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On the Helmholtz operator of variational calculus
in fibered-fibered manifolds

by W. M. MikuLskI (Krakow)

Abstract. A fibered-fibered manifold is a surjective fibered submersion 7 : Y — X
between fibered manifolds. For natural numbers s > r < ¢ an (r,s,¢)th order La-
grangian on a fibered-fibered manifold 7 : ¥ — X is a base-preserving morphism A :
Jr8y — /\dlmXT*X. For p = max(q,s) there exists a canonical Euler morphism
EN) : JrEs2srtry vy /\dimX T*X satisfying a decomposition property simi-
lar to the one in the fibered manifold case, and the critical fibered sections o of Y are
exactly the solutions of the Euler-Lagrange equation £(\) o jTHe2smPs = (. In the
present paper, similarly to the fibered manifold case, for any morphism B : J"*7Y —
VY @ N"T*X over Y, s > r < q, we define canonically a Helmholtz morphism
H(B) : JotPstr2ry  prgrsry @ vy @ AU X 7% X | and prove that a morphism
B : JrtSISrEPy YV @ AT*M over Y is locally variational (i.e. locally of the
form B = £(X) for some (r,s,p)th order Lagrangian \) if and only if H(B) = 0, where
p = max(s,q). Next, we study naturality of the Helmholtz morphism H(B) on fibered-
fibered manifolds Y of dimension (m1,ma,n1,n2). We prove that any natural operator of
the Helmholtz morphism type is ¢H(B), ¢ € R, if ng > 2.

0. Introduction. The first problem in variational calculus is to char-
acterize critical values. It is known that the critical sections of a fibered
manifold p : X — Xy with respect to an rth order Lagrangian A : J"X —
/\Ollm Xo* X, can be characterized as the solutions of the so-called Euler—
Lagrange equation. There exists a unique Euler map E()\) : J" X — V*X®
/\dim X“T*XO over X satisfying some decomposition formula. Then the
Euler-Lagrange equation is F()\)oj? o = 0 with unknown section o (see [2]).

The second problem is to characterize morphisms B : J rxX —
V*X ® /\dlmXoT*Xo over X which are locally variational (i.e. locally of
the form B = E()\) for some rth order Lagrangian A). In [3], for any nat-

ural number r and any morphism B : JY — V*X ® /\dim Xo* X, over
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X a canonical Helmholtz morphism H(B) : J*"X — V*J'X @ V*X ®
/\dim Xo T*Xo over J"Y was described. Next, it was proved that a morphism
B:J¥X - V*X @ N"™*°T*X, over X is locally variational if and only
if H(B) = 0.

Fibered-fibered manifolds generalize fibered manifolds. They are surjec-
tive fibered submersions 7 : Y — X between fibered manifolds. They appear
naturally in differential geometry if we consider transverse natural bundles
(in the sense of R. Wolak [7]) over foliated manifolds (see [5]). A simple ex-
ample of a fibered-fibered manifold is the following. For any four manifolds
X1, X9, X3, X4, the obvious projection 7 : X1 x Xox Xgx X4 — X1 xXsisa
fibered-fibered manifold (we consider X3 x X x X3 x X, as the trivial fibered
manifold over X; x X3 and X7 x X as the trivial fibered manifold over X7).
In [5], for fibered-fibered manifolds, using the concept of (r,s,q)-jets on
fibered manifolds, [2], we extended the notion of r-jet prolongation bundle
to the (r, s, ¢)-jet prolongation bundle J"*1Y for r,s,q € N\{0}, s > r < q.
In [6], we solved the first variational problem for fibered-fibered manifolds.
We defined (r, s, ¢)th order Lagrangians as base preserving (over X) mor-
phisms A : J"%9Y — /\dimXT*X. Then similarly to the fibered manifold
case we defined critical fibered sections of Y. Setting p = max(q,s) we
proved that there exists a canonical Euler morphism £()) : JrTs2srpy
- V'Y ® /\dimXT *X of A over Y satisfying a decomposition property
similar to the one in the fibered manifold case, where VY C TY is the
vector subbundle of vectors vertical with respect to two obvious projec-
tions from Y (onto X and onto Yp). Then we deduced that the critical
fibered sections o are exactly the solutions of the Euler-Lagrange equation
E(N\) o jrts287+tP5 = 0. Next, we studied invariance properties of the cor-
responding Fuler operator £. We proved that any natural operator of the
Euler morphism type is of the form ¢€ for some real number c. (A similar re-
sult for the Euler operator E from variational calculus on fibered manifolds
has been obtained by I. Kolar [1].)

