On the Helmholtz operator of variational calculus in fibered-fibered manifolds

by W. M. MIKULSKI (Kraków)

Abstract. A fibered-fibered manifold is a surjective fibered submersion $\pi: Y \to X$ between fibered manifolds. For natural numbers $s \geq r \leq q$ an (r, s, q)th order Lagrangian on a fibered-fibered manifold $\pi: Y \to X$ is a base-preserving morphism $\lambda: J^{r,s,q}Y \to \bigwedge^{\dim X} T^*X$. For $p = \max(q, s)$ there exists a canonical Euler morphism $\mathcal{E}(\lambda): J^{r+s,2s,r+p}Y \to \mathcal{V}^*Y \otimes \bigwedge^{\dim X} T^*X$ satisfying a decomposition property similar to the one in the fibered manifold case, and the critical fibered sections σ of Y are exactly the solutions of the Euler–Lagrange equation $\mathcal{E}(\lambda) \circ j^{r+s,2s,r+p}\sigma = 0$. In the present paper, similarly to the fibered manifold case, for any morphism $B: J^{r,s,q}Y \to \mathcal{V}^*Y \otimes \bigwedge^m T^*X$ over $Y, s \geq r \leq q$, we define canonically a Helmholtz morphism $\mathcal{H}(B): J^{s+p,s+p,2p}Y \to \mathcal{V}^*J^{r,s,r}Y \otimes \mathcal{V}^*Y \otimes \bigwedge^{\dim X} T^*X$, and prove that a morphism $B: J^{r+s,2s,r+p}Y \to \mathcal{V}^*Y \otimes \bigwedge T^*M$ over Y is locally variational (i.e. locally of the form $B = \mathcal{E}(\lambda)$ for some (r, s, p)th order Lagrangian λ) if and only if $\mathcal{H}(B) = 0$, where $p = \max(s, q)$. Next, we study naturality of the Helmholtz morphism $\mathcal{H}(B)$ on fiberedfibered manifolds Y of dimension (m_1, m_2, n_1, n_2) . We prove that any natural operator of the Helmholtz morphism type is $c\mathcal{H}(B), c \in \mathbb{R}$, if $n_2 \geq 2$.

0. Introduction. The first problem in variational calculus is to characterize critical values. It is known that the critical sections of a fibered manifold $p: X \to X_0$ with respect to an *r*th order Lagrangian $\lambda: J^r X \to \bigwedge^{\dim X_0} T^* X_0$ can be characterized as the solutions of the so-called Euler–Lagrange equation. There exists a unique Euler map $E(\lambda): J^{2r}X \to V^*X \otimes \bigwedge^{\dim X_0} T^* X_0$ over X satisfying some decomposition formula. Then the Euler–Lagrange equation is $E(\lambda) \circ j^{2r} \sigma = 0$ with unknown section σ (see [2]).

The second problem is to characterize morphisms $B : J^{2r}X \to V^*X \otimes \bigwedge^{\dim X_0} T^*X_0$ over X which are locally variational (i.e. locally of the form $B = E(\lambda)$ for some rth order Lagrangian λ). In [3], for any natural number r and any morphism $B : J^rY \to V^*X \otimes \bigwedge^{\dim X_0} T^*X_0$ over

²⁰⁰⁰ Mathematics Subject Classification: Primary 58A20.

Key words and phrases: fibered-fibered manifold, (r, s, q)-jet prolongation bundle, (r, s, q)th order Lagrangian, Euler morphism, Helmholtz morphism, natural operator.

X a canonical Helmholtz morphism $H(B) : J^{2r}X \to V^*J^rX \otimes V^*X \otimes \bigwedge^{\dim X_0} T^*X_0$ over J^rY was described. Next, it was proved that a morphism $B : J^{2r}X \to V^*X \otimes \bigwedge^{\dim X_0} T^*X_0$ over X is locally variational if and only if H(B) = 0.

Fibered-fibered manifolds generalize fibered manifolds. They are surjective fibered submersions $\pi: Y \to X$ between fibered manifolds. They appear naturally in differential geometry if we consider transverse natural bundles (in the sense of R. Wolak [7]) over foliated manifolds (see [5]). A simple example of a fibered-fibered manifold is the following. For any four manifolds X_1, X_2, X_3, X_4 , the obvious projection $\pi: X_1 \times X_2 \times X_3 \times X_4 \to X_1 \times X_2$ is a fibered-fibered manifold (we consider $X_1 \times X_2 \times X_3 \times X_4$ as the trivial fibered manifold over $X_1 \times X_3$ and $X_1 \times X_2$ as the trivial fibered manifold over X_1). In [5], for fibered-fibered manifolds, using the concept of (r, s, q)-jets on fibered manifolds, [2], we extended the notion of r-jet prolongation bundle to the (r, s, q)-jet prolongation bundle $J^{r,s,q}Y$ for $r, s, q \in \mathbb{N} \setminus \{0\}, s \geq r \leq q$. In [6], we solved the first variational problem for fibered-fibered manifolds. We defined (r, s, q)th order Lagrangians as base preserving (over X) morphisms $\lambda: J^{r,s,q}Y \to \bigwedge^{\dim X} T^*X$. Then similarly to the fibered manifold case we defined critical fibered sections of Y. Setting $p = \max(q, s)$ we proved that there exists a canonical Euler morphism $\mathcal{E}(\lambda)$: $J^{r+s,2s,r+p}Y$ $\rightarrow \mathcal{V}^*Y \otimes \bigwedge^{\dim X} T^*X$ of λ over Y satisfying a decomposition property similar to the one in the fibered manifold case, where $\mathcal{V}Y \subset TY$ is the vector subbundle of vectors vertical with respect to two obvious projections from Y (onto X and onto Y_0). Then we deduced that the critical fibered sections σ are exactly the solutions of the Euler–Lagrange equation $\mathcal{E}(\lambda) \circ j^{r+s,2s,r+p} \sigma = 0$. Next, we studied invariance properties of the corresponding Euler operator \mathcal{E} . We proved that any natural operator of the Euler morphism type is of the form $c\mathcal{E}$ for some real number c. (A similar result for the Euler operator E from variational calculus on fibered manifolds has been obtained by I. Kolář [1].)

The purpose of the present paper is to solve the second problem of variational calculus in fibered-fibered manifolds. Similarly to the fibered manifold case, for any natural numbers $s \geq r \leq q$ and a morphism $B: J^{r,s,q}Y \to \mathcal{V}^*Y \otimes \bigwedge^{\dim X} T^*X$ over Y we define canonically a Helmholtz morphism $\mathcal{H}(B): J^{s+p,s+p,2p}Y \to \mathcal{V}^*J^{r,s,r}Y \otimes \mathcal{V}^*Y \otimes \bigwedge^{\dim X} T^*X$ over $J^{r,s,r}Y$, where $p = \max(s,q)$. Then we deduce that a morphism $B: J^{r+s,2s,r+p}Y \to \mathcal{V}^*Y \otimes \bigwedge^{\dim X} T^*X$ over Y is locally variational (i.e. locally of the form $B = \mathcal{E}(\lambda)$ for some (r, s, p)th order Lagrangian λ) if and only if $\mathcal{H}(B) = 0$, where $p = \max(s,q)$. Next, we study naturality of the corresponding Helmholtz operator \mathcal{H} on fibered-fibered manifolds Y of (fibered-fibered) dimension (m_1, m_2, n_1, n_2) . We prove that any natural operator of the Helmholtz operator type is of the form $c\mathcal{H}, c \in \mathbb{R}$, provided $n_2 \geq 2$. (A similar result for the Helmholtz operator H from variational calculus on fibered manifolds has been obtained by I. Kolář and R. Vitolo [3] for r = 1 and 2, and by the author [4] for all r.)

A 2-fibered manifold is a sequence of two surjective submersions $X \to X_1 \to X_0$. For example, given a fibered manifold $X \to M$ we have the 2-fibered manifolds $TX \to X \to M$, $T^*X \to X \to M$, $J^rX \to X \to M$, etc. Every 2-fibered manifold $X \to X_1 \to X_0$ can be considered as a fibered-fibered manifold $X \to X_1$, where we consider X as a fibered manifold $X \to X_0$ and X_1 as a fibered manifold $X_1 \to X_0$. So, all our results apply to 2-fibered manifolds.

All manifolds and maps are assumed to be of class \mathcal{C}^{∞} .

1. Background: variational calculus in fibered manifolds

1.1. A fibered manifold is a surjective submersion $p : X \to X_0$ between manifolds. If $p' : X' \to X'_0$ is another fibered manifold then a map $f : X \to X'$ is called fibered if there exists a (unique) map $f_0 : X_0 \to X'_0$ such that $p' \circ f = f_0 \circ p$.

