q°™(2)]) < n%gnoo — log(1+ M) = 0.
Since @ is extendable, we have

|i‘n_f1 |Qn(2)| > ¢ > 0.

Thus there exist R > 1 and k > 0 such that |Q(z)| > k|z|™ > |z| for |z] > R.
If z ¢ Kq, then there exists mg for which |Q°™°(z)| > R. We have, for
m > mo,

1 o 1 _
o log(1+ Q™ (2)|) > — ((m —mg)logk +n™" ™ log R).
Hence the left hand side cannot tend to zero as m — co. =

Consider now the complexification f(z,w) of @ and its homogenization
f(z,w,t). Define
Ky ={(z,w) e Cc?: {f°™(z,w)}m=12,... is bounded}
and N
Ki= {(z,w,t) € C*: {f*™(2,w,t)}m=1.2... is bounded}.

Since @ is extendable, f(z,w,t) = 0 iff (z,w,t) = (0,0,0). We can again
use Proposition 7.1 from [H-P] to obtain

PROPOSITION 4.3. Let

: 1 rom
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The set

A={(z,w,t): hf(z,w,t) < 0}

1s the basin of attraction of zero, the set

B ={(z,w,t): hf(z,w,t) > 0}

is equal to the set of all (z,w,t) for which
lim ”fom(z’ w, t)” = 00,
m—0o0

and the set
jf: {(z,w, 1) : hf(z,w,t) =0} = Gle

is a topological surface in C® homeomorphic to the unit sphere. We have
Ky x {1} = TN {(z,w,1) : (z,w) € C?}
and Kq can be identified with the set Jz {(2,%2,1) }.ec.

Proof. The only thing which needes to be proved is that jf is homeo-
morphic to the sphere S. The proof is the same as the proof of Theorem 3.2.
We take & € S and define (&) = p(&), the unique point on the halfline
joining 0 and & for which hf(p) = 0. The uniqueness of p follows from the
formula hf(tf) = log |t| + hj;({). Since h is continuous on C? by Proposition
7.1 of [H-P], so also is ). The mapping v is one-to-one and S is compact,
thus 1) is a homeomorphism. =

5. Properly extendable mappings. At the end of Section 3 we have
seen that: if f(z,w) acts on CP? \ C? as a quotient ¢(¢) = By(€)/Ba(€) of
two Blaschke products, then it can happen that J, N C(0,1) = (. To avoid
such a situation and deal only with Blaschke products we shall need some
additional assumptions. We have:

PROPOSITION 5.1. Let @ be an extendable polynomial mapping. The fol-
lowing conditions are equivalent:

(1) the algebraic degree of Q is equal to its topological degree;
(2) the leading term Qn of Q is equal to c - [[’_, (2 — p;Z) with |pj| < 1

forj=1,...,n;
(3) the complezification f(z,w) of Q acts on CP*\C? as a finite Blaschke
product.

Proof. The implication (2)=-(3) is obvious. We shall prove (3)=-(2). Let
(3) hold. We have
10
Qu(2) = aniy -0 - [[ (2 = 2.

i=1
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The complexification f(z,w) acts on CP? \ C2 as

Anig 1 -~ 1—pi&
?(6) Anig £ Zl_Il 1-pi§
The mapping ¢(€) is a finite Blaschke product iff n = iy and [p;| < 1 for
each i. Thus (2) holds.

The equivalence (1)<>(2) can be proved in the same way as Proposition
2.1 in [Lil]. The topological degree of @ is equal to the topological degree
of its leading term (@,,. The topological degree of (), is equal to the growth
of the argument of Q(z) (when going once around zero counterclockwise)
divided by 2x. This is equal to s — (n —ig) — (n — s) where s is the number
of p; with |p;] < 1.

Hence the algebraic degree of @) is equal to its topological degree iff
ip=s=n.n

DEFINITION 5.2. We shall say that ) is properly extendable if @) is an
extendable polynomial mapping and the algebraic degree of @ is equal to its
topological degree.