The purpose of the present paper is to solve the second problem of varia-
tional calculus in fibered-fibered manifolds. Similarly to the fibered manifold
case, for any natural numbers s > r < ¢ and a morphism B : J"*1Y —
VY @ A" ¥T*X over Y we define canonically a Helmholtz morphism
H(B) : Jetpste2y _ pegrsry @ PrY @ AT X T*X over J™5"Y, where
p = max(s,q). Then we deduce that a morphism B : Jr+s2s7+Py —
VY ® /\dimXT *X over Y is locally variational (i.e. locally of the form
B = &(X) for some (r, s, p)th order Lagrangian \) if and only if H(B) = 0,
where p = max(s, ¢). Next, we study naturality of the corresponding Helm-
holtz operator H on fibered-fibered manifolds Y of (fibered-fibered) dimen-
sion (my, ma,n1,n2). We prove that any natural operator of the Helmholtz
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operator type is of the form ¢H, ¢ € R, provided ny > 2. (A similar result
for the Helmholtz operator H from variational calculus on fibered manifolds
has been obtained by I. Kolaf and R. Vitolo [3] for r = 1 and 2, and by the
author [4] for all r.)

A 2-fibered manifold is a sequence of two surjective submersions X —
X7 — Xg. For example, given a fibered manifold X — M we have the
2-fibered manifolds 7X — X — M, T*X — X - M, JX - X — M,
etc. Every 2-fibered manifold X — X; — X; can be considered as a
fibered-fibered manifold X — X, where we consider X as a fibered man-
ifold X — Xy and X; as a fibered manifold X; — Xg. So, all our results
apply to 2-fibered manifolds.

All manifolds and maps are assumed to be of class C*°.

1. Background: variational calculus in fibered manifolds

1.1. A fibered manifold is a surjective submersion p : X — X, be-
tween manifolds. If p’ : X’ — X{) is another fibered manifold then a map
f X — X' is called fibered if there exists a (unique) map fo : Xo — X
such that p’ o f = fo o p.

Denote the set of (local) sections of p by I'X. The r-jet prolongation

J'X ={jroloecl'X, zo€ Xo}

of X is a fibered manifold over Xy with respect to the source projection
ph o J’X — Xo. If p : X' — X{ is another fibered manifold and f :
X — X' is a fibered map covering a local diffeomorphism fy : X — X then
J'f:JX — J' X is given by J" f(jro) :j;co(x)(foaofo_l) for jlo e J'X.

1.2. Let p: X — X be as above. A vector field V on X is projectable
if there exists a vector field Vj on X such that V is p-related to Vy. If V is
projectable on X, then its flow ExptV is formed by local fibered diffeomor-
phisms, and we can define a vector field

0
"V=—  J(ExptV
J B fto (ExptV)
on J"X. If V is p-vertical (i.e. Vo = 0), then J"V is p"-vertical.

1.3. An rth order Lagrangian on a fibered manifold p : X — Xy with
dim Xy = m is a base preserving (over X() morphism
A J'X —- \N"T*X,.
Given a section ¢ € I'X and a compact subset K C dom(o) contained in a

chart domain, the action is

S0, K) = [ (Ao j"0).
K
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A section o € I' X is called critical if for any compact K C dom(o) contained
in a chart domain and any p-vertical vector field n on X with compact
support in p~1(K) we have
d
dt =0
By interchanging differentiation and integration we see that o is critical iff
for any compact K and 7 as above we have

S (0N, Ty oj"o=0,
K

where 6\ : VJ"X — N"T*Xj is the p™-vertical part of the differential of \.

S\, Exptnoo, K)=0.

1.4. Given a base preserving morphism ¢ : J7X — /\kT*XO, its formal

exterior differential Dy : JIt1X — /\kHT*XO is defined by
Dy(jif o) = d(p 0 ji0) ()

for every local section o of X, where d means the exterior differential at
xg € X of the local k-form ¢ o j9¢ on Xj.

Further, for every morphism F' : J9X — ®l VX ® /\kT*XO over
J*X, s < ¢, and every [-tuple of vertical vector fields 71,...,7; on X, we
have the evaluation F(J°ny,...,7°n) : J1X — A"T*X,. One verifies eas-

ily in coordinates that there exists a unique morphism DF : J9H1X —
R VI tIX @ AT X, over J5T1Y satisfying

D(F(jsnlv SE) \78771)) = (DF)(jSJrlnlv R JSH??l)
for all n1,...,n. It will also be called the formal exterior differential of F'.

1.5. In the following assertion we do not explicitly indicate the pull-back
to J*X.

PROPOSITION 1 ([3]). For every morphism B: J"X - V*J"'X@N\"T*X,
over J" X, m = dim Xg, there exists a unique pair of morphisms

E(B): JX - V*X o N"T*Xo, F(B): J¥X — V*J'X & N"T*Xo,
over X and J"X, respectively, such that B = E(B) + F(B), and F(B) is
locally of the form F(B) = DP, with P : J>"~'X — V*JT*1X®/\m71T*X0
over the identity of J 1X.

REMARK 1. If f: J7X — R is a function, we have a coordinate decom-
position
Df = (Dif)da",
where
of of »

= o o Yot
la|<q

D;f S JITIX SR
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is the so-called formal (or total) derivative of f and (2%, y*) are fiber coor-
dinates on X and (x%,y") are the induced coordinates on J7X. The local
coordinate form of E(B) is

EB)=> Y (-)DyBidy* @ d"x
k=1 |a|<r

(see [3]), where d"z = dz' A---Ada™, B =3 ,_, > lal<r Bgdy* ® d™z and
D,, is the iterated formal derivative corresponding to the multiindex a.