Denote the set of (local) sections of p by ΓX . The *r*-jet prolongation

$$J^r X = \{j_{x_0}^r \sigma \mid \sigma \in \Gamma X, \, x_0 \in X_0\}$$

of X is a fibered manifold over X_0 with respect to the source projection $p^r : J^r X \to X_0$. If $p' : X' \to X'_0$ is another fibered manifold and $f : X \to X'$ is a fibered map covering a local diffeomorphism $f_0 : X \to X'_0$ then $J^r f : J^r X \to J^r X'$ is given by $J^r f(j^r_x \sigma) = j^r_{f_0(x)}(f \circ \sigma \circ f_0^{-1})$ for $j^r_x \sigma \in J^r X$.

1.2. Let $p: X \to X_0$ be as above. A vector field V on X is *projectable* if there exists a vector field V_0 on X_0 such that V is *p*-related to V_0 . If V is projectable on X, then its flow $\operatorname{Exp} tV$ is formed by local fibered diffeomorphisms, and we can define a vector field

$$\mathcal{J}^r V = \frac{\partial}{\partial t}_{|t=0} J^r(\operatorname{Exp} tV)$$

on $J^r X$. If V is *p*-vertical (i.e. $V_0 = 0$), then $\mathcal{J}^r V$ is p^r -vertical.

1.3. An *r*th order Lagrangian on a fibered manifold $p: X \to X_0$ with dim $X_0 = m$ is a base preserving (over X_0) morphism

$$\lambda: J^r X \to \bigwedge^m T^* X_0.$$

Given a section $\sigma \in \Gamma X$ and a compact subset $K \subset \text{dom}(\sigma)$ contained in a chart domain, the *action* is

$$S(\lambda, \sigma, K) = \int_{K} (\lambda \circ j^{r} \sigma).$$

A section $\sigma \in \Gamma X$ is called *critical* if for any compact $K \subset \text{dom}(\sigma)$ contained in a chart domain and any *p*-vertical vector field η on X with compact support in $p^{-1}(K)$ we have

$$\frac{d}{dt}_{|t=0}S(\lambda,\operatorname{Exp} t\eta\circ\sigma,K)=0.$$

By interchanging differentiation and integration we see that σ is critical iff for any compact K and η as above we have

$$\int_{K} \langle \delta \lambda, \mathcal{J}^{r} \eta \rangle \circ j^{r} \sigma = 0,$$

where $\delta \lambda : V J^r X \to \bigwedge^m T^* X_0$ is the p^r -vertical part of the differential of λ .

1.4. Given a base preserving morphism $\varphi : J^q X \to \bigwedge^k T^* X_0$, its formal exterior differential $D\varphi : J^{q+1}X \to \bigwedge^{k+1}T^*X_0$ is defined by

$$D\varphi(j_{x_0}^{q+1}\sigma) = d(\varphi \circ j^q \sigma)(x_0)$$

for every local section σ of X, where d means the exterior differential at $x_0 \in X_0$ of the local k-form $\varphi \circ j^q \sigma$ on X_0 .

Further, for every morphism $F: J^q X \to \bigotimes^l V^* J^s X \otimes \bigwedge^k T^* X_0$ over $J^s X, s \leq q$, and every *l*-tuple of vertical vector fields η_1, \ldots, η_l on X, we have the evaluation $F(\mathcal{J}^s \eta_1, \ldots, \mathcal{J}^s \eta_l): J^q X \to \bigwedge^k T^* X_0$. One verifies easily in coordinates that there exists a unique morphism $DF: J^{q+1}X \to \bigotimes^l V^* J^{s+1}X \otimes \bigwedge^{k+1} T^* X_0$ over $J^{s+1}Y$ satisfying

$$D(F(\mathcal{J}^s\eta_1,\ldots,\mathcal{J}^s\eta_l)) = (DF)(\mathcal{J}^{s+1}\eta_1,\ldots,\mathcal{J}^{s+1}\eta_l)$$

for all η_1, \ldots, η_l . It will also be called the formal exterior differential of F.

1.5. In the following assertion we do not explicitly indicate the pull-back to $J^{2r}X$.

PROPOSITION 1 ([3]). For every morphism $B: J^r X \to V^* J^r X \otimes \bigwedge^m T^* X_0$ over $J^r X$, $m = \dim X_0$, there exists a unique pair of morphisms $\mathbf{E}(B): J^{2r} X \to V^* X \otimes \bigwedge^m T^* X_0$, $F(B): J^{2r} X \to V^* J^r X \otimes \bigwedge^m T^* X_0$, over X and $J^r X$, respectively, such that $B = \mathbf{E}(B) + F(B)$, and F(B) is locally of the form F(B) = DP, with $P: J^{2r-1} X \to V^* J^{r-1} X \otimes \bigwedge^{m-1} T^* X_0$ over the identity of $J^{r-1} X$.

REMARK 1. If $f: J^q X \to \mathbb{R}$ is a function, we have a coordinate decomposition

$$Df = (D_i f) dx^i,$$

where

$$D_i f = \frac{\partial f}{\partial x^i} + \sum_{|\alpha| \le q} \frac{\partial f}{\partial y^p_{\alpha}} y^p_{\alpha+1_i} : J^{q+1} X \to \mathbb{R}$$

is the so-called formal (or total) derivative of f and (x^i, y^k) are fiber coordinates on X and (x^i, y^k_{α}) are the induced coordinates on $J^q X$. The local coordinate form of $\mathbf{E}(B)$ is

$$\mathbf{E}(B) = \sum_{k=1}^{n} \sum_{|\alpha| \le r} (-1)^{|\alpha|} D_{\alpha} B_{k}^{\alpha} dy^{k} \otimes d^{m} x$$

(see [3]), where $d^m x = dx^1 \wedge \cdots \wedge dx^m$, $B = \sum_{k=1}^n \sum_{|\alpha| \le r} B^{\alpha}_k dy^k_{\alpha} \otimes d^m x$ and D_{α} is the iterated formal derivative corresponding to the multiindex α .

A morphism $\widetilde{B} : J^r X \to V^* X \otimes \bigwedge^m T^* X_0$ over X is called an Euler morphism. The morphism $\mathbf{E}(B)$ is called the formal Euler morphism of B.

Let $\lambda : J^r X \to \bigwedge^m T^* X_0$ be an *r*th order Lagrangian. We have $\delta \lambda : J^r X \to V^* J^r X \otimes \bigwedge^m T^* X_0$ over $J^r X$. The morphism $E(\lambda) := \mathbf{E}(\delta \lambda) : J^{2r} X \to V^* X \otimes \bigwedge^m T^* X_0$ over X is called *the Euler morphism of* λ .

Proposition 1 and the Stokes theorem immediately yield the following well known fact.

PROPOSITION 2 ([2]). A section $\sigma \in \Gamma X$ is critical iff it satisfies the Euler-Lagrange equation $E(\lambda) \circ j^{2r} \sigma = 0$.

1.6. Let $B: J^r X \to V^* X \otimes \bigwedge T^* X_0$ be an Euler morphism. We can interpret B as a vertical $\bigwedge^m T^* X_0$ -valued 1-form on $J^r X$ by using the canonical projection $VJ^r X \to V X$. Then its vertical differential δB (defined fiberwise) is a vertical $\bigwedge^m T^* X_0$ -valued 2-form on $J^r X$. For every vertical vector field η on X, we have $\langle \delta B, \mathcal{J}^r \eta \rangle : J^r X \to V^* J^r X \otimes \bigwedge^m T^* X_0$. Then we apply the formal Euler operator to obtain $\mathbf{E}(\langle \delta B, \mathcal{J}^r \eta \rangle) : J^{2r} X \to V^* X \otimes \bigwedge^m T^* X_0$ over X.

PROPOSITION 3 ([3]). There exists a unique morphism

$$H(B): J^{2r}X \to V^*J^rX \otimes V^*X \otimes \bigwedge^m T^*X_0$$

over $J^r X$ satisfying

$$\mathbf{E}(\langle \delta B, \mathcal{J}^r \eta \rangle) = H(B)(\mathcal{J}^r \eta)$$

for every vertical vector field η on X.

REMARK 2. The local coordinate form of H(B) is

$$H(B) = \sum_{k,l=1}^{n} \sum_{|\alpha| \le r} H_{kl}^{\alpha} dy_{\alpha}^{k} \otimes dy^{l} \otimes d^{m}x,$$

where

$$H_{kl}^{\alpha} = \frac{\partial B_l}{\partial y_{\alpha}^k} - \sum_{|\beta| \le r - |\alpha|} (-1)^{|\alpha+\beta|} \frac{(\alpha+\beta)!}{\alpha!\beta!} D_{\beta} \frac{\partial B_k}{\partial y_{\alpha+\beta}^l}$$

and $B = \sum_{k=1}^{n} B_k dy^k \otimes d^m x$ (see [3]).

The morphism $H(B): J^{2r}X \to V^*J^rX \otimes V^*X \otimes \bigwedge^m T^*X_0$ over J^rX is called the Helmholtz morphism of B.

We have the following characterization of local variationality.