In [Lil] we proved that if n = 2 and @ is quasiregular, i.e.

0Q/0z
0Q/0z
a.e. on C, then @ is properly extendable; if n > 2, this fact is not true.

<k<l1

Lemma 2.5 of [Li2] says that the homogeneous polynomial

n

Q(z) =[Gz -r2)
i=1
is quasiregular iff

1:>Z’£ ’pz

This implies
EXAMPLE 5.3. Let
Q(z) = (2 —p2)°(2 — ¢2)",
s>r, pl #1, lql #1, pg # 1. If
S—7T
s+1

> |p|

and
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then Q(z) is quasiregular. The algebraic degree of @ is equal to n = s+ r
and the topological degree of () is equal to d = s — r. Hence an extend-
able quasiregular polynomial mapping may not be properly extendable if its
algebraic degree is greater than two.

Assume now that Q(z) is a properly extendable homogeneous mapping.
We can now use Theorem 3.2, Propositions 3.3 and 3.4 and the extensive
knowledge of the dynamics of Blaschke products (see [Sh-Su, H, C-G]) to
describe the dynamics of ) on Jg. The situation is the same as in Section 4
of [Lil]. We shall get the following

PROPOSITION 5.4. Let Q be a homogeneous properly extendable mapping.
Let ¢ denote the restriction of f (the complezification of Q) to CP?\ C2,
Then ¢ is a finite Blaschke product. The dynamics of Q| 7, is the same as

the dynamics of a continuous branch of (¢(£2))'/? on C(0,1). Hence:

(1) If the Julia set of ¢ is equal to C(0,1), then the dynamics of Q is
chaotic on the whole Jg. If, in addition, ¢ has a fized point in the
unit disc, then the dynamics of Q\jQ is chaotic, expanding, ergodic
and mixing.

(2) If the Julia set of ¢ is a Cantor subset Jg of C(0,1), then the chaotic
dynamics of Q is supported by a Cantor set

Co= {z €Jq: v (=)0 l(z) € j¢}

(¢ is the same as in Proposition 3.4). There ezists § € C(0,1) which
is either an attracting point for ¢ or a rationally neutral point with
one Leau leaf equal to @\j¢. In this case, if the degree of Q is even,
then there exists zg € Jg such that Jg \ Cq is attracted to zo; if the
degree of Q) is odd, there are two possibilities:

(a) There ezist two attracting (on Jg!) points z1, 20 € Jg, and Jg \
Cq 1s the union of their basins of attraction in Jq.

(b) There exists one period two attracting cycle in Jg and Jg \ Cg
is its basin of attraction.

Proof. The conjugacy between (¢(£2))!/? and Q| 7, was proved in Propo-
sition 3.4. The semiconjugacy between Q|7, and ¢(§) implies that the dy-
namics of Q| 7, has the same properties as the dynamics of ¢|¢ (9,1 if only
Js = C(0,1). The dynamics of J in this case was described in [Sh-Su, H]
and also in [C-G]. This proves (1).

Suppose now that [Jy is a Cantor set. In this case ¢ cannot have a fixed
point inside the disc. The Denjoy—Wolff theorem implies that there exists
a fixed point £ € C(0,1) such that the unit disc is attracted to &y. The
set C \ B(0,1) must also be attracted to it. The classification of periodic
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components of the Fatou set of ¢ implies that £ is either an attracting point
for ¢ or the neutral rational point with one Leau leaf (see [C-G]).

Now, if the degree of () is even then by Proposition 3.3 there exists
exactly one fixed point zg of Q, 2o € Jg, for which z5/Zg = &. We have

o= (¥ (20))*.
There exists an arc v in C(0,1) which is attracted to & by ¢°. If & is an
attracting point for ¢ then &y lies in the interior of v and if &y is rational
neutral then &y is one of the ends of this arc. We shall now take the branch
of the square root for which {é/Q =~ Hz0).
The arc

I =¢((m'?) c Jq

is attracted to zg, and the set
o0
(@)~ H(I)
n=1
is equal to Jg \ Cq.

