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On the dynami
s of extendable polynomialendomorphisms of R
2by Ewa Ligocka (Warszawa)

Abstra
t. We extend the results obtained in our previous paper, 
on
erning quasireg-ular polynomials of algebrai
 degree two, to the 
ase of polynomial endomorphisms of R
2whose algebrai
 degree is equal to their topologi
al degree. We also deal with some other
lasses of polynomial endomorphisms extendable to CP

2.1. Introdu
tion. The present paper is a 
ontinuation of our two previ-ous papers [Li1℄ and [Li2℄. In [Li1℄ we proved that ea
h quadrati
 quasiregularpolynomial mapping on R
2 
an be 
omplexi�ed and extended to the 
om-plex proje
tive spa
e CP

2 in su
h a way that this extension a
ts on CP
2 \C

2as a Blas
hke produ
t. Using this fa
t we des
ribed the dynami
s of ho-mogeneous, degree two, quasiregular polynomial mappings on C. Moreover,we proved the existen
e of Bött
her 
oordinates near ∞ for a nonhomoge-neous quasiregular, degree two, polynomial mapping for whi
h the Blas
hkeprodu
t on CP
2 \ C

2 has a �xed point inside the unit dis
.In [Li2℄ we found a simple algebrai
 
ondition whi
h is equivalent to theextendability of a 
omplexi�
ation of a polynomial mapping from R
2 into it-self to a polynomial endomorphism of CP

2. The polynomial endomorphismsof R
2 whi
h satisfy this 
ondition will be 
alled extendable polynomial en-domorphisms.The aim of the present paper is to extend the results of [Li1℄ to a wide
lass of extendable polynomial endomorphisms of R

2 with an arbitrary alge-brai
 degree.It turns out that the following 
ondition is 
ru
ial: The polynomial en-domorphism Q must be extendable and have the topologi
al degree equal toits algebrai
 degree. We shall always denote the algebrai
 degree by n.2000 Mathemati
s Subje
t Classi�
ation: Primary 30D50, 32H50, 32H02, 37F45; Se
-ondary 30C10, 30C99, 30F99, 32D15.Key words and phrases: polynomial mapping, quasiregular, extendable, 
omplexi�
a-tion, Blas
hke produ
t, iteration. [37℄



38 E. Ligo
kaWe shall prove that in this 
ase the homogeneous leading term Qn mustbe equal to
a ·

n∏

i=1

(z − piz)where |pi| < 1 for all i. (Hen
e Qn is quasiregular.)We shall show that all results of [Li1℄ remain true in this 
ase. We shallalso study the dynami
al behaviour of extendable Q for whi
h this 
onditionfails.Everywhere in this paper C(0, 1) will denote the unit 
ir
le.2. Preliminaries. We shall identify R
2 with the 
omplex plane C. Ea
hpolynomial mapping of R

2 into itself 
an be written in 
omplex 
oordinatesas
Q(z) =

n∑

k=0

Qk(z) =
n∑

k=0

k∑

i=0

akiz
izk−i.We shall 
omplexify Q(z) as in [Li1, Li2℄ and de�ne

f(z, w) =
( n∑

k=0

k∑

i=0

akiz
iwk−i,

n∑

k=0

k∑

i=0

akiw
izk−i

)
.We shall also 
onsider the homogenization of f(z, w) equal to

f̃(z, w, t) =
( n∑

k=0

( k∑

i=0

akiz
iwk−i

)
tn−k,

n∑

k=0

( k∑

i=0

akiw
izk−i

)
tn−k, tn

)
.The leading term Qn 
an be written as

Qn(z) = ani0 · z
n−i0 ·

i0∏

j=1

(z − pjz).The number i0 is equal to the greatest i for whi
h ani 6= 0 and p1, . . . , pi0are the roots of the polynomial
P (ξ) =

i0∑

i=0

aniξ
i.In [Li2℄ we proved the followingTheorem 2.1. The 
omplexi�ed mapping f extends to a polynomial en-domorphism of CP

2 i� one of the following 
onditions holds:(1) i0 = n and pipj 6= 1 for ea
h i, j = 1, . . . , n;(2) i0 < n, pi 6= 0 for i = 1, . . . , i0 and pipj 6= 1 for i, j = 1, . . . , i0.The restri
tion of the extended map to CP
2 \ C

2 is a quotient of two �niteBlas
hke produ
ts.