PROPOSITION 4 ([3]). An rth order Euler morphism B is locally variational (i.e. locally of the form $B = E(\lambda)$ for some local rth order Lagrangian λ) if and only if H(B) = 0.

2. Variational calculus in fibered-fibered manifolds

2.1. In [5], we generalized the concept of fibered manifolds as follows. A *fibered-fibered manifold* is a fibered surjective submersion $\pi : Y \to X$ between fibered manifolds $p^Y : Y \to Y_0$ and $p^X : X \to X_0$, i.e. a surjective submersion which sends fibers to fibers such that the restricted maps (between fibers) are submersions. If $\pi' : Y' \to X'$ is another fibered-fibered manifold then a fibered map $f : Y \to Y'$ is called *fibered-fibered* if there exists a (unique) fibered map $f_0 : X \to X'$ such that $\pi' \circ f = f_0 \circ \pi$.

Let $r, s, q \in \mathbb{N} \setminus \{0\}, s \ge r \le q$.

Denote the set of local fibered maps $\sigma : X \to Y$ with $\pi \circ \sigma = \mathrm{id}_{\mathrm{dom}(\sigma)}$ (fibered sections) by $\Gamma_{\mathrm{fib}}Y$. By 12.19 in [2], $\sigma, \varrho \in \Gamma_{\mathrm{fib}}Y$ represent the same (r, s, q)-jet $j_x^{r,s,q}\sigma = j_x^{r,s,q}\varrho$ at a point $x \in X$ iff

$$j_x^r \sigma = j_x^r \varrho, \quad j_x^s(\sigma | X_{x_0}) = j_x^s(\varrho | X_{x_0}), \quad j_{x_0}^q \sigma_0 = j_{x_0}^q \varrho_0,$$

where X_0 and Y_0 are the bases of the fibered manifolds X and Y, $x_0 \in X_0$ is the element under x, X_{x_0} is the fiber of X over x_0 , and $\sigma_0, \varrho_0 : X_0 \to Y_0$ are the underlying maps of σ, ϱ . The (r, s, q)-jet prolongation

$$J^{r,s,q}Y = \{j_x^{r,s,q}\sigma \mid \sigma \in \Gamma_{\rm fib}Y, x \in X\}$$

of Y is a fibered manifold over X with respect to the source projection $\pi_X^{r,s,q} : J^{r,s,q}Y \to X$ (see [4]). We also have the target projection $\pi_Y^{r,s,q} : J^{r,s,q}Y \to Y$. If $\pi' : Y' \to X'$ is another fibered-fibered manifold and $f : Y \to Y'$ is a fibered-fibered map covering a local fibered diffeomorphism $f_0 : X \to X'$ then $J^{r,s,q}f : J^{r,s,q}Y \to J^{r,s,q}Y'$ is given by $J^{r,s,q}f(j_x^{r,s,q}\sigma) = j_{f_0(x)}^{r,s,q}(f \circ \sigma \circ f_0^{-1})$ for any $j_x^{r,s,q}\sigma \in J^{r,s,q}Y$.

2.2. Let $\pi: Y \to X$ be a fibered-fibered manifold which is a fibered submersion between fibered manifolds $p^Y: Y \to Y_0$ and $p^X: X \to X_0$. A projectable vector field W on the fibered manifold Y is *projectable-projectable* if there exists a π -related (to W) projectable vector field \underline{W} on X. If Wis projectable-projectable on Y, then its flow $\operatorname{Exp} tW$ is formed by local fibered-fibered diffeomorphisms, and we define a vector field

$$\mathcal{J}^{r,s,q}W = \frac{\partial}{\partial t}_{|t=0} J^{r,s,q}(\operatorname{Exp} tW)$$

on $J^{r,s,q}Y$. If additionally W is π -vertical and p^Y -vertical (i.e. W is π -related and p^Y -related to zero vector fields), then $\mathcal{J}^{r,s,q}W$ is $\pi_X^{r,s,q}$ -vertical and $p^Y \circ \pi_Y^{r,s,q}$ -vertical.

2.3. Let r, s, q be as above.

An (r, s, q)th order Lagrangian on a fibered-fibered manifold $\pi : Y \to X$ with dim X = m is a base preserving (over X) morphism

$$\lambda: J^{r,s,q}Y \to \bigwedge^m T^*X.$$

Given a fibered section $\sigma \in \Gamma_{\text{fib}}Y$ and a compact subset $K \subset \text{dom}(\sigma) \subset X$ contained in a chart domain, the *action* is

$$S(\lambda, \sigma, K) = \int_{K} (\lambda \circ j^{r,s,q} \sigma).$$

A fibered section $\sigma \in \Gamma_{\text{fib}} Y$ is called *critical* (with respect to λ) if for any compact $K \subset \text{dom}(\sigma)$ contained in a chart domain and any π -vertical and p^Y -vertical vector field η on Y with compact support in $\pi^{-1}(K)$ contained in a chart domain we have

$$\frac{d}{dt}_{|t=0}S(\lambda,\operatorname{Exp} t\eta\circ\sigma,K)=0.$$

Again we see that σ is critical iff for any compact K and η as above we have

$$\int \langle \delta \lambda, \mathcal{J}^{r,s,q} \eta \rangle j^{r,s,q} \sigma = 0,$$

where $\delta \lambda : \mathcal{V}J^{r,s,q}Y \to \bigwedge^m T^*X$ is the restriction of the differential of λ to the vector subbundle $\mathcal{V}J^{r,s,q}Y \subset TJ^{r,sq}Y$ of vectors vertical with respect to the projections from $J^{r,s,q}Y$ onto X and onto Y_0 .

2.4. Given a base preserving morphism $\varphi: J^{\tilde{p},\tilde{p},\tilde{p}}Y \to \bigwedge^k T^*X$, its formal exterior differential $\mathcal{D}\varphi: J^{\tilde{p}+1,\tilde{p}+1,\tilde{p}+1}Y \to \bigwedge^{k+1}T^*X$ over X is defined by

$$\mathcal{D}\varphi(j_x^{\widetilde{p}+1,\widetilde{p}+1,\widetilde{p}+1}\sigma) = d(\varphi \circ j^{\widetilde{p},\widetilde{p},\widetilde{p}}\sigma)(x)$$

for every local fibered section σ of Y, where d means the exterior differential at $x \in X$ of the local k-form $\varphi \circ j^{\tilde{p},\tilde{p},\tilde{p}}\sigma$ on X.

For every morphism $F: J^{\widetilde{p}, \widetilde{p}, \widetilde{p}} Y \to \bigotimes^{l} \mathcal{V}^{*} J^{\overline{p}, \overline{p}, \overline{p}} Y \otimes \bigwedge^{k} T^{*} X, \overline{p} \leq \widetilde{p}$, over $J^{\overline{p}, \overline{p}, \overline{p}} Y$, and every *l*-tuple of π -vertical and p^{Y} -vertical vector fields $\eta_{1}, \ldots, \eta_{l}$ on Y, we have the evaluation $F(\mathcal{J}^{\overline{p}, \overline{p}, \overline{p}, \overline{p}} \eta_{1}, \ldots, \mathcal{J}^{\overline{p}, \overline{p}, \overline{p}} \eta_{l}) : J^{\widetilde{p}, \widetilde{p}, \widetilde{p}} Y \to \bigwedge^{k} T^{*} X$. One verifies easily in coordinates that there exists a unique morphism $\mathcal{D}F: J^{\widetilde{p}+1, \widetilde{p}+1, \widetilde{p}+1} Y \to \bigotimes^{l} \mathcal{V}^{*} J^{\overline{p}+1, \overline{p}+1, \overline{p}+1} Y \otimes \bigwedge^{k+1} T^{*} X$ over $J^{\overline{p}+1, \overline{p}+1, \overline{p}+1} Y$ satisfying

$$\mathcal{D}(F(\mathcal{J}^{\overline{p},\overline{p},\overline{p}}\eta_1,\ldots,\mathcal{J}^{\overline{p},\overline{p},\overline{p}}\eta_l)) = (\mathcal{D}F)(\mathcal{J}^{\overline{p}+1,\overline{p}+1,\overline{p}+1}\eta_1,\ldots,\mathcal{J}^{\overline{p}+1,\overline{p}+1,\overline{p}+1}\eta_l)$$

for all η_1, \ldots, η_l . Here and throughout, $\mathcal{V}J^{\overline{p},\overline{p},\overline{p}}Y$ is the vector subbundle of $TJ^{\overline{p},\overline{p},\overline{p}}Y$ of vectors vertical with respect to the obvious projections from

 $J^{\overline{p},\overline{p},\overline{p}}Y$ onto X and onto Y_0 . Also in this case $\mathcal{D}F$ will be called the formal exterior differential of F.