A morphism B : J'X — V*X @ A"™T*X, over X is called an Euler
morphism. The morphism E(B) is called the formal Euler morphism of B.

Let A : J'X — A"T*Xo be an rth order Lagrangian. We have 6\ :
J'X — V*J'X @ N"T*Xo over J"X. The morphism E()\) := E(J)) :
J¥X — V*X @ N"T* X, over X is called the Euler morphism of .

Proposition 1 and the Stokes theorem immediately yield the following
well known fact.

PROPOSITION 2 ([2]). A section o € I'X is critical iff it satisfies the
Euler—Lagrange equation E(\) o j2"c = 0.

1.6. Let B: J"X — V*X®AT* X, be an Euler morphism. We can inter-
pret B as a vertical \""T* Xo-valued 1-form on J" X by using the canonical
projection VJ"X — V X. Then its vertical differential § B (defined fiberwise)
is a vertical \"'T* X-valued 2-form on J" X. For every vertical vector field
non X, we have (§B, J™) : J*X — V*J"X @ /\"T*Xy. Then we apply the
formal Euler operator to obtain E((6B,J™n)) : J*X — V*X @ N"T*X,
over X.

PROPOSITION 3 ([3]). There exists a unique morphism

H(B): J"X - V* "X @V*X @ N"T* X,
over J" X satisfying
E((0B,J"n) = H(B)(J"n)
for every vertical vector field n on X.

REMARK 2. The local coordinate form of H(B) is

HB)= Y > Hpydytedy @d",
k=1 |a|<r
where 0B ( a1 0B
) a8 (& T+ P): k
K= ok Z (1) - Psag
o« |p|<r]al alft %oy

and B = Y",_, Brdy* @ d™x (see [3]).
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The morphism H(B) : J*X - V*J'X @ V*X @ N"T* X over J"X is
called the Helmholtz morphism of B.
We have the following characterization of local variationality.

PROPOSITION 4 ([3]). An rth order Euler morphism B is locally vari-
ational (i.e. locally of the form B = E(X) for some local rth order La-
grangian \) if and only if H(B) = 0.

2. Variational calculus in fibered-fibered manifolds

2.1. In [5], we generalized the concept of fibered manifolds as follows.
A fibered-fibered manifold is a fibered surjective submersion 7 : ¥ — X
between fibered manifolds p¥ : Y — Y and p¥ : X — X, i.e. a surjec-
tive submersion which sends fibers to fibers such that the restricted maps
(between fibers) are submersions. If 7/ : Y/ — X' is another fibered-fibered
manifold then a fibered map f : Y — Y’ is called fibered-fibered if there
exists a (unique) fibered map fo : X — X’ such that 7’ o f = fyom.

Let r,s,q € N\ {0}, s >r <q.

Denote the set of local fibered maps o : X — Y with o0 = idgom(o)
(fibered sections) by Is,Y . By 12.19 in [2], 0,0 € I5pY represent the same
(r,s,q)-jet jo®90 = j*9p at a point € X iff

J20 = Jz0s  Jo(01Xao) = Ja(0| Xa)s i 00 = ji, 00,
where X and Y, are the bases of the fibered manifolds X and Y, zg € Xj

is the element under x, X, is the fiber of X over z, and o9, 0o : Xo — Yo
are the underlying maps of o, p. The (7, s, q)-jet prolongation

J2Y = {jy*90 | o € I'wY, z € X}

of Y is a fibered manifold over X with respect to the source projection
s Jr51Y — X (see [4]). We also have the target projection my*? :
Jr5Y — Y. If ©’ : Y’ — X' is another fibered-fibered manifold and f :
Y — Y’ is a fibered-fibered map covering a local fibered diffeomorphism
fo: X — X’ then J"®4f . J59Y — J"%4Y" is given by J"*1f(j5%0) =

Jpih(fooo fyt) for any ji®io € Jro1Y.

2.2. Let 7 : Y — X be a fibered-fibered manifold which is a fibered sub-
mersion between fibered manifolds p¥ : Y — Y, and p* : X — X,. A pro-
jectable vector field W on the fibered manifold Y is projectable-projectable
if there exists a w-related (to W) projectable vector field W on X. If W
is projectable-projectable on Y, then its flow ExptW is formed by local
fibered-fibered diffeomorphisms, and we define a vector field

0
JrEIW = —  JS9(ExptW)
Ot |t=0
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on J™*9Y . If additionally W is m-vertical and pY-vertical (i.e. W is -
related and pY-related to zero vector fields), then J"*9W is 7™ 9-vertical

and pY¥ o my™9-vertical.

2.3. Let r, s, q be as above.
An (r, s, q)th order Lagrangian on a fibered-fibered manifold 7 : ¥ — X
with dim X = m is a base preserving (over X ) morphism
A J0Y — N"'T*X.