Dynami
s of polynomial endomorphisms 39Note that ea
h rational map on Ĉ for whi
h the unit 
ir
le is invariant isa quotient of two �nite Blas
hke produ
ts.Definition 2.2. If one of the 
onditions in Theorem 2.1 is satis�ed, then
Q will be 
alled an extendable polynomial mapping.Remark 2.3. An extendable polynomial map Q need not map C onto C.The mapping Q(z) = z(z − pz), |p| < 1, p ∈ R, maps C onto a 
losed se
torof C.3. The homogeneous extendable mappings. Most of the results inthis se
tion are analogous to the 
orresponding ones in [Li1℄. The proofs arethe same or almost the same. However, we de
ided to give them here in orderto make the paper more readable and self-
ontained.In this se
tion we shall always assume that

Q(z) = Qn(z) = ani0 · z
n−i0 ·

i0∏

j=1

(z − pjz), n ≥ 2,and that Q is extendable. Then the 
omplexi�ed mapping f(z, w) is homo-geneous and we 
an pro
eed as in [Li1℄, using Proposition 7.1 from [H-P℄ toobtainProposition 3.1. The basin of attra
tion of zero in C is a boundeddomain in C whi
h is starlike with respe
t to zero and is given by
ωQ = {z ∈ C : hQ(z) < 0}where

hQ(z) = lim
m→∞

1

nm
log |Q◦m(z)|, Q◦m(z) = Q ◦

m times
· · · ◦Q(z).We have the same situation as in [Li1℄: if hQ(z) > 0, then

lim
m→∞

Q◦m(z) = ∞.We have two superattra
tors: zero and ∞, and the set
JQ = {z ∈ C : hQ(z) = 0}whi
h separates their basins of attra
tions.We also haveTheorem 3.2. The set JQ is a Jordan 
urve.Proof. The polynomial Q is R-homogeneous and hen
e
hQ(tz) = log |t| + hQ(z).This implies that on ea
h hal�ine issuing from zero there is exa
tly one point

z0 for whi
h hQ(z0) = 0.Take eiθ ∈ C(0, 1) and de�ne ψ(eiθ) = z(eiθ) to be the unique point onthe hal�ine with origin at zero passing through eiθ for whi
h h(z(eiθ)) = 0.It follows from Proposition 7.1 of [H-P℄ that hQ is 
ontinuous. Hen
e ψ is
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kaalso 
ontinuous and univalent. The 
ir
le C(0, 1) is 
ompa
t and thus ψ is ahomeomorphism from C(0, 1) onto JQ.We are now going to des
ribe the dynami
s of Q on JQ. Similarly to[Li1℄, we have the following situation:Let φ(ξ) denote the restri
tion of the 
omplexi�ed map f(z, w) to CP
2 \

C
2. A

ording to Theorem 2.1, φ(ξ) is a quotient of two �nite Blas
hkeprodu
ts. As in [Li1℄ we haveProposition 3.3. Assume that n is even. There is a one-to-one 
orre-sponden
e between the �xed points of φ on the unit 
ir
le and the nonzero�xed points of Q. If the �xed point ξ0 is repelling , then so is the 
orrespond-ing point z0. If the �xed point ξ0 is attra
ting or neutral with one Leau leaf ,then the 
orresponding point is a saddle point.Proof. We pro
eed in exa
tly the same way as in the proof of Proposition4.4 of [Li1℄. If ξ ∈ C(0, 1), then we 
an take z1 ∈ C(0, 1) with z1/z1 = ξ. Wehave

z1
z1

= φ(ξ) =
Q(z1)

Q(z1)
.Hen
e z1/Q(z1) is a real number. Let

z0 = z1

(
z1

Q(z1)

)1/(n−1)

.We have
Q(z0) = Q(z1)

(
z1

Q(z1)

)n/(n−1)