2.5. In the following assertion we do not explicitly indicate the pullbacks to $J^{2p,2p,2p}Y$ and $J^{p,p,p}Y$.

PROPOSITION 5. Let r, s, q be natural numbers with $s \ge r \le q$, and set $p = \max(q, s)$. For every morphism $B: J^{r,s,q}Y \to \mathcal{V}^* J^{r,s,q}Y \otimes \bigwedge^m T^* X$ over $J^{r,s,q}Y$, there is a unique pair of morphisms

$$\widetilde{\mathbf{E}}(B): J^{2p,2p,2p}Y \to \mathcal{V}^*Y \otimes \bigwedge^m T^*X$$

and

$$\mathcal{F}(B): J^{2p,2p,2p}Y \to \mathcal{V}^*J^{p,p,p}Y \otimes \bigwedge^m T^*X,$$

over Y and $J^{p,p,p}Y$, respectively, such that $B = \widetilde{\mathbf{E}}(B) + \mathcal{F}(B)$, and $\mathcal{F}(B)$ is locally of the form $\mathcal{F}(B) = \mathcal{D}P$, $P: J^{2p-1,2p-1}Y \to \mathcal{V}^*J^{p-1,p-1,p-1}Y$ $\otimes \bigwedge^{m-1}T^*X$. Here $\mathcal{V}Y, \mathcal{V}J^{p-1,p-1,p-1}Y$ and $\mathcal{V}J^{p,p,p}Y$ are as in Sections 2.3 and 2.4.

Proof. Let $\pi_{r,s,q}^{p,p,p}: J^{p,p,p}Y \to J^{r,s,q}Y$ be the jet projection and let $i_p: J^{p,p,p}Y \to J^pY$ be the canonical inclusion, where in J^pY we consider Y as a fibered manifold over X. Using a suitable partition of unity on X and local fibered-fibered coordinate arguments we produce a morphism $\widetilde{B}: J^pY \to V^*J^pY \otimes \bigwedge^m T^*X$ over J^pY such that $(i_p)^*\widetilde{B} = (\pi_{r,s,q}^{p,p,p})^*B$. Then by the decomposition formula (Proposition 1) there exists a pair of morphisms

$$\begin{split} \mathbf{E}(\widetilde{B}): J^{2p}Y \to V^*Y \otimes \bigwedge^m T^*X, \quad F(\widetilde{B}): J^{2p}X \to V^*J^pY \otimes \bigwedge^m T^*X \\ \text{satisfying } \widetilde{B} &= \mathbf{E}(\widetilde{B}) + F(\widetilde{B}), \text{ and } F(\widetilde{B}) \text{ is locally of the form } F(\widetilde{B}) = D\widetilde{P}, \\ \text{with } \widetilde{P}: J^{2p-1}Y \to V^*J^{p-1}Y \otimes \bigwedge^{m-1}T^*X. \text{ Taking the pullback } (i_{2p})^* \text{ of } \\ \text{both sides of the last formula and using the obvious equality } \mathcal{D}((\pi_{r,s,q}^{p,p,p})^*B) = \\ \text{the restriction of } (i_{2p})^*D(\widetilde{B}) \text{ to } \mathcal{V}J^{2p,2p,2p}Y, \text{ we have the desired decomposition, provided we put } \widetilde{\mathbf{E}}(B) = \text{ the restriction of } (i_{2p})^*\mathbf{E}(\widetilde{B}) \text{ to } \mathcal{V}Y \text{ and } \\ \mathcal{F}(B) &= \text{the restriction of } (i_{2p})^*F(\widetilde{B}) \text{ to } \mathcal{V}J^{p,p,p}Y. \text{ Since locally } F(\widetilde{B}) = D\widetilde{P}, \\ \mathcal{F}(B) &= \mathcal{D}P \text{ for } P = \text{ the restriction of } (i_{2p-1})^*\widetilde{P} \text{ to } \mathcal{V}J^{p-1,p-1,p-1}Y. \text{ Using } \\ \text{Remark 1 it is easy to see (see Remark 3) that the definition of } \widetilde{\mathbf{E}}(B) \text{ does not depend on the choice of } \widetilde{B}. \blacksquare$$

REMARK 3. Let (x^i, X^I, y^k, Y^K) for $i = 1, \ldots, m_1, I = 1, \ldots, m_2, k = 1, \ldots, n_1$ and $K = 1, \ldots, n_2$ be a fibered-fibered local coordinate system on a fibered-fibered manifold Y. For any $f : J^{\tilde{p}, \tilde{p}, \tilde{p}}Y \to \mathbb{R}$ we have the decomposition

$$\mathcal{D}(f) = \mathcal{D}_i(f) dx^i + \mathcal{D}_I(f) dX^I,$$

where $\mathcal{D}_i(f): J^{\tilde{p}+1,\tilde{p}+1,\tilde{p}+1}Y \to \mathbb{R}$ and $\mathcal{D}_I(f): J^{\tilde{p}+1,\tilde{p}+1,\tilde{p}+1}Y \to \mathbb{R}$ are the "total" derivatives of f. Let $F: J^{\tilde{p}}Y \to \mathbb{R}$ be such that $F \circ i_{\tilde{p}} = f$. From the

clear equality $D(F) \circ i_{\tilde{p}+1} = \mathcal{D}(f)$ we easily deduce that $\mathcal{D}_i(f) = D_i(F) \circ i_{\tilde{p}+1}$ and $\mathcal{D}_I(f) = D_I(F) \circ i_{\tilde{p}+1}$. In particular, since D_i, D_I and $D_{i'}, D_{I'}$ commute, so do $\mathcal{D}_i, \mathcal{D}_I$ and $\mathcal{D}_{i'}, \mathcal{D}_{I'}$. From the formulas for D_i and D_I (see Remark 1) and from the above formulas for \mathcal{D}_i and \mathcal{D}_I we easily see that in local coordinates

$$\mathcal{D}_{i}(f) = \frac{\partial f}{\partial x^{i}} + \sum_{k=1}^{n_{1}} \sum_{|\tilde{\alpha}| \leq \tilde{p}} \frac{\partial f}{\partial y_{\tilde{\alpha}}^{k}} y_{\tilde{\alpha}+1_{i}}^{k} + \sum_{K=1}^{n_{2}} \sum_{|\tilde{\beta}|+|\tilde{\gamma}| \leq \tilde{p}} \frac{\partial f}{\partial Y_{(\tilde{\beta},\tilde{\gamma})}^{K}} Y_{(\tilde{\beta}+1_{i},\tilde{\gamma})}^{K}$$

and

$$\mathcal{D}_{I}(f) = \frac{\partial f}{\partial X^{I}} + \sum_{K=1}^{n_{2}} \sum_{|\tilde{\beta}| + |\tilde{\gamma}| \le \tilde{p}} \frac{\partial f}{\partial Y_{(\tilde{\beta}, \tilde{\gamma})}^{K}} Y_{(\tilde{\beta}, \tilde{\gamma}+1_{I})}^{K}$$

where $(x^i, X^I, y^k_{\widetilde{\alpha}}, Y^K_{(\widetilde{\beta}, \widetilde{\gamma})})$ is the induced coordinate system on $J^{\widetilde{p}, \widetilde{p}, \widetilde{p}}Y, \widetilde{\alpha} = (\widetilde{\alpha}^1, \dots, \widetilde{\alpha}^{m_1}), \widetilde{\beta} = (\widetilde{\beta}^{m_1}, \dots, \widetilde{\beta}^{m_1})$ and $\widetilde{\gamma} = (\widetilde{\gamma}^1, \dots, \widetilde{\gamma}^{m_2})$.

Let $(x^i, X^I, y^k_{\alpha}, Y^K_{(\beta,\gamma)})$ be the induced coordinates on $J^{p,p,p}Y$, where $p = \max(s,q)$. Then using the formula in Remark 1 it is easy to see that the local coordinate form of $\widetilde{\mathbf{E}}(B)$ is

$$\widetilde{\mathbf{E}}(B) = \sum_{K=1}^{n_2} \sum_{|\beta|+|\gamma| \le p} (-1)^{|\beta|+|\gamma|} \mathcal{D}_{(\beta,\gamma)} B_K^{(\beta,\gamma)} dY^K \otimes (d^{m_1}x \wedge d^{m_2}X),$$

where $d^{m_1}x = dx^1 \wedge \cdots \wedge dx^{m_1}$, $d^{m_2}X = dX^1 \wedge \cdots \wedge dX^{m_2}$, $(\pi^{p,p,p}_{r,s,q})^*B = \sum_{K=1}^{n_2} \sum_{|\beta|+|\gamma| \leq p} B_K^{(\beta,\gamma)} d^K_{(\beta,\gamma)} \otimes (d^{m_1} \wedge d^{m_2}X)$ and $\mathcal{D}_{(\beta,\gamma)}$ denotes the iterated "total" derivative with $\beta = (\beta^1, \ldots, \beta^{m_1}), \gamma = (\gamma^1, \ldots, \gamma^{m_2}).$

From the above local formula it follows that $\mathbf{E}(B)$ can be factorized through $J^{r+s,2s,r+p}Y$, $p = \max(s,q)$.