Given a fibered section o € I,Y and a compact subset K C dom(o) C X
contained in a chart domain, the action is

S\, 0,K) = S (Ao j™%40).
K

A fibered section o € Ig,Y is called critical (with respect to \) if for any
compact K C dom(co) contained in a chart domain and any 7m-vertical and
pY -vertical vector field 7 on Y with compact support in 7~!(K) contained
in a chart domain we have

d

dt |t=0

Again we see that o is critical iff for any compact K and n as above we have
J(6x, greag)jroag = 0,

where X : VJ"%9Y — A"™T*X is the restriction of the differential of \ to
the vector subbundle VJ"59Y C TJ"*?Y of vectors vertical with respect to
the projections from J™*9Y onto X and onto Yj.

S\, Exptnoo, K)=0.

2.4. Given a base preserving morphism ¢ : JPPPY — /\kT*X, its for-
mal ezterior differential Dy : JPTLPHLIHLY — AFFIT* X over X is defined
by

D (jiH PP o) = d(p 0 jPPP0) ()
for every local fibered section o of Y, where d means the exterior differential
at « € X of the local k-form ¢ o jPPPg on X.

For every morphism F : JPPPY — Q' V*JPPPY @ N*T* X, p < P, over
JPPPY and every I-tuple of m-vertical and p¥ -vertical vector fields 7, ..., n;
on Y, we have the evaluation F(JPPPyy, ... JPPPy) : JoPPY — NFT*X.
One verifies easily in coordinates that there exists a unique morphism DF :
JPHLPHLp+lYy ®l Y* JpHLPHLHY /\k“T*X over JPtLPHLP+H1Y gat-
isfying
D(F(jﬁ’f"ﬁm, e jﬁ,ﬁ,ﬁm)) — (DF)(‘717-+1,ﬁ+1,1_0-1—17717 e jﬁ-l—l,]_?-l—l,ﬁ-i-lm)

for all 7y, ...,n. Here and throughout, VJPPPY is the vector subbundle of
TJPPPY of vectors vertical with respect to the obvious projections from
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JPPPY onto X and onto Y. Also in this case DF will be called the formal
exterior differential of F'.

2.5. In the following assertion we do not explicitly indicate the pull-
backs to J?P2P:2PY and JPPPY .

PROPOSITION 5. Let r,s,q be natural numbers with s > r < q, and set
p = max(q, s). For every morphism B : J"%9Y — V*J"5Y @ N""T* X over
J7%Y | there is a unique pair of morphisms

E(B) : J?»?2y VY @ N'T*X
and
F(B) : JP2020Yy — Y Jepry @ N T*X
over Y and JPPPY | respectively, such that B = E(B)+ F(B), and F(B) is
locally of the form F(B) = DP, P : j?r~L2p=12p=1y _, px jp=lp-lp-ly
®/\m_1T*X. Here VY, VJP~LP=Lr=1Y qnd VJPPPY are as in Sections 2.3
and 2.4.

Proof. Let x>l . JPPPY — J"%9Y be the jet projection and let i) :
JPPPY — JPY be the canonical inclusion, where in JPY we consider Y as a
fibered manifold over X. Using a suitable partition of unity on X and local
fibered-fibered coordinate arguments we produce a morphism B:JPY —
V*JPY @ N"T*X over JPY such that (i,)*B = (7P2P)*B. Then by the
decomposition formula (Proposition 1) there exists a pair of morphisms

E(B): J*Y - VY @ N"T*X, F(B):J?X — V*J’Y @ N"T*X
satisfying B = E(B) + F(B), and F(B) is locally of the form F(B) = DP
with P : J2P=1Y — V*Jr=1y @ A™ 'T*X. Taking the pullback (iz)*
both sides of the last formula and using the obvious equality D((72:2'?)* B)
the restriction of (igp)*D(B) to VJ?22PY  we have the desired decom-
position, provided we put E(B) = the restriction of (iz,)*E(B) to VY and
F(B) = the restriction of (ig,)* F(B) to V.JPP?Y . Since locally F(B) = DP,
F(B) = DP for P = the restriction of (izy_1)*P to VJP~1p=1r=1y Using
Remark 1 it is easy to see (see Remark 3) that the definition of E(B) does
not depend on the choice of B. m

REMARK 3. Let (2/, X7, y* YE) for i = 1,...,my, I = 1,...,mo,
k=1,...,n; and K = 1,...,n2 be a fibered-fibered local coordinate sys-
tem on a fibered-fibered manifold Y. For any f : J?»PPY — R we have the
decomposition

IIEL

D(f) = Di(f)dz" + Dr(f)dX’,

where D;(f) : JPTEPTLPTY — R and Dy(f) : JPTLPTLPHLY — R are the
“total” derivatives of f. Let F': JPY — R be such that F'oiz = f. From the
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clear equality D(F)oizy; = D(f) we easily deduce that D;(f) = D;(F)oizq
and D (f) = Dr(F)oipy1. In particular, since D;, Dy and Dy, D commute,
so do D;, Dy and Dy, Dy From the formulas for D; and Dy (see Remark 1)
and from the above formulas for D; and D; we easily see that in local
coordinates

Di 8.%1 Z Z k ya+1 + Z Z YK (ﬁJrl )
k= 1\a\<p K=115+5|<p  (B7)
and
D aXI + Z Z YK (,8 F+11)’

E=L1g|+51<p  (B7)

where (2%, X1, y& ys, Y(Iﬁ( )) is the induced coordinate system on JPPPY & =

@,....,am), ﬁ (6™,..., ™) and 7 = (3, ...,7™) .