=
z1 · z

1/(n−1)
1

(Q(z1))1/(n−1)
= z0.If Q(z0) = z0, then φ(ξ) = ξ for ξ = z0/z0. In the neighbourhood of the�xed point z0, Q(z) is 
onjugate to φ via the map z 7→ z/z = ξ and theinverse bran
h of this map whi
h maps ξ0 on z0. This implies the rest ofProposition 3.3.If n is odd, then the 
on
lusion of Proposition 3.3 is not valid.If Q(z0) = z0, then Q(−z0) = −z0. Both z0 and −z0 
orrespond to thesame �xed point ξ0 = z0/z0 = −z0/(−z0) of φ(ξ).If Q(z0) = −z0, then Q(−z0) = z0. Both z0 and −z0 
orrespond to the�xed point ξ0 = z0/z0 = −z0/(−z0) of φ(ξ) but no �xed point of Q(z)
orresponds to ξ0.Let ξ0 be a �xed point of φ(ξ). Assume that n is odd. If ξ0 = z0/z0 and

z0/Q(z0) > 0, then there exist two �xed points of Q(z) 
orresponding to ξ0;if z0/Q(z0) < 0, then there exist two points 
orresponding to ξ0 for whi
h
Q(z) = −z. However, they are �xed points of Q◦2(z).



Dynami
s of polynomial endomorphisms 41We shall now 
onsider the bran
hes of
(φ(ξ2))1/2.We 
an assume that for i = 1, . . . , s we have |pi| < 1, and for i = s+1, . . . , i0we have |pi| > 1. Hen
e

φ(ξ) =
B1(ξ)

B2(ξ)where
B1(ξ) =

ani0

ani0

·
s∏

j=1

ξ − pj

1 − pjξ
, B2(ξ) = ξn−i0 ·

i0∏

j=s+1

pj

pj

ξ − 1/pj

1 − ξ/pj
.It 
an be 
he
ked that

φ(ξ2) =

(
B̃1(ξ)

B̃2(ξ)

)2

where
B̃1(ξ) = c ·

s∏

j=1

(
ξ
|1 − pjξ

2|

1 − pjξ
2

)
, c2 =

ani0

ani0

,

B̃2(ξ) = ξn−i0 ·
i0∏

j=s+1

(
cjξ

|1 − ξ2/pj |

1 − ξ2/pj

)
, c2j =

pj

pj
.

This implies that we 
an �nd a 
ontinuous bran
h of (φ(ξ2))1/2 (equal to
B̃1(ξ)/B̃2(ξ) or −B̃1(ξ)/B̃2(ξ)) for whi
h the following is true:Proposition 3.4. On C(0, 1) there exists a 
ontinuous bran
h g(ξ) of
(φ(ξ2))1/2 su
h that Q(z) = ψ◦g◦ψ−1(z) on JQ. The mapping ψ was de�nedin the proof of Theorem 3.2.Proof. We have

(ψ−1(z))2 = z/z = ξ.Let z ∈ JQ. Then
φ(ξ) = φ[(ψ−1(z))2] =

Q(z)

Q(z)
= (ψ−1(Q(z)))2.We 
an take g(ξ) for whi
h ψ−1(Q(z)) = g(ψ−1(z)).Sin
e g(ξ) is semi
onjugate to φ(ξ), we 
an see that the dynami
s of

Q(z) on JQ is 
losely related to the dynami
s of φ(ξ) on C(0, 1). If φ(ξ) isnot equal to a Blas
hke produ
t, it 
an be 
ompletely di�erent from thosedes
ribed in [Li1℄.Let Q(z) = z(z − pz), p ∈ R, −1 < p < 1/3. In this 
ase we have
φ(ξ) =