If the degree of Q is odd then we consider Q°2. The point &g is an attract-
ing (or rationally neutral) fixed point for Q°2. Hence we can apply the above
considerations to Q°? instead of () and use the remarks after Proposition
3.3. This will prove (a) and (b). =

Suppose now that )(z) is a nonhomogeneous properly extendable map-
ping and that ¢(§) has a fixed point inside the unit disc. Considering conjuga-
tion we can assume as in [Lil] that this fixed point is zero. Then J, = C(0, 1)
and ¢ is uniformly expanding on C(0,1) by the result of Tischler [T|. Hence
Theorem 4.3 from Bedford—Jonsson’s paper [B-J| and its proof can be ap-
plied in this case. In fact we can repeat word for word the outline of the
proof of Theorem 5.1 from [Lil] and obtain

THEOREM 5.5. There exists a neighbourhood V' of oo in the Riemann
sphere C and a homeomorphism 1 which maps V onto some neighbourhood
of oo conjugating Q to Qn, the leading term of Q.

It would be highly desirable to find a more straightforward approach to
Theorem 5.5. The mathematical machinery from [B-J] is complicated and
does not work if ¢(&) is not uniformly expanding on J.

We end this section with the following

PROPOSITION 5.6. Let Q(z) be an extendable polynomial mapping (may-
be nonhomogeneous) for which the function ¢(¢) on CP?\ C2 is equal to
1/B(&) where B is a Blaschke product. Then Q°2(z) is properly extendable.
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Proof. Let

Since the superposition of Blaschke products is a Blaschke product, Propo-
sition 5.1 implies that Q°2 is properly extendable. w

6. Non-properly extendable polynomial mappings which have
algebraic degree two. Let (z) denote a homogeneous extendable map-
ping which has algebraic degree two. There are three possibilities:

(1) The topological degree of @ is 2. In this case @ is quasiregular. The
properties of such maps were described in [Lil].

(2) The topological degree of @) is —2. In this case ¢(&) is the inverse of
a Blaschke product and Q°? is properly extendable. Moreover, the
mapping @ is quasiregular. We have Js = Tgop C C(0,1) and we
can use the results of Section 5 to study the behaviour of Q°% and Q
on jQ.

(3) The topological degree of @ is zero. In this case we have either
(a) Q(z) =az(z —pz),0< |p| <1, or
(b) Q(z) =a(z —p2)(z = ¢2Z), Ip| <1, |¢| > 1, p #1/q.

PROPOSITION 6.1. In both cases (a) and (b) we have Q(C) # C. The set

Q(C) is a closed sector with vertex at zero.

Proof. Assume first that Q(z) = Z(z — pz), p € R, 0 < |p| < 1. Ele-
mentary calculations show that the equation Q(z) = w can have a solution
iff

pl

1—p?
If Q(z) = azZ(z — pz), 0 < |p| < 1, then
Qp'"?z) = alp|z(z — [p[2).

|Sw| < Rw -

Q(C) = alp| - Q1(C)
where Q1(2) = Z(z — |p|Z).
If Q(2) = a(z = pz)(z — ¢2), [p| < 1, [¢| > 1, p # 1/7, then

Q<§+q2> _ 4P z<z_pq—12)
1—q? 1—|¢?| q—p
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Again
q—p
Qi(z) = E(z - pqq_—pl E> .

Let us now say something about the dynamics of (). The simplest case
is again
Q(z) =2z(2—pz), peR,0<p[ <1

In this case the complexification of @ acts on CP? \ C? as

&
o) = e

What is 1mportant the real axis is completely invariant with respect to ¢. If
a rational map of C has a completely invariant circle C' in (C then the Julia
set of this map is contained in C' and this map is conjugate to a Blaschke
product via a homography which maps C' onto the unit circle C'(0,1). Hence
the Julia set of ¢ is contained in R.