Let (2%, X1, 4%, Y(ﬁﬁ)) be the induced coordinates on JPPPY  where p =
max(s, q). Then using the formula in Remark 1 it is easy to see that the
local coordinate form of E(B) is

Z ST (~n)PEhIDg  BEVAYE @ (d™a A d™2X),
K=1B|+7|<p

where d™z = dz' A - Ada™, d™X = dX' N NdX™2, (72PP)*B =
S 1 2218] 4+ <p B (&, 7)d(/6 H@(d™Ad™2 X) and D ) denotes the iterated
“total” derivative with 8= (3',...,8™), v = (v}, ...,7y™2).

From the above local formula it follows that E(B) can be factorized
through Jr+257+PY p = max(s, q).

A morphism B : J"5Y — V*Y @ N"T*X over Y is called an Euler
morphism. The morphism E(B) : J?P2P2Y — V*Y @ N™T*X over Y is
called the formal Euler morphism of B.

Let A be an (r,s,q)th order Lagrangian on Y, and p = max(s, q). We
have o\ : J7$9Y — V*J7%9Y @ A" T*X. The morphism £(\) = E(J)) :
J2P2p2ry 5 VY @ N"T*X over Y is called the Euler morphism of .

By the above-mentioned property of E(B) it follows that £()) can also
be factorized through J"+:2s:m+Py

Proposition 5 and the Stokes theorem yield the following fact.

PROPOSITION 6 ([6]). A fibered section o € I'zpY is critical iff it satisfies
the Euler—Lagrange equation E(X\) o j2P*P2Pg = 0. By the above-mentioned
property of E(N) this equation is E(\) o jTH52574P5 = (,
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2.6. Let B : J"1Y — V*Y @ A\"'T*X be an Euler morphism, and
p = max(s,q). Using the canonical projections V*J"1Y — VY we can
interpret B as a vertical \""T* X-valued 1-form on J"*%Y". Then the vertical
differential §B (defined fiberwise) is a vertical A\"7T*X-valued 2-form on
J"%9Y . For every m-vertical and pY -vertical vector field n on Y, we have
(6B, J"%) + JO51Y — V*Jrs1y @ N"'T*X over J™*9Y. Then we can
apply the formal Euler operator to obtain E((6B, J™%n)) : J?P2P2PY —
VY @ N"T*X over Y.

PROPOSITION 7. There exists a unique morphism

H(B) : J?P2P2PY 5 P*JPPPY @ V'Y @ N'T*X
over JPPPY satisfying
E((6B, 7)) = H(B)(J"""n)

for every m-vertical and pY-vertical vector field n on'Y .

Proof. That H(B) is unique is clear. We prove the existence.

As in the proof of Proposition 5, we have a morphism B : JPY —
V*Y @ AN"T*X over Y such that (72:P:?)* B = the restriction of (i,)*B to

\"7,5,9 . ~
V*Y. Then by Proposition 3, E((6B, J*n)) = H(B)(J"n), where H(B) is
the Helmholtz morphism of B. Applying the pull-back (i2;,)* to both sides of

the last equality and using the definition of E((6B, J"%9)) (see the proof
of Proposition 5) we obtain the desired equality for H(B) = the restriction
of (igp)*H(B) to VJPPPY xy VY. One can show (see Remark 4 below) that

the definition of H(B) is independent of the choice of B. m

REMARK 4. It follows from the formula in Remark 2 and from the defi-

nition of H(B) in the proof of Proposition 7 that the local coordinate form
of H(B) is

no
B =Y Y HGaE edYredmeed™X,
K.I=118]+hl<p

where
0By,
Hg?’LV) - K
8Y(ﬁ,'y)

_ S (A BAAO+ ., 9Bk
P ~ (BaN) L
plBty ! PO G haen)

1B1+171<p—18]—|~I

and B=Y % BxkdY® @d™xz ANd™X.
From this local formula it follows easily that H(B) can be factorized
through (J*TP5tP2PY x jrsry VITSTY) xy VY.,
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We have the following characterization of local variationality.

PROPOSITION 8. Let s > r < ¢ be natural numbers and p = max(s,q).
A (2p,2p,2p)th order Euler morphism B is locally variational (i.e. locally
of the form E(X) for some (p,p,p)th order Lagrangian \) if and only if
H(B) =0.

Moreover, if a (2p,2p,2p)th order Euler morphism B is locally varia-
tional and factorizes through J"+5257+PY  then locally B = E(\) for some
(r,s,p)th order Lagrangian.

Proof. Suppose locally B = £(\). Choose a local pth order Lagrangian
A JPY — A"T*X such that Ao 72PP = (i,)*A. We see that d\ is the
restriction of (i,)*6A to VY. Hence H(B) = H(E(N)) is the restriction of
(iap)*H(E(A)) to VJ?*Y xy VY. Since H(E(A)) = 0 (see Proposition 4),
also H(B) = 0.