1

ξ
·
ξ − p

1 − pξ
.
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kaThe Julia set Jφ is a Cantor set 
ontained in R and C(0, 1) ∩ Jφ = ∅. Theset Ĉ \ Jφ is attra
ted by φ◦n to the unique attra
ting point ξ0 = 1. Thepoint ξ0 
orresponds to z0 = 1/(1 − p). Hen
e the whole set JQ is attra
tedto z0 and there is no 
haoti
 dynami
s at all.More details on su
h mappings will be given in Se
tion 6.4. The nonhomogeneous 
aseDefinition 4.1. Let Q(z) be an extendable polynomial mapping. Wede�ne the �lled-in Julia set KQ as the set of all z ∈ C whose forward orbit
{Q◦m(z)}m=1,2,... is bounded.We have the followingProposition 4.2. If Q(z) is an extendable polynomial mapping of alge-brai
 degree n ≥ 2, then

KQ =

{
z : lim

m→∞

1

nm
log(1 + |Q◦m(z)|) = 0

}
.Proof. If z ∈ KQ, then there exists M > 0 su
h that |Q◦m(z)| ≤ M forall m. Hen
e

0 ≤ lim
m→∞

1

nm
log(1 + |Q◦m(z)|) ≤ lim

m→∞

1

nm
log(1 +M) = 0.Sin
e Q is extendable, we have

inf
|z|=1

|Qn(z)| > c > 0.Thus there exist R > 1 and k > 0 su
h that |Q(z)| > k|z|n > |z| for |z| > R.If z /∈ KQ, then there exists m0 for whi
h |Q◦m0(z)| > R. We have, for
m > m0,

1

nm
log(1 + |Q◦m(z)|) >

1

nm
((m−m0) log k + nm−m0 logR).Hen
e the left hand side 
annot tend to zero as m→ ∞.Consider now the 
omplexi�
ation f(z, w) of Q and its homogenization

f̃(z, w, t). De�ne
Kf = {(z, w) ∈ C

2 : {f◦m(z, w)}m=1,2,... is bounded}and
K

f̃
= {(z, w, t) ∈ C

3 : {f̃◦m(z, w, t)}m=1,2,... is bounded}.Sin
e Q is extendable, f̃(z, w, t) = 0 i� (z, w, t) = (0, 0, 0). We 
an againuse Proposition 7.1 from [H-P℄ to obtainProposition 4.3. Let
h

f̃
(z, w, t) = lim

m→∞

1

nm
log ‖f̃◦m(z, w, t)‖.



Dynami
s of polynomial endomorphisms 43The set
A = {(z, w, t) : h

f̃
(z, w, t) < 0}is the basin of attra
tion of zero, the set

B = {(z, w, t) : h
f̃
(z, w, t) > 0}is equal to the set of all (z, w, t) for whi
h

lim
m→∞

‖f̃◦m(z, w, t)‖ = ∞,and the set
J

f̃
= {(z, w, t) : h

f̃
(z, w, t) = 0} = ∂K

f̃is a topologi
al surfa
e in C
3 homeomorphi
 to the unit sphere. We have

Kf × {1} = J
f̃
∩ {(z, w, 1) : (z, w) ∈ C

2}and KQ 
an be identi�ed with the set J
f̃
∩ {(z, z, 1)}z∈C.Proof. The only thing whi
h needes to be proved is that J

f̃
is homeo-morphi
 to the sphere S. The proof is the same as the proof of Theorem 3.2.We take ξ0 ∈ S and de�ne ψ(ξ0) = p(ξ0), the unique point on the hal�inejoining 0 and ξ0 for whi
h h

f̃
(p) = 0. The uniqueness of p follows from theformula h

f̃
(tξ) = log |t|+h

f̃
(ξ). Sin
e h

f̃
is 
ontinuous on C

3 by Proposition7.1 of [H-P℄, so also is ψ. The mapping ψ is one-to-one and S is 
ompa
t,thus ψ is a homeomorphism.5. Properly extendable mappings. At the end of Se
tion 3 we haveseen that: if f(z, w) a
ts on CP
2 \ C

2 as a quotient φ(ξ) = B1(ξ)/B2(ξ) oftwo Blas
hke produ
ts, then it 
an happen that Jφ ∩ C(0, 1) = ∅. To avoidsu
h a situation and deal only with Blas
hke produ
ts we shall need someadditional assumptions. We have:Proposition 5.1. Let Q be an extendable polynomial mapping. The fol-lowing 
onditions are equivalent :(1) the algebrai
 degree of Q is equal to its topologi
al degree;(2) the leading term Qn of Q is equal to c · ∏n
j=1(z − pjz) with |pj | < 1for j = 1, . . . , n;(3) the 
omplexi�
ation f(z, w) of Q a
ts on CP