A morphism $\widetilde{B} : J^{r,s,q}Y \to \mathcal{V}^*Y \otimes \bigwedge^m T^*X$ over Y is called an Euler morphism. The morphism $\widetilde{\mathbf{E}}(B) : J^{2p,2p,2p}Y \to \mathcal{V}^*Y \otimes \bigwedge^m T^*X$ over Y is called the formal Euler morphism of B.

Let λ be an (r, s, q)th order Lagrangian on Y, and $p = \max(s, q)$. We have $\delta\lambda : J^{r,s,q}Y \to \mathcal{V}^*J^{r,s,q}Y \otimes \bigwedge^m T^*X$. The morphism $\mathcal{E}(\lambda) = \widetilde{\mathbf{E}}(\delta\lambda) : J^{2p,2p,2p}Y \to \mathcal{V}^*Y \otimes \bigwedge^m T^*X$ over Y is called *the Euler morphism of* λ .

By the above-mentioned property of $\widetilde{\mathbf{E}}(B)$ it follows that $\mathcal{E}(\lambda)$ can also be factorized through $J^{r+s,2s,r+p}Y$.

Proposition 5 and the Stokes theorem yield the following fact.

PROPOSITION 6 ([6]). A fibered section $\sigma \in \Gamma_{\text{fib}}Y$ is critical iff it satisfies the Euler–Lagrange equation $\mathcal{E}(\lambda) \circ j^{2p,2p,2p}\sigma = 0$. By the above-mentioned property of $\mathcal{E}(\lambda)$ this equation is $\mathcal{E}(\lambda) \circ j^{r+s,2s,r+p}\sigma = 0$. **2.6.** Let $B: J^{r,s,q}Y \to \mathcal{V}^*Y \otimes \bigwedge^m T^*X$ be an Euler morphism, and $p = \max(s,q)$. Using the canonical projections $\mathcal{V}^*J^{r,s,q}Y \to \mathcal{V}Y$, we can interpret B as a vertical $\bigwedge^m T^*X$ -valued 1-form on $J^{r,s,q}Y$. Then the vertical differential δB (defined fiberwise) is a vertical $\bigwedge^m T^*X$ -valued 2-form on $J^{r,s,q}Y$. For every π -vertical and p^Y -vertical vector field η on Y, we have $\langle \delta B, \mathcal{J}^{r,s,q}\eta \rangle : J^{r,s,q}Y \to \mathcal{V}^*J^{r,s,q}Y \otimes \bigwedge^m T^*X$ over $J^{r,s,q}Y$. Then we can apply the formal Euler operator to obtain $\widetilde{\mathbf{E}}(\langle \delta B, \mathcal{J}^{r,s,q}\eta \rangle) : J^{2p,2p,2p}Y \to \mathcal{V}^*Y \otimes \bigwedge^m T^*X$ over Y.

PROPOSITION 7. There exists a unique morphism

 $\mathcal{H}(B): J^{2p,2p,2p}Y \to \mathcal{V}^*J^{p,p,p}Y \otimes \mathcal{V}^*Y \otimes \bigwedge^m T^*X$

over $J^{p,p,p}Y$ satisfying

$$\mathbf{\tilde{E}}(\langle \delta B, \mathcal{J}^{r,s,q}\eta \rangle) = \mathcal{H}(B)(\mathcal{J}^{p,p,p}\eta)$$

for every π -vertical and p^{Y} -vertical vector field η on Y.

Proof. That $\mathcal{H}(B)$ is unique is clear. We prove the existence.

As in the proof of Proposition 5, we have a morphism $\widetilde{B} : J^p Y \to V^*Y \otimes \bigwedge^m T^*X$ over Y such that $(\pi_{r,s,q}^{p,p,p})^*B =$ the restriction of $(i_p)^*\widetilde{B}$ to \mathcal{V}^*Y . Then by Proposition 3, $\mathbf{E}(\langle \delta \widetilde{B}, \mathcal{J}^p \eta \rangle) = H(\widetilde{B})(\mathcal{J}^p \eta)$, where $H(\widetilde{B})$ is the Helmholtz morphism of \widetilde{B} . Applying the pull-back $(i_{2p})^*$ to both sides of the last equality and using the definition of $\widetilde{\mathbf{E}}(\langle \delta B, \mathcal{J}^{r,s,q} \eta \rangle)$ (see the proof of Proposition 5) we obtain the desired equality for $\mathcal{H}(B) =$ the restriction of $(i_{2p})^*H(\widetilde{B})$ to $\mathcal{V}J^{p,p,p}Y \times_Y \mathcal{V}Y$. One can show (see Remark 4 below) that the definition of $\mathcal{H}(B)$ is independent of the choice of \widetilde{B} .

REMARK 4. It follows from the formula in Remark 2 and from the definition of $\mathcal{H}(B)$ in the proof of Proposition 7 that the local coordinate form of $\mathcal{H}(B)$ is

$$\mathcal{H}(B) = \sum_{K,L=1}^{n_2} \sum_{|\beta|+|\gamma| \le p} \mathcal{H}_{KL}^{(\beta,\gamma)} dY_{(\beta,\gamma)}^K \otimes dY^L \otimes d^{m_1}x \otimes d^{m_2}X,$$

where

$$\mathcal{H}_{KL}^{(\beta,\gamma)} = \frac{\partial B_L}{\partial Y_{(\beta,\gamma)}^K} - \sum_{|\tilde{\beta}|+|\tilde{\gamma}| \le p - |\beta| - |\gamma|} (-1)^{|\tilde{\beta}|+|\tilde{\gamma}|} \frac{(\beta + \tilde{\beta})!(\gamma + \tilde{\gamma})!}{\beta! \tilde{\beta}! \gamma! \tilde{\gamma}!} \mathcal{D}_{(\tilde{\beta},\tilde{\gamma})} \frac{\partial B_K}{\partial Y_{(\beta + \tilde{\beta}, \gamma + \tilde{\gamma})}^L}$$

and $B = \sum_{K=1}^{n_1} B_K dY^K \otimes d^{m_1} x \wedge d^{m_2} X.$

From this local formula it follows easily that $\mathcal{H}(B)$ can be factorized through $(J^{s+p,s+p,2p}Y \times_{J^{r,s,r}Y} \mathcal{V}J^{r,s,r}Y) \times_Y \mathcal{V}Y$. We have the following characterization of local variationality.

PROPOSITION 8. Let $s \ge r \le q$ be natural numbers and $p = \max(s, q)$. A (2p, 2p, 2p)th order Euler morphism B is locally variational (i.e. locally of the form $\mathcal{E}(\lambda)$ for some (p, p, p)th order Lagrangian λ) if and only if $\mathcal{H}(B) = 0$.

Moreover, if a (2p, 2p, 2p)th order Euler morphism B is locally variational and factorizes through $J^{r+s,2s,r+p}Y$, then locally $B = \mathcal{E}(\lambda)$ for some (r, s, p)th order Lagrangian.

Proof. Suppose locally $B = \mathcal{E}(\lambda)$. Choose a local *p*th order Lagrangian $\Lambda : J^p Y \to \bigwedge^m T^* X$ such that $\lambda \circ \pi_{r,s,q}^{p,p,p} = (i_p)^* \Lambda$. We see that $\delta \lambda$ is the restriction of $(i_p)^* \delta \Lambda$ to $\mathcal{V}Y$. Hence $\mathcal{H}(B) = \mathcal{H}(\mathcal{E}(\lambda))$ is the restriction of $(i_{4p})^* H(E(\Lambda))$ to $\mathcal{V}J^{2p}Y \times_Y \mathcal{V}Y$. Since $H(E(\Lambda)) = 0$ (see Proposition 4), also $\mathcal{H}(B) = 0$.

To prove the converse we choose local fibered-fibered coordinates (x^i, X^I, y^k, Y^K) on $U \subset Y$. In this coordinate system we have the obvious projection $\Pi : J^{\tilde{p}}U = \mathbb{R}^M \to J^{\tilde{p},\tilde{p},\tilde{p}}U = \mathbb{R}^N$ for any \tilde{p} . Let $\mathcal{H}(B) = 0$. Then (using the local formula) we have $H(\Pi^*B) = 0$. Proposition 4 yields $\Pi^*B = E(\Lambda)$ for some *p*th order Lagrangian Λ on U. Thus $B = \mathcal{E}(\lambda)$ for $\lambda = (i_p)^*\Lambda$.

The "moreover" part can be deduced in the following way. By the assumption, there is $\tilde{\lambda}$ of order (p, p, p) such that $B = \mathcal{E}(\tilde{\lambda})$ over U, where (U, x^i, X^I, y^k, Y^K) are fibered-fibered coordinates. Using these coordinates we can consider the obvious inclusion $J : J^{r,s,p}U = \mathbb{R}^M \to J^{p,p,p}U = \mathbb{R}^N$, J(v) = (v, 0). Then (using the local expression of $\tilde{\mathbf{E}}(\delta\lambda)$) we see that $B = \mathcal{E}(J^*\tilde{\lambda})$.