To prove the converse we choose local fibered-fibered coordinates
(z', XT,4* YX) on U C Y. In this coordinate system we have the obvi-
ous projection IT : JPU = RM — JPPPU = RN for any p. Let H(B) = 0.
Then (using the local formula) we have H(II*B) = 0. Proposition 4 yields
IT*B = E(A) for some pth order Lagrangian A on U. Thus B = £(\) for
A= (ip)* A

The “moreover” part can be deduced in the following way. By the as-
sumption, there is X of order (p,p,p) such that B = & (X) over U, where
(U, 2%, X1, y¥ YE) are fibered-fibered coordinates. Using these coordinates
we can consider the obvious inclusion J : J™%PU = ]RA:I — JprPJ = RN,
J(v) = (v,0). Then (using the local expression of E(0)\)) we see that

B=E&J*A). n

3. On naturality of the Helmholtz operator. We say that a fibered
manifold p : X — X is of dimension (m,n) if dim Xg = m and dim X =
m + n. All (m, n)-dimensional fibered manifolds and their local fibered dif-
feomorphisms form a category which we denote by FM,,,, and which is
local and admissible in the sense of [2].

Similarly, a fibered-fibered manifold 7 : Y — X is of dimension (mq, ma,
ni,ne) if the fibered manifold X is of dimension (mq,n;) and the fibered
manifold Y is of dimension (mj + ni,ms + ng). All (mqy,ma,ny,ny)-di-
mensional fibered-fibered manifolds and their fibered-fibered local diffeo-
morphisms form a category which we denote by F M, 1y nq,n, and which
is local and admissible in the sense of [2]. The standard (my,ma,n1,n2)-
dimensional trivial fibered-fibered manifold 7 : R™ x R™2 x R™ x R"? —
R™ x R™2 will be denoted by R™™2:"1:"2 - Any (mq, mg,ny,ng)-dimen-
sional fibered-fibered manifold is locally F M, my ny,n,-isSomorphic to the
standard F M., mo n. ny-Object R™1:m2:m1,m2,
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Given two fibered manifolds Z; — M and Z9 — M over the same base
M, we denote the space of all base preserving fibered manifold morphisms
of Zy into Zy by C39(Z1,Z2). In [3], [4], the authors studied the rth order
Helmbholtz morphism H (B) of variational calculus on an (m,n)-dimensional
fibered manifold p : X — X as the Helmholtz operator

H:CR(J X, V*XQN"T*Xo) = Cxx(J" X, VI XQV* X @ N"T* Xo).
They deduced the following classification theorem:

THEOREM 1 ([3], [4]). Any FM,, n-natural operator (in the sense of [2])
of the type of the Helmholtz operator is of the form cH, ¢ € R, provided
n > 2.

The purpose of the present section is to obtain a similar result in the
fibered-fibered manifold case. Namely, we study the Helmholtz morphism
H(B) of variational calculus on an (mj,me,n;,n2)-dimensional fibered-
fibered manifold 7 : Y — X as the Helmholtz operator

H: C;O/O(JT’S"]Y, VY ® /\mT*X)
— Cﬁ,p’py(ﬁp,%ﬂpy’ V*JPPPY @ VY ® /\mT*X),

where s > r < ¢ are natural numbers, p = max(s,q) and m = my + mq
= dim X. We prove the following classification theorem.

THEOREM 2. Any F M, mo.ny.n,-natural operator (in the sense of [2])
of the type of the Helmholtz operator is of the form cH, ¢ € R, provided
N9 2 2.

REMARK 5. In view of Remark 3 the assertion of Theorem 2 also holds
for natural operators

D :CE(J™Y, VY @ N"T*X)
— CRrory (JETPSTP2Y P R8Ty @ Y @ N"T*X).

REMARK 6. The assumption of the last theorem means that for any
F Moy mamy np-morphism f:Y — Y’ and any morphisms

B € CP(J79Y, V'Y @ N"T*X)

and

B/ e C{’/O/(JT’S’qY,,V*Y, ® /\’n”ijk)(l)7
if B and B’ are f-related then so are D(B) and D(B’). Moreover D is regular
and local. The regularity means that D transforms a smoothly parametrized
family of appriopriate type morphisms into a smoothly parametrized family

of appriopriate type morphisms. The locality means that D(B), depends

on the germ of B at 7P (u).
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Proof of Theorem 2. Let D be an operator in question.
Let (2!, X1 y* Y¥) be the usual fibered-fibered coordinate system on

Rm17m27n17n2,i:1,...,m1, I:L...,mg, ]{3:1,...,711, Kzl,...,ng.
Since an F M, mo ni ny-ap
(xivXI7yk - O-k('rivXI)vyK - ZK(xZ7XI))
sends j?gﬁf”Qp(:vi,XI,ak,ZK) to
O = j?é)g)p72p($i,XI,0,0) c ((]217,21),217@&7711,7712,711,nz))(0’07070)7