2\C
2 as a �nite Blas
hkeprodu
t.Proof. The impli
ation (2)⇒(3) is obvious. We shall prove (3)⇒(2). Let(3) hold. We have

Qn(z) = ani0 · z
n−i0 ·

i0∏

i=1

(z − piz).
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kaThe 
omplexi�
ation f(z, w) a
ts on CP
2 \ C

2 as
φ(ξ) =

ani0

ani0

·
1

ξn−i0
·

i0∏

i=1

1 − piξ

1 − piξ
.The mapping φ(ξ) is a �nite Blas
hke produ
t i� n = i0 and |pi| < 1 forea
h i. Thus (2) holds.The equivalen
e (1)⇔(2) 
an be proved in the same way as Proposition2.1 in [Li1℄. The topologi
al degree of Q is equal to the topologi
al degreeof its leading term Qn. The topologi
al degree of Qn is equal to the growthof the argument of Q(z) (when going on
e around zero 
ounter
lo
kwise)divided by 2π. This is equal to s− (n− i0)− (n− s) where s is the numberof pi with |pi| < 1.Hen
e the algebrai
 degree of Q is equal to its topologi
al degree i�

i0 = s = n.Definition 5.2. We shall say that Q is properly extendable if Q is anextendable polynomial mapping and the algebrai
 degree of Q is equal to itstopologi
al degree.In [Li1℄ we proved that if n = 2 and Q is quasiregular, i.e.
∣∣∣∣
∂Q/∂z

∂Q/∂z

∣∣∣∣ < k < 1a.e. on C, then Q is properly extendable; if n > 2, this fa
t is not true.Lemma 2.5 of [Li2℄ says that the homogeneous polynomial
Q(z) =

n∏

i=1

(z − piz)is quasiregular i�
|ξ| = 1 ⇒

n∑

i=1

1 − |pi|
2

|ξ − pi|2
> 0.This impliesExample 5.3. Let

Q(z) = (z − pz)s(z − qz)r,

s > r, |p| 6= 1, |q| 6= 1, pq 6= 1. If
s− r

s+ 1
> |p|and

|q| >
(s+ r) − (s− r)|p|

(s− r) − (s+ r)|p|
> 1,
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s of polynomial endomorphisms 45then Q(z) is quasiregular. The algebrai
 degree of Q is equal to n = s + rand the topologi
al degree of Q is equal to d = s − r. Hen
e an extend-able quasiregular polynomial mapping may not be properly extendable if itsalgebrai
 degree is greater than two.Assume now that Q(z) is a properly extendable homogeneous mapping.We 
an now use Theorem 3.2, Propositions 3.3 and 3.4 and the extensiveknowledge of the dynami
s of Blas
hke produ
ts (see [Sh-Su, H, C-G℄) todes
ribe the dynami
s of Q on JQ. The situation is the same as in Se
tion 4of [Li1℄. We shall get the followingProposition 5.4. Let Q be a homogeneous properly extendable mapping.Let φ denote the restri
tion of f (the 
omplexi�
ation of Q) to CP
2 \ C

2.Then φ is a �nite Blas
hke produ
t. The dynami
s of Q|JQ
is the same asthe dynami
s of a 
ontinuous bran
h of (φ(ξ2))1/2 on C(0, 1). Hen
e:(1) If the Julia set of φ is equal to C(0, 1), then the dynami
s of Q is
haoti
 on the whole JQ. If , in addition, φ has a �xed point in theunit dis
, then the dynami
s of Q|JQ

is 
haoti
, expanding , ergodi
and mixing.(2) If the Julia set of φ is a Cantor subset Jφ of C(0, 1), then the 
haoti
dynami
s of Q is supported by a Cantor set
CQ =