3. On naturality of the Helmholtz operator. We say that a fibered manifold $p: X \to X_0$ is of dimension (m, n) if dim $X_0 = m$ and dim X = m + n. All (m, n)-dimensional fibered manifolds and their local fibered diffeomorphisms form a category which we denote by $\mathcal{FM}_{m,n}$ and which is local and admissible in the sense of [2].

Similarly, a fibered-fibered manifold $\pi: Y \to X$ is of dimension (m_1, m_2, n_1, n_2) if the fibered manifold X is of dimension (m_1, n_1) and the fibered manifold Y is of dimension $(m_1 + n_1, m_2 + n_2)$. All (m_1, m_2, n_1, n_2) -dimensional fibered-fibered manifolds and their fibered-fibered local diffeomorphisms form a category which we denote by $\mathcal{FM}_{m_1,m_2,n_1,n_2}$ and which is local and admissible in the sense of [2]. The standard (m_1, m_2, n_1, n_2) -dimensional trivial fibered-fibered manifold $\pi: \mathbb{R}^{m_1} \times \mathbb{R}^{m_2} \times \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \to \mathbb{R}^{m_1} \times \mathbb{R}^{m_2}$ will be denoted by $\mathcal{FM}_{m_1,m_2,n_1,n_2}$ -isomorphic to the standard $\mathcal{FM}_{m_1,m_2,n_1,n_2}$ -object $\mathbb{R}^{m_1,m_2,n_1,n_2}$.

Given two fibered manifolds $Z_1 \to M$ and $Z_2 \to M$ over the same base M, we denote the space of all base preserving fibered manifold morphisms of Z_1 into Z_2 by $\mathcal{C}^{\infty}_M(Z_1, Z_2)$. In [3], [4], the authors studied the *r*th order Helmholtz morphism H(B) of variational calculus on an (m, n)-dimensional fibered manifold $p: X \to X_0$ as the Helmholtz operator

$$H: \mathcal{C}^{\infty}_{X}(J^{r}X, V^{*}X \otimes \bigwedge^{m} T^{*}X_{0}) \to \mathcal{C}^{\infty}_{J^{r}X}(J^{2r}X, V^{*}J^{r}X \otimes V^{*}X \otimes \bigwedge^{m} T^{*}X_{0}).$$

They deduced the following classification theorem:

THEOREM 1 ([3], [4]). Any $\mathcal{FM}_{m,n}$ -natural operator (in the sense of [2]) of the type of the Helmholtz operator is of the form $cH, c \in \mathbb{R}$, provided $n \geq 2$.

The purpose of the present section is to obtain a similar result in the fibered-fibered manifold case. Namely, we study the Helmholtz morphism $\mathcal{H}(B)$ of variational calculus on an (m_1, m_2, n_1, n_2) -dimensional fibered-fibered manifold $\pi: Y \to X$ as the Helmholtz operator

$$\begin{aligned} \mathcal{H} : \mathcal{C}_{Y}^{\infty}(J^{r,s,q}Y,\mathcal{V}^{*}Y\otimes \bigwedge^{m}T^{*}X) \\ & \to \mathcal{C}_{J^{p,p,p}Y}^{\infty}(J^{2p,2p,2p}Y,\mathcal{V}^{*}J^{p,p,p}Y\otimes \mathcal{V}^{*}Y\otimes \bigwedge^{m}T^{*}X), \end{aligned}$$

where $s \ge r \le q$ are natural numbers, $p = \max(s, q)$ and $m = m_1 + m_2 = \dim X$. We prove the following classification theorem.

THEOREM 2. Any $\mathcal{FM}_{m_1,m_2,n_1,n_2}$ -natural operator (in the sense of [2]) of the type of the Helmholtz operator is of the form $c\mathcal{H}, c \in \mathbb{R}$, provided $n_2 \geq 2$.

REMARK 5. In view of Remark 3 the assertion of Theorem 2 also holds for natural operators

$$D: \mathcal{C}_{Y}^{\infty}(J^{r,s,q}Y, \mathcal{V}^{*}Y \otimes \bigwedge^{m} T^{*}X) \\ \to \mathcal{C}_{J^{r,s,r}Y}^{\infty}(J^{s+p,s+p,2p}Y, \mathcal{V}^{*}J^{r,s,r}Y \otimes \mathcal{V}^{*}Y \otimes \bigwedge^{m} T^{*}X).$$

REMARK 6. The assumption of the last theorem means that for any $\mathcal{FM}_{m_1,m_2,n_1,n_2}$ -morphism $f: Y \to Y'$ and any morphisms

$$B \in \mathcal{C}_Y^{\infty}(J^{r,s,q}Y, \mathcal{V}^*Y \otimes \bigwedge^m T^*X)$$

and

$$B' \in \mathcal{C}^{\infty}_{Y'}(J^{r,s,q}Y',\mathcal{V}^*Y' \otimes \bigwedge^m T^*X'),$$

if B and B' are f-related then so are D(B) and D(B'). Moreover D is regular and local. The regularity means that D transforms a smoothly parametrized family of appriopriate type morphisms into a smoothly parametrized family of appriopriate type morphisms. The locality means that $D(B)_u$ depends on the germ of B at $\pi_{r,s,q}^{p,p,p}(u)$. Proof of Theorem 2. Let D be an operator in question.

Let (x^i, X^I, y^k, Y^K) be the usual fibered-fibered coordinate system on $\mathbb{R}^{m_1, m_2, n_1, n_2}$, $i = 1, \ldots, m_1$, $I = 1, \ldots, m_2$, $k = 1, \ldots, n_1$, $K = 1, \ldots, n_2$.

Since an $\mathcal{FM}_{m_1,m_2,n_1,n_2}$ -map

$$(x^i, X^I, y^k - \sigma^k(x^i, X^I), Y^K - \Sigma^K(x^i, X^I))$$

sends $j^{2p,2p,2p}_{(0,0)}(x^i,X^I,\sigma^k,\varSigma^K)$ to

$$\Theta = j_{(0,0)}^{2p,2p,2p}(x^i, X^I, 0, 0) \in (J^{2p,2p,2p}(\mathbb{R}^{m_1,m_2,n_1,n_2}))_{(0,0,0,0)},$$

 $J^{2p,2p,2p}(\mathbb{R}^{m_1,m_2,n_1,n_2})$ is the $\mathcal{FM}_{m_1,m_2,n_1,n_2}$ -orbit of Θ . Then D is uniquely determined by the evaluations

$$\langle D(B)_{\Theta}, w \otimes v \rangle \in \bigwedge^m T_0^* \mathbb{R}^m$$

for all

$$B \in \mathcal{C}^{\infty}_{\mathbb{R}^{m_1,m_2,n_1,n_2}}(J^{r,s,q}(\mathbb{R}^{m_1,m_2,n_1,n_2}), \mathcal{V}^*\mathbb{R}^{m_1,m_2,n_1,n_2} \otimes \bigwedge^m T^*\mathbb{R}^m), w \in \mathcal{V}_{\pi^{2p,2p,2p}_{p,p,p}(\Theta)}J^{p,p,p}(\mathbb{R}^{m_1,m_2,n_1,n_2}), \quad v \in T_0\mathbb{R}^{n_2} = \mathcal{V}_{(0,0,0,0)}\mathbb{R}^{m_1,m_2,n_1,n_2}.$$

Using the invariance of D with respect to $\mathcal{FM}_{m_1m_2,n_1,n_2}$ -maps of the form $\mathrm{id}_{\mathbb{R}^m} \times \psi$ for apprioriate linear ψ (since $n_2 \geq 2$) we find that D is uniquely determined by the evaluations

$$\left\langle D(B)_{\Theta}, \frac{d}{dt_0}(tj^{p,p,p}_{(0,0)}(x^i, X^I, 0, \dots, 0, f(x^i, X^I), 0, \dots, 0)) \otimes \frac{\partial}{\partial Y^2}_0 \right\rangle$$

for all

$$B \in \mathcal{C}^{\infty}_{\mathbb{R}^{m_1,m_2,n_1,n_2}}(J^{r,s,q}(\mathbb{R}^{m_1,m_2,n_1,n_2}), \mathcal{V}^*\mathbb{R}^{m_1,m_2,n_1,n_2} \otimes \bigwedge^m T^*\mathbb{R}^m)$$

and all $f : \mathbb{R}^m \to \mathbb{R}$, where $f(x^i, X^I)$ is at position Y^1 .