J2P:2p:2p (RMm2mn2) g the F Moy, my.ny ne-0rbit of ©. Then D is uniquely
determined by the evaluations
(D(B)e,w®v) e N"TGR™
for all
B € CRonymainyng (JUSI(RMEM2NLT2) PERMLM2NLT2 @ ATVTFR™)
W € Vozp2pop ) JPPP(RTHT2IN2) 0 € ToR™ = V(g 0,0,0R™ 202
Using the invariance of D with respect to F M, my ni n,-maps of the

form idgm x® for appriopriate linear 1 (since ng > 2) we find that D is

uniquely determined by the evaluations
d - » 0

- P,PsP (0 I % I v

<D(B)@, dto(t](ovo) (z*, X%,0,...,0, f(=*, X"),0,...,0)) ® 8Y20>

for all
B € CRonyimanymy (JUOI(RTLM20102) PERMLT2IN2 ¢ ATVPRR™
and all f: R™ — R, where f(z?, XT) is at position Y .
Using the invariance of D with respect to the F- M, my ny n,-map
(. o™ XY XM gty Y 4 fe, XD YL YR L Y™

preserving @ we can assume f = 1, i.e. D is uniquely determined by the
evaluations

<D(B)9, o, W @ ,X7,0,...,0,1,0,...,0)) ® W0> e A"TiR

for all
B e C]E('V)nl,mzwﬂbnz (J"‘:S:Q(levm2:n1:n2)7V*leum%nly”& ® /\mT*Rm),

where 1 is at position Y.
Consider a morphism

B € Cuyimanyng (JVSI(RTHM2MN2 ) YFRM M0z 6 ATVTHERIY
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Using the invariance of D with respect to the F M, 1y ny .n,-maps
. 1 1
17[)7,7 = <x17X17 ﬁ ykv T—K YK)
for 7% # 0 and 7% # 0 we get the homogeneity condition

<D<<¢T77>*B>@, d

‘ )
y7 (t7PP(zt X1 0,...,0,1,0,...,0)) >
0

(0,0) ® Y2

d ’ 0
=T'T*( D(B)o, — (tjhmP (2", X",0,...,0,1,0,... —
< ( )9) dtO(t](O’O) (ZE, 0, ,0,1,0, 70))® 9Y 20

for 7 = (7%) and 7 = (T¥). By Corollary 19.8 in [1] of the non-linear Peetre
theorem we can assume that B is a polynomial (of arbitrary degree). The
regularity of D implies that

d . i 8
<D(B)(—), Eo(tjg?dvp(;?(x ,)(I7 O7 - 70, 1,0, ey O)) ® WO>

is smooth with respect to the coordinates of B. Then by the homogeneous
function theorem (and the above type of homogeneity) we deduce that

<D(B)9, %O(tjgg{gf(xi,xf, 0,...,0,1,0,...,0) ® %0>
depends linearly on the coordinates of B on all 22X "Y&M)dYQ R d™x A
d™ X and xQX"Y(%M)le ® d™x A d™ X, it depends bilinearly on the
coordinates of B on all 2¢X°dY' ® d™z Ad™ X and 2°X°dY? @ d™z A

d™2 X, and it is independent of the other coordinates of B, where (of course)
(2t X1 ,yft,Y(Iﬁ(M) is the induced coordinate system on the prolongation
Jrsa(Rmum2ninz) and d™y = dzt A - Ade™ and d™2X = dX1 A A
dX™2. (Here and in what follows, a, 3 are arbitrary mq-tuples and v is an
arbitrary me-tuple with |a| < g, |B|+ |7| <7 or |y| < s if 8 = (0)).

In other words (and more precisely),

d |, rsq i 0
<D(B)@, Eo(t](é,ég(:t? ,XI7O7 ey 0, ]., 0, e ,0)) &® WQ>

is determined by the values
<D(x9X"Y(%del @d™MzrANd™X)e,
d - 0
— (=92, X1,0,...,0,1,0,...,0)) ® — ),
i P
<D(x9X"Y&M)dY2 @d™MzANd™X)e,

d 7,5,G (% I
— o X ...,0,1,0,... —
dto(t](o’o)(x ) )O) 70a ,0, ,0)) ® 8Y20 5
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<D(a:9X"dY1 @d™MzAd™X 4+ 22X°dY? @ d™z Ad™X)e,

d , o)
— (tgr>d(2t, XT0,...,0,1,0,...,0)) ® >

dto (0.0 Y2
Furthermore, (D(B)g, %O(tj€686;1(xi, X1 0,...,0,1,0,...,0) ® 8;320> is

linear in B for B from the R-vector subspace spanned by all elements
mE’X"Y&M)alY2 Rd™xANd™ X and xQX"Y(Q/Bﬁ)le QKd™x Ad™X; more-

over,
<D(dY1 ®d™z Ad™X + B)e,

d ) o
— (5754 (2* X1 0....,0.1,0,...,0 —
dtO( 17(0,(])($ ) ) Yy y Yy Lty Yy ) )) & 8Y20>
= ( D(B) 4 (tir>d(x®, X10,...,0,1,0,...,0) ® 9
@) dtO (070) b ) b bl PR | aYQO

for B from the vector subspace (over R) spanned by all 22X "Y(lﬁ W)dY2 ®
d™x ANd™ X and mngY(%ﬁ)le Rd™x ANd™ X; and
(1) <D(ax9X"dY1 @d™z Ad™X 4+ br?X°dY? @ d™z Ad™X)e,