If 1 >p>1/3, then £ =1 is a repelling fixed point for ¢, and ¢ has two
attracting points equal to

(1—-p)—iy/(p+1)Bp—1)

51: 2p 5

£ = (1-p)+iy/(p+1)Bp—1)

2 — 9 )
1%

both in C(0,1). We have ¢(—1) = 1 and J; = R. Hence the dynamics of
¢ on C(0,1) is the following: ¢(—1) = 1, which is the repelling point, the
upper arc of C'(0,1) \ {—1, 1} is attracted to & and the lower one to &;.

We have the same dynamics for Q’jQ. If p=1/3, then £ =1 is a triple
neutral fixed point of ¢ with two Leau leafs. Again J; = R, but this time
the whole C(0,1) is attracted to £ = 1. If p < 1/3, then Jy is a Cantor set
in R, 74N C(0,1) = 0 and the circle C(0, 1) is attracted to the fixed point
& = 1. Hence, if p < 1/3, then the whole set J is attracted by ) to a single
point.

We cannot expect such a simple dynamics for a general Q)(z) for which
the topological degree of @ is 0.

Let us take a quadratic polynomial w.(z) = 22 + ¢, ¢ € R. The real
axis is invariant for w.(z). Hence w,(z) can be conjugate (via a homography
mapping R onto C'(0, 1)) to a rational map g.(z) for which the unit circle is
invariant. That means that g.(z) is a quotient of finite Blaschke products.
If the Julia set 7, is not contained in R, then the Julia set of g. cannot be
contained in C'(0,1). Since g. has degree two and is a quotient of Blaschke
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products, there exists (z) which is homogeneous, extendable and of alge-
braic degree two such that g. is equal to the action of the complexification
of @ on CP?\ C2. (In fact all ¢- @, ¢ € R, have this property but they are
conjugate via z — ¢ 'z). When J,. ¢ C(0,1), @ must be of topological
degree zero. If ¢ = =2, then J,,_ is an arc in C(0,1). If —2 < ¢ < —3/4, then
Jg. N C(0,1) consists of countably many points. Thus the dynamics of @ on
Jgo must be far more complicated than the dynamics of Q,(z) = Z(z — pZz),
peER, 0<|p| <1

REMARK 6.2. We can take any polynomial w(z) with real coefficients and
use the above procedure to obtain an extendable homogeneous polynomial
mapping @, (z). We can also use the same procedure for rational functions

R(z) = w(z)/p(z)
where w, p are polynomials with real coefficients, and obtain an extendable
homogeneous polynomial mapping () g whose action on Jg, is semiconjugate
to the action of R on R U {oo}.
Especially interesting is the case when

R(z) =1-2/2*
since in this case Jr = C. The corresponding map Qg is an extendable
map with algebraic degree two and topological degree zero. If gb({) is the
restriction of the complexification of Qg(z) to CP?\ C?, then J, =

There is also another method of attaching to every polynomial w(z) with

real coefficients an extendable homogeneous polynomial map Qllu For
n

w(zx) = Zcixi, ¢ €R, cp #0,
=0
we can take the homogenization

Qu(@,y) (Zczwy y")

which is an extendable homogeneous polynomlal mapping. In the case of
rational functions this method can lead to nonextendable maps.

Consider now the homogeneous polynomial mappings of algebraic degree
three which have the form

Q(z) =e™2%(2 —az), a,0€R,a>3.
The corresponding mapping ¢(¢) on CP?\ C? is equal to
_2mif 2 {—a
o6 = ¢ 20
For each a > 3 and diophantine number « there exists 6 € R such that ¢(¢)
is conjugate to the rotation

€ — e27‘rai é-
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via a homeomorphism G of the circle. (In fact, this is the famous example

of the Herman ring, see [C-G, Ch. VI].) We have
G(t) _ e27riF(t)
where F'(t) is a homeomorphism of R for which F'(t+ 1) = F(t) + 1. Let
Go(t) _ 67riF(2t)‘
The homeomorphism G o 1)~! conjugates Q|jQ to the rotation
é- — eTeri i 5
Such an example is impossible for polynomials of degree two since they
cannot have topological degree one.
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