Using the invariance of D with respect to the $\mathcal{FM}_{m_1m_2,n_1,n_2}$ -map

$$(x^1, \dots, x^{m_1}, X^1, \dots, X^{m_2}, y^1, \dots, y^{n_1}, Y^1 + f(x^i, X^I)Y^1, Y^2, \dots, Y^{n_2})$$

preserving Θ we can assume f=1, i.e. D is uniquely determined by the evaluations

$$\left\langle D(B)_{\Theta}, \frac{d}{dt_0}(tj^{p,p,p}_{(0,0)}(x^i, X^I, 0, \dots, 0, 1, 0, \dots, 0)) \otimes \frac{\partial}{\partial Y^2}_0 \right\rangle \in \bigwedge^m T_0^* \mathbb{R}^m$$

for all

$$B \in \mathcal{C}^{\infty}_{\mathbb{R}^{m_1, m_2, n_1, n_2}}(J^{r, s, q}(\mathbb{R}^{m_1, m_2, n_1, n_2}), \mathcal{V}^* \mathbb{R}^{m_1, m_2, n_1, n_2} \otimes \bigwedge^m T^* \mathbb{R}^m).$$

where 1 is at position Y^1 .

Consider a morphism

$$B \in \mathcal{C}^{\infty}_{\mathbb{R}^{m_1, m_2, n_1, n_2}}(J^{r, s, q}(\mathbb{R}^{m_1, m_2, n_1, n_2}), \mathcal{V}^* \mathbb{R}^{m_1, m_2, n_1, n_2} \otimes \bigwedge^m T^* \mathbb{R}^m).$$

Using the invariance of D with respect to the $\mathcal{FM}_{m_1,m_2,n_1,n_2}$ -maps

$$\psi_{\tau,\mathcal{T}} = \left(x^i, X^I, \frac{1}{\tau^k} y^k, \frac{1}{\mathcal{T}^K} Y^K\right)$$

for $\tau^k \neq 0$ and $\tau^K \neq 0$ we get the homogeneity condition

$$\left\langle D((\psi_{\tau,T})_*B)_{\Theta}, \frac{d}{dt_0}(tj^{p,p,p}_{(0,0)}(x^i, X^I, 0, \dots, 0, 1, 0, \dots, 0)) \otimes \frac{\partial}{\partial Y^2}_0 \right\rangle$$

= $\mathcal{T}^1 \mathcal{T}^2 \left\langle D(B)_{\Theta}, \frac{d}{dt_0}(tj^{p,p,p}_{(0,0)}(x^i, X^I, 0, \dots, 0, 1, 0, \dots, 0)) \otimes \frac{\partial}{\partial Y^2}_0 \right\rangle$

for $\tau = (\tau^k)$ and $\mathcal{T} = (\mathcal{T}^K)$. By Corollary 19.8 in [1] of the non-linear Peetre theorem we can assume that B is a polynomial (of arbitrary degree). The regularity of D implies that

$$\left\langle D(B)_{\Theta}, \frac{d}{dt_0}(tj^{p,p,p}_{(0,0)}(x^i, X^I, 0, \dots, 0, 1, 0, \dots, 0)) \otimes \frac{\partial}{\partial Y^2}_0 \right\rangle$$

is smooth with respect to the coordinates of B. Then by the homogeneous function theorem (and the above type of homogeneity) we deduce that

$$\left\langle D(B)_{\Theta}, \frac{d}{dt_0}(tj^{p,p,p}_{(0,0)}(x^i, X^I, 0, \dots, 0, 1, 0, \dots, 0)) \otimes \frac{\partial}{\partial Y^2}_0 \right\rangle$$

depends linearly on the coordinates of B on all $x^{\varrho}X^{\sigma}Y^{1}_{(\beta,\gamma)}dY^{2} \otimes d^{m_{1}}x \wedge d^{m_{2}}X$ and $x^{\varrho}X^{\sigma}Y^{2}_{(\beta,\gamma)}dY^{1} \otimes d^{m_{1}}x \wedge d^{m_{2}}X$, it depends bilinearly on the coordinates of B on all $x^{\varrho}X^{\sigma}dY^{1} \otimes d^{m_{1}}x \wedge d^{m_{2}}X$ and $x^{\varrho}X^{\sigma}dY^{2} \otimes d^{m_{1}}x \wedge d^{m_{2}}X$, and it is independent of the other coordinates of B, where (of course) $(x^{i}, X^{I}, y^{k}_{\alpha}, Y^{K}_{(\beta,\gamma)})$ is the induced coordinate system on the prolongation $J^{r,s,q}(\mathbb{R}^{m_{1},m_{2},n_{1},n_{2}})$ and $d^{m_{1}}x = dx^{1} \wedge \cdots \wedge dx^{m_{1}}$ and $d^{m_{2}}X = dX^{1} \wedge \cdots \wedge dX^{m_{2}}$. (Here and in what follows, α, β are arbitrary m_{1} -tuples and γ is an arbitrary m_{2} -tuple with $|\alpha| \leq q, |\beta| + |\gamma| \leq r$ or $|\gamma| \leq s$ if $\beta = (0)$).

In other words (and more precisely),

$$\left\langle D(B)_{\Theta}, \frac{d}{dt_0}(tj^{r,s,q}_{(0,0)}(x^i, X^I, 0, \dots, 0, 1, 0, \dots, 0)) \otimes \frac{\partial}{\partial Y^2}_0 \right\rangle$$

is determined by the values

$$\begin{split} \left\langle D(x^{\varrho}X^{\sigma}Y^{2}_{(\beta,\gamma)}dY^{1}\otimes d^{m_{1}}x\wedge d^{m_{2}}X)_{\Theta}, \\ & \frac{d}{dt_{0}}(tj^{r,s,q}_{(0,0)}(x^{i},X^{I},0,\ldots,0,1,0,\ldots,0))\otimes \frac{\partial}{\partial Y^{2}}_{0}\right\rangle, \\ \left\langle D(x^{\varrho}X^{\sigma}Y^{1}_{(\beta,\gamma)}dY^{2}\otimes d^{m_{1}}x\wedge d^{m_{2}}X)_{\Theta}, \\ & \frac{d}{dt_{0}}(tj^{r,s,q}_{(0,0)}(x^{i},X^{I},0,\ldots,0,1,0,\ldots,0))\otimes \frac{\partial}{\partial Y^{2}}_{0}\right\rangle, \end{split}$$

$$\left\langle D(x^{\varrho}X^{\sigma}dY^{1}\otimes d^{m_{1}}x\wedge d^{m_{2}}X+x^{\tilde{\varrho}}X^{\tilde{\sigma}}dY^{2}\otimes d^{m_{1}}x\wedge d^{m_{2}}X)_{\Theta}, \\ \frac{d}{dt_{0}}(tj^{r,s,q}_{(0,0)}(x^{i},X^{I},0,\ldots,0,1,0,\ldots,0))\otimes \frac{\partial}{\partial Y^{2}}_{0}\right\rangle.$$

Furthermore, $\langle D(B)_{\Theta}, \frac{d}{dt_0}(tj^{r,s,q}_{(0,0)}(x^i, X^I, 0, \dots, 0, 1, 0, \dots, 0)) \otimes \frac{\partial}{\partial Y^2_0} \rangle$ is linear in *B* for *B* from the \mathbb{R} -vector subspace spanned by all elements $x^{\varrho}X^{\sigma}Y^1_{(\beta,\gamma)}dY^2 \otimes d^{m_1}x \wedge d^{m_2}X$ and $x^{\tilde{\varrho}}X^{\tilde{\sigma}}Y^2_{(\beta,\gamma)}dY^1 \otimes d^{m_1}x \wedge d^{m_2}X$; moreover,

$$\left\langle D(dY^1 \otimes d^{m_1}x \wedge d^{m_2}X + B)_{\Theta}, \\ \frac{d}{dt_0} (tj^{r,s,q}_{(0,0)}(x^i, X^I, 0, \dots, 0, 1, 0, \dots, 0)) \otimes \frac{\partial}{\partial Y^2}_0 \right\rangle$$
$$= \left\langle D(B)_{\Theta}, \frac{d}{dt_0} (tj^{r,s,q}_{(0,0)}(x^i, X^I, 0, \dots, 0, 1, 0, \dots, 0)) \otimes \frac{\partial}{\partial Y^2}_0 \right\rangle$$

for *B* from the vector subspace (over \mathbb{R}) spanned by all $x^{\varrho}X^{\sigma}Y^{1}_{(\beta,\gamma)}dY^{2} \otimes d^{m_{1}}x \wedge d^{m_{2}}X$ and $x^{\tilde{\varrho}}X^{\tilde{\sigma}}Y^{2}_{(\beta,\gamma)}dY^{1} \otimes d^{m_{1}}x \wedge d^{m_{2}}X$; and

$$(1) \quad \left\langle D(ax^{\varrho}X^{\sigma}dY^{1} \otimes d^{m_{1}}x \wedge d^{m_{2}}X + bx^{\tilde{\varrho}}X^{\tilde{\sigma}}dY^{2} \otimes d^{m_{1}}x \wedge d^{m_{2}}X)_{\Theta}, \\ \frac{d}{dt_{0}}(tj^{r,s,q}_{(0,0)}(x^{i},X^{I},0,\ldots,0,1,0,\ldots,0)) \otimes \frac{\partial}{\partial Y^{2}_{0}} \right\rangle \\ = ab \left\langle D(x^{\varrho}X^{\sigma}dY^{1} \otimes d^{m_{1}}x \wedge d^{m_{2}}X + x^{\tilde{\varrho}}X^{\tilde{\sigma}}dY^{2} \otimes d^{m_{1}}x \wedge d^{m_{2}}X)_{\Theta}, \\ \frac{d}{dt_{0}}(tj^{r,s,q}_{(0,0)}(x^{i},X^{I},0,\ldots,0,1,0,\ldots,0)) \otimes \frac{\partial}{\partial Y^{2}_{0}} \right\rangle$$

for all real numbers a and b.