0

d 7,8,q (.0 I
— 7 X ...,0,1,0,... —
dto(t](o’o)(x) 507 >O7 707 70))® 8Y20

= ab<D(x9X”dY1 @d™az Ad™X 4+ 22X°dY? @ d™z Ad™X)e,

d -T,8,4 A I a
ao(tj(ovo)(x ,X ,0,...,0,1,0,. ,0)) ® mo

for all real numbers a and b.
Then by the invariance of D with respect to (rizf, 7! X! y* YE) for
78 #£0and 71 # 0 we get

<D(a:@XUY(2M)dY1 ®d™z Ad™X)e,

d .r.s Z a
Eo(tj((’)b%(x,XI,O,...,O,I,O,...,O))(X)— >

= <D(x9X”Y(1M)dY2 ®d™zNd™X)e,

d 7,5,G (0 I
— 5o X ...,0,1,0,... — )=
dto(t](o’o) (ZL‘ ’ 707 707 707 50)) & 8Y20 0
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for (8,7) # (o,0), and
<D(m@X"dY1 @d™MzAd™X 4+ 22X°dY? @ d™x Ad™X)e,

; 0
— (i, X',0,...,0,1,0,... —— )=
dtO(t](O’O) (ZL‘ ’ 707 707 707 50)) ® 8Y20> 0

for all g, 9, 0 and &.
Hence D is determined by the evaluations

(2) <D(mﬁX7Y(lﬁﬂ)dY2 @d™zAd™X)e,

d , 0
— (tjr%9(xt, X1,0,...,0,1,0,...,0)) ® =
dtO( 3(070)($7 - )My Ty Y ’ ))®8Y20>’
(3) <D(xﬁX7Y(2MdY1 @d™zAd™X)e,
d ~ 0
_ 7,8,4 2 1
dto(t](op)(m , X1,0,...,0,1,...,0) ® —8Y20>'
Suppose 3% # 0 for some ig = 1,...,m;. We use the invariance of D
with respect to the locally defined F M, 1y ny n,-map
wio — (l’i,XI,yk,Yl,YQ + $iOY2,Y3, B .’YWQ)*I
preserving ¢, X!, , 0, Y1, j(réség(ﬂ,XI,O, ...,0,1,0,...,0), %0 and send-
2

ing Y(%M) to Y(%M) + o Y3+ Y(zﬁ_li0 - Applying this invariance to

<D(x51i0 XVYE dY @ d™a Ad™X)e,

d

, 0
17,8, (.0 I
7o e}’ X1,0,...,0,1,0,...,0)) & 8Y20>

it follows that the value (3) is zero if it is zero for 8 — 1,, instead of (.
Continuing this process and a similar one for the M., 1, n,,n,-morphism
wlo = (!, X7, yF VY2 + Xoy2 Y2yt

instead of ¥ we see that (3) is zero if it is zero for (3,7) = ((0), (0)).
By similar arguments (since 1% sends dY? to dY? + x°dY? and w0
sends dY?2 to dY? + X10dY?), from the equality

<D(xﬁ—1io XY dY? @ d™a Ad™ X)e,

0

d 738, (0 1 _
a(t](o’o)(l‘,X,0,...,0,1,0,...,0))@@0 —0
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for B, # 0 (or a similar equality for 77, # 0) we find that (2) is zero if

(8,7) # ((0),(0)).
In other words, D is uniquely determined by the values (2) and (3) for

(8,7) = ((0), (0)).

Using the invariance of D with respect to the (local) F M., my nt no-map
(, X1 % v+ yiy2 y2, .yt
preserving @, j%%(z*, X1,0,...,0,1,0,...,0) and =25, from the equality

(0,0) Y20’
<D(dY1 ® d™a Ad™X)e,
; 0
— (%9t X1 0,...,0,1,0,. .. — )=
dtO( j((],o)(x 9 707 707 707 70))® 8Y20> 0
(see (1)) we deduce that
<D(Yi2(0)’(0))dyl X dml.'[' A\ deX)@,
d 7,8,q (1 I 8
ao(tj(oﬁ)(ﬁ 7)( ,0, e 70, 1,0, e ,O)) (%9 WO>
— —<D(}/(1(0)7(0))dy2 X dmll' A dsz)@7
d TS,q (1 I a
%O(tj(o,o)(m ,X,0,...,0,1,0,...,0)) ® 8Y20>'
Thus D is uniquely determined by
<D(Y(2(0)7(0))dY1 @d™rANd™X)e,
a4 (tirs (2, XT,0 0,1,0 0)) ® 9 e N"T;R™ =R
dtO .7(0’0) 9 gy ey Uy Ly Uy e e ey 8Y2O 0 - .

So the vector space of all D in question is of dimension less than or equal
to 1. Hence D = ¢H for some c € R. m
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