{
z ∈ JQ : ψ−1(z)/ψ−1(z) ∈ Jφ

}

(ψ is the same as in Proposition 3.4). There exists ξ0 ∈ C(0, 1) whi
his either an attra
ting point for φ or a rationally neutral point withone Leau leaf equal to Ĉ\Jφ. In this 
ase, if the degree of Q is even,then there exists z0 ∈ JQ su
h that JQ \ CQ is attra
ted to z0; if thedegree of Q is odd , there are two possibilities:(a) There exist two attra
ting (on JQ! ) points z1, z2 ∈ JQ, and JQ \
CQ is the union of their basins of attra
tion in JQ.(b) There exists one period two attra
ting 
y
le in JQ and JQ \ CQis its basin of attra
tion.Proof. The 
onjuga
y between (φ(ξ2))1/2 and Q|JQ

was proved in Propo-sition 3.4. The semi
onjuga
y between Q|JQ
and φ(ξ) implies that the dy-nami
s of Q|JQ

has the same properties as the dynami
s of φ|C(0,1) if only
Jφ = C(0, 1). The dynami
s of Jφ in this 
ase was des
ribed in [Sh-Su, H℄and also in [C-G℄. This proves (1).Suppose now that Jφ is a Cantor set. In this 
ase φ 
annot have a �xedpoint inside the dis
. The Denjoy�Wol� theorem implies that there existsa �xed point ξ0 ∈ C(0, 1) su
h that the unit dis
 is attra
ted to ξ0. Theset Ĉ \ B(0, 1) must also be attra
ted to it. The 
lassi�
ation of periodi




46 E. Ligo
ka
omponents of the Fatou set of φ implies that ξ0 is either an attra
ting pointfor φ or the neutral rational point with one Leau leaf (see [C-G℄).Now, if the degree of Q is even then by Proposition 3.3 there existsexa
tly one �xed point z0 of Q, z0 ∈ JQ, for whi
h z0/z0 = ξ0. We have
ξ0 = (ψ−1(z0))

2.There exists an ar
 γ in C(0, 1) whi
h is attra
ted to ξ0 by φ◦n. If ξ0 is anattra
ting point for φ then ξ0 lies in the interior of γ and if ξ0 is rationalneutral then ξ0 is one of the ends of this ar
. We shall now take the bran
hof the square root for whi
h ξ1/2
0 = ψ−1(z0).The ar


Γ = ψ((γ)1/2) ⊂ JQis attra
ted to z0, and the set
∞⋃

n=1

(Q◦n)−1(Γ )is equal to JQ \ CQ.If the degree of Q is odd then we 
onsider Q◦2. The point ξ0 is an attra
t-ing (or rationally neutral) �xed point for Q◦2. Hen
e we 
an apply the above
onsiderations to Q◦2 instead of Q and use the remarks after Proposition3.3. This will prove (a) and (b).Suppose now that Q(z) is a nonhomogeneous properly extendable map-ping and that φ(ξ) has a �xed point inside the unit dis
. Considering 
onjuga-tion we 
an assume as in [Li1℄ that this �xed point is zero. Then Jφ = C(0, 1)and φ is uniformly expanding on C(0, 1) by the result of Tis
hler [T℄. Hen
eTheorem 4.3 from Bedford�Jonsson's paper [B-J℄ and its proof 
an be ap-plied in this 
ase. In fa
t we 
an repeat word for word the outline of theproof of Theorem 5.1 from [Li1℄ and obtainTheorem 5.5. There exists a neighbourhood V of ∞ in the Riemannsphere Ĉ and a homeomorphism ψ whi
h maps V onto some neighbourhoodof ∞ 
onjugating Q to Qn, the leading term of Q.It would be highly desirable to �nd a more straightforward approa
h toTheorem 5.5. The mathemati
al ma
hinery from [B-J℄ is 
ompli
ated anddoes not work if φ(ξ) is not uniformly expanding on Jφ.We end this se
tion with the followingProposition 5.6. Let Q(z) be an extendable polynomial mapping (may-be nonhomogeneous) for whi
h the fun
tion φ(ξ) on CP
2 \ C