Then by the invariance of D with respect to $(\tau^i x^i, \mathcal{T}^I X^I, y^k, Y^K)$ for $\tau^i \neq 0$ and $\mathcal{T}^I \neq 0$ we get

for $(\beta, \gamma) \neq (\varrho, \sigma)$, and $\left\langle D(x^{\varrho}X^{\sigma}dY^{1} \otimes d^{m_{1}}x \wedge d^{m_{2}}X + x^{\tilde{\varrho}}X^{\tilde{\sigma}}dY^{2} \otimes d^{m_{1}}x \wedge d^{m_{2}}X)_{\Theta}, \frac{d}{dt_{0}}(tj^{r,s,q}_{(0,0)}(x^{i}, X^{I}, 0, \dots, 0, 1, 0, \dots, 0)) \otimes \frac{\partial}{\partial Y^{2}}_{0} \right\rangle = 0$

for all ρ , $\tilde{\rho}$, σ and $\tilde{\sigma}$.

Hence D is determined by the evaluations

$$(2) \quad \left\langle D(x^{\beta}X^{\gamma}Y^{1}_{(\beta,\gamma)}dY^{2}\otimes d^{m_{1}}x\wedge d^{m_{2}}X)_{\Theta}, \\ \frac{d}{dt_{0}}(tj^{r,s,q}_{(0,0)}(x^{i},X^{I},0,\ldots,0,1,0,\ldots,0))\otimes \frac{\partial}{\partial Y_{20}}\right\rangle, \\ (3) \quad \left\langle D(x^{\beta}X^{\gamma}Y^{2}_{(\beta,\gamma)}dY^{1}\otimes d^{m_{1}}x\wedge d^{m_{2}}X)_{\Theta}, \\ \frac{d}{dt_{0}}(tj^{r,s,q}_{(0,0)}(x^{i},X^{I},0,\ldots,0,1,\ldots,0))\otimes \frac{\partial}{\partial Y^{2}}_{0}\right\rangle.$$

Suppose $\beta^{i_0} \neq 0$ for some $i_0 = 1, \ldots, m_1$. We use the invariance of D with respect to the locally defined $\mathcal{FM}_{m_1,m_2,n_1,n_2}$ -map

$$\psi^{i_0} = (x^i, X^I, y^k, Y^1, Y^2 + x^{i_0}Y^2, Y^3, \dots, Y^{n_2})^{-1}$$

preserving $x^i, X^I, \,, \Theta, Y^1, j^{r,s,q}_{(0,0)}(x^i, X^I, 0, \dots, 0, 1, 0, \dots, 0), \frac{\partial}{\partial Y^2_0}$ and sending $Y^2_{(\beta,\gamma)}$ to $Y^2_{(\beta,\gamma)} + x^{i_0}Y^2_{(\beta,\gamma)} + Y^2_{(\beta-1_{i_0},\gamma)}$. Applying this invariance to

$$\left\langle D(x^{\beta-1_{i_0}}X^{\gamma}Y^2_{(\beta,\gamma)}dY^1 \otimes d^{m_1}x \wedge d^{m_2}X)_{\Theta}, \\ \frac{d}{dt_0}(tj^{r,s,q}_{(0,0)}(x^i, X^I, 0, \dots, 0, 1, 0, \dots, 0)) \otimes \frac{\partial}{\partial Y^2}_0 \right\rangle$$

it follows that the value (3) is zero if it is zero for $\beta - 1_{i_0}$ instead of β . Continuing this process and a similar one for the $\mathcal{FM}_{m_1,m_2,n_1,n_2}$ -morphism

$$\Psi^{I_0} = (x^i, X^I, y^k, Y^1, Y^2 + X^{I_0}Y^2, Y^3, \dots, Y^{n_0})^{-1}$$

instead of ψ^{i_0} we see that (3) is zero if it is zero for $(\beta, \gamma) = ((0), (0))$.

By similar arguments (since ψ^{i_0} sends dY^2 to $dY^2 + x^{i_0}dY^2$ and Ψ^{I_0} sends dY^2 to $dY^2 + X^{I_0}dY^2$), from the equality

$$\left\langle D(x^{\beta-1_{i_0}}X^{\gamma}Y^1_{(\beta,\gamma)}dY^2 \otimes d^{m_1}x \wedge d^{m_2}X)_{\Theta}, \\ \frac{d}{dt}(tj^{r,s,q}_{(0,0)}(x^i, X^I, 0, \dots, 0, 1, 0, \dots, 0)) \otimes \frac{\partial}{\partial Y^2}_0 \right\rangle = 0$$

for $\beta_{i_0} \neq 0$ (or a similar equality for $\gamma_{I_0} \neq 0$) we find that (2) is zero if $(\beta, \gamma) \neq ((0), (0))$.

In other words, D is uniquely determined by the values (2) and (3) for $(\beta, \gamma) = ((0), (0)).$

Using the invariance of D with respect to the (local) $\mathcal{FM}_{m_1,m_2,n_1,n_2}$ -map $(x^i, X^I, y^k, Y^1 + Y^1Y^2, Y^2, \dots, Y^{n_1})^{-1}$

preserving Θ , $j_{(0,0)}^{r,s,q}(x^i, X^I, 0, \dots, 0, 1, 0, \dots, 0)$ and $\frac{\partial}{\partial Y^2}_0$, from the equality

$$\left\langle D(dY^1 \otimes d^{m_1}x \wedge d^{m_2}X)_\Theta, \\ \frac{d}{dt_0}(tj^{r,s,q}_{(0,0)}(x^i, X^I, 0, \dots, 0, 1, 0, \dots, 0)) \otimes \frac{\partial}{\partial Y^2}_0 \right\rangle = 0$$

(see (1)) we deduce that

$$\begin{split} \left\langle D(Y_{((0),(0))}^{2}dY^{1}\otimes d^{m_{1}}x\wedge d^{m_{2}}X)_{\Theta}, \\ & \frac{d}{dt_{0}}(tj_{(0,0)}^{r,s,q}(x^{i},X^{I},0,\ldots,0,1,0,\ldots,0))\otimes \frac{\partial}{\partial Y^{2}_{0}}\right\rangle \\ &= -\left\langle D(Y_{((0),(0))}^{1}dY^{2}\otimes d^{m_{1}}x\wedge d^{m_{2}}X)_{\Theta}, \\ & \frac{d}{dt_{0}}(tj_{(0,0)}^{r,s,q}(x^{i},X^{I},0,\ldots,0,1,0,\ldots,0))\otimes \frac{\partial}{\partial Y^{2}_{0}}\right\rangle. \end{split}$$

Thus D is uniquely determined by

$$\left\langle D(Y^2_{((0),(0))}dY^1 \otimes d^{m_1}x \wedge d^{m_2}X)_{\Theta}, \\ \frac{d}{dt_0}(tj^{r,s,q}_{(0,0)}(x^i, X^I, 0, \dots, 0, 1, 0, \dots, 0)) \otimes \frac{\partial}{\partial Y^2}_0 \right\rangle \in \bigwedge^m T_0^* \mathbb{R}^m = \mathbb{R}.$$

So the vector space of all D in question is of dimension less than or equal to 1. Hence $D = c\mathcal{H}$ for some $c \in \mathbb{R}$.

References

- I. Kolář, Natural operations related with the variational calculus, in: Differential Geometry and its Applications (Opava, 1992), Silesian Univ. Opava, 1993, 461–472.
- [2] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, Berlin, 1993.
- [3] I. Kolář and R. Vitolo, On the Helmholtz operator for Euler morphisms, Math. Proc. Cambridge Philos. Soc. 135 (2003), 277–290.
- W. M. Mikulski, On naturality of the Helmholtz operator, Arch. Math. (Brno) 41 (2005), 145–149.

W. M. Mikulski

- W. M. Mikulski, The jet prolongations of fibered fibered manifolds and the flow operator, Publ. Math. Debrecen 59 (2001), 441–458.
- [6] —, On the variational calculus in fibered-fibered manifolds, Ann. Polon. Math. 89 (2006), 1–12.
- [7] R. Wolak, On transverse structures on foliations, Suppl. Rend. Circ. Mat. Palermo 9 (1985), 227–243.

Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland E-mail: mikulski@im.uj.edu.pl

> Received 7.4.2006 and in final form 24.8.2006

(1668)

76