2 is equal to
1/B(ξ) where B is a Blas
hke produ
t. Then Q◦2(z) is properly extendable.
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s of polynomial endomorphisms 47Proof. Let
B(ξ) = eiθ ·

n∏

i=1

z − pi

1 − piz
.We have φ · φ(ξ) = B1 ◦ B(ξ), where

B1(z) = e−iθ ·
n∏

i=1

z − pi

1 − piz
.Sin
e the superposition of Blas
hke produ
ts is a Blas
hke produ
t, Propo-sition 5.1 implies that Q◦2 is properly extendable.6. Non-properly extendable polynomial mappings whi
h havealgebrai
 degree two. Let Q(z) denote a homogeneous extendable map-ping whi
h has algebrai
 degree two. There are three possibilities:(1) The topologi
al degree of Q is 2. In this 
ase Q is quasiregular. Theproperties of su
h maps were des
ribed in [Li1℄.(2) The topologi
al degree of Q is −2. In this 
ase φ(ξ) is the inverse ofa Blas
hke produ
t and Q◦2 is properly extendable. Moreover, themapping Q is quasiregular. We have Jφ = Jφ◦φ ⊂ C(0, 1) and we
an use the results of Se
tion 5 to study the behaviour of Q◦2 and Qon JQ.(3) The topologi
al degree of Q is zero. In this 
ase we have either(a) Q(z) = az(z − pz), 0 < |p| < 1, or(b) Q(z) = a(z − pz)(z − qz), |p| < 1, |q| > 1, p 6= 1/q.Proposition 6.1. In both 
ases (a) and (b) we have Q(C) 6= C. The set

Q(C) is a 
losed se
tor with vertex at zero.Proof. Assume �rst that Q(z) = z(z − pz), p ∈ R, 0 < |p| < 1. Ele-mentary 
al
ulations show that the equation Q(z) = w 
an have a solutioni�
|ℑw| ≤ ℜw ·

|p|√
1 − p2

.If Q(z) = az(z − pz), 0 < |p| < 1, then
Q(p1/2z) = a|p|z(z − |p|z).Hen
e

Q(C) = a|p| ·Q1(C)where Q1(z) = z(z − |p|z).If Q(z) = a(z − pz)(z − qz), |p| < 1, |q| > 1, p 6= 1/q, then
Q

(
z + qz

1 − |q|2

)
= a

q − p

1 − |q2|
z

(
z −

pq − 1

q − p
z

)
.
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kaAgain
Q(C) = a

q − p

1 − |q|2
·Q1(C),

Q1(z) = z

(
z −

pq − 1

q − p
z

)
.Let us now say something about the dynami
s of Q. The simplest 
aseis again

Q(z) = z(z − pz), p ∈ R, 0 < |p| < 1.In this 
ase the 
omplexi�
ation of Q a
ts on CP
2 \ C

2 as
φ(ξ) =

ξ − p

ξ(1 − pξ)
.What is important, the real axis is 
ompletely invariant with respe
t to φ. Ifa rational map of Ĉ has a 
ompletely invariant 
ir
le C in Ĉ, then the Juliaset of this map is 
ontained in C and this map is 
onjugate to a Blas
hkeprodu
t via a homography whi
h maps C onto the unit 
ir
le C(0, 1). Hen
ethe Julia set of φ is 
ontained in R.If 1 > p > 1/3, then ξ = 1 is a repelling �xed point for φ, and φ has twoattra
ting points equal to

ξ1 =
(1 − p) − i

√
(p+ 1)(3p− 1)

2p
,

ξ2 =
(1 − p) + i

√
(p+ 1)(3p− 1)

2p
,both in C(0, 1). We have φ(−1) = 1 and Jφ = R. Hen
e the dynami
s of

φ on C(0, 1) is the following: φ(−1) = 1, whi
h is the repelling point, theupper ar
 of C(0, 1) \ {−1, 1} is attra
ted to ξ2 and the lower one to ξ1.We have the same dynami
s for Q|JQ
. If p = 1/3, then ξ = 1 is a tripleneutral �xed point of φ with two Leau leafs. Again Jφ = R, but this timethe whole C(0, 1) is attra
ted to ξ = 1. If p < 1/3, then Jφ is a Cantor setin R, Jφ ∩ C(0, 1) = ∅ and the 
ir
le C(0, 1) is attra
ted to the �xed point

ξ = 1. Hen
e, if p ≤ 1/3, then the whole set JQ is attra
ted by Q to a singlepoint.We 
annot expe
t su
h a simple dynami
s for a general Q(z) for whi
hthe topologi
al degree of Q is 0.Let us take a quadrati
 polynomial wc(z) = z2 + c, c ∈ R. The realaxis is invariant for wc(z). Hen
e wc(z) 
an be 
onjugate (via a homographymapping R onto C(0, 1)) to a rational map gc(z) for whi
h the unit 
ir
le isinvariant. That means that gc(z) is a quotient of �nite Blas
hke produ
ts.If the Julia set Jwc is not 
ontained in R, then the Julia set of gc 
annot be
ontained in C(0, 1). Sin
e gc has degree two and is a quotient of Blas
hke
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ts, there exists Q(z) whi
h is homogeneous, extendable and of alge-brai
 degree two su
h that gc is equal to the a
tion of the 
omplexi�
ationof Q on CP
2 \ C

2. (In fa
t all c · Q, c ∈ R, have this property but they are
onjugate via z 7→ c−1z). When Jgc 6⊂ C(0, 1), Q must be of topologi
aldegree zero. If c = −2, then Jgc is an ar
 in C(0, 1). If −2 < c < −3/4, then
Jgc ∩C(0, 1) 
onsists of 
ountably many points. Thus the dynami
s of Q on
JQ must be far more 
ompli
ated than the dynami
s of Qp(z) = z(z − pz),
p ∈ R, 0 < |p| < 1.Remark 6.2. We 
an take any polynomial w(z) with real 
oe�
ients anduse the above pro
edure to obtain an extendable homogeneous polynomialmapping Qw(z). We 
an also use the same pro
edure for rational fun
tions

R(z) = w(z)/p(z)where w, p are polynomials with real 
oe�
ients, and obtain an extendablehomogeneous polynomial mapping QR whose a
tion on JQR
is semi
onjugateto the a
tion of R on R ∪ {∞}.Espe
ially interesting is the 
ase when

R(z) = 1 − 2/z2sin
e in this 
ase JR = Ĉ. The 
orresponding map QR is an extendablemap with algebrai
 degree two and topologi
al degree zero. If φ(ξ) is therestri
tion of the 
omplexi�
ation of QR(z) to CP
2 \ C

2, then Jφ = Ĉ.There is also another method of atta
hing to every polynomial w(z) withreal 
oe�
ients an extendable homogeneous polynomial map Q1
w. For

w(x) =
n∑

i=0

cix
i, ci ∈ R, cn 6= 0,we 
an take the homogenization

Q1
w(x, y) =

( n∑

i=0

cix
iyn−i, yn

)

whi
h is an extendable homogeneous polynomial mapping. In the 
ase ofrational fun
tions this method 
an lead to nonextendable maps.Consider now the homogeneous polynomial mappings of algebrai
 degreethree whi
h have the form
Q(z) = eπiθz2(z − az), a, θ ∈ R, a > 3.The 
orresponding mapping φ(ξ) on CP

2 \ C
2 is equal to

φ(ξ) = e2πiθ · ξ2 ·
ξ − a

1 − aξ
.For ea
h a > 3 and diophantine number α there exists θ ∈ R su
h that φ(ξ)is 
onjugate to the rotation

ξ 7→ e2παi · ξ
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kavia a homeomorphism G of the 
ir
le. (In fa
t, this is the famous exampleof the Herman ring, see [C-G, Ch. VI℄.) We have
G(t) = e2πiF (t)where F (t) is a homeomorphism of R for whi
h F (t+ 1) = F (t) + 1. Let
G0(t) = eπiF (2t).The homeomorphism G0 ◦ ψ

−1 
onjugates Q|JQ
to the rotation

ξ 7→ eπαi · ξ.Su
h an example is impossible for polynomials of degree two sin
e they
annot have topologi
al degree one.
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