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On the Helmholtz operator of variational calculus

in fibered-fibered manifolds

by W. M. Mikulski (Kraków)

Abstract. A fibered-fibered manifold is a surjective fibered submersion π : Y → X
between fibered manifolds. For natural numbers s ≥ r ≤ q an (r, s, q)th order La-
grangian on a fibered-fibered manifold π : Y → X is a base-preserving morphism λ :
Jr,s,qY →

∧dimX
T ∗X. For p = max(q, s) there exists a canonical Euler morphism

E(λ) : Jr+s,2s,r+pY → V∗Y ⊗
∧dimX

T ∗X satisfying a decomposition property simi-
lar to the one in the fibered manifold case, and the critical fibered sections σ of Y are
exactly the solutions of the Euler–Lagrange equation E(λ) ◦ jr+s,2s,r+pσ = 0. In the
present paper, similarly to the fibered manifold case, for any morphism B : Jr,s,qY →
V∗Y ⊗

∧m
T ∗X over Y , s ≥ r ≤ q, we define canonically a Helmholtz morphism

H(B) : Js+p,s+p,2pY → V∗Jr,s,rY ⊗ V∗Y ⊗
∧dimX

T ∗X, and prove that a morphism
B : Jr+s,2s,r+pY → V∗Y ⊗

∧
T ∗M over Y is locally variational (i.e. locally of the

form B = E(λ) for some (r, s, p)th order Lagrangian λ) if and only if H(B) = 0, where
p = max(s, q). Next, we study naturality of the Helmholtz morphism H(B) on fibered-
fibered manifolds Y of dimension (m1,m2, n1, n2). We prove that any natural operator of
the Helmholtz morphism type is cH(B), c ∈ R, if n2 ≥ 2.

0. Introduction. The first problem in variational calculus is to char-
acterize critical values. It is known that the critical sections of a fibered
manifold p : X → X0 with respect to an rth order Lagrangian λ : J

rX →∧dimX0T ∗X0 can be characterized as the solutions of the so-called Euler–
Lagrange equation. There exists a unique Euler map E(λ) : J2rX → V ∗X⊗∧dimX0T ∗X0 over X satisfying some decomposition formula. Then the
Euler–Lagrange equation is E(λ)◦j2rσ = 0 with unknown section σ (see [2]).

The second problem is to characterize morphisms B : J2rX →
V ∗X ⊗

∧dimX0T ∗X0 over X which are locally variational (i.e. locally of
the form B = E(λ) for some rth order Lagrangian λ). In [3], for any nat-

ural number r and any morphism B : JrY → V ∗X ⊗
∧dimX0T ∗X0 over
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X a canonical Helmholtz morphism H(B) : J2rX → V ∗JrX ⊗ V ∗X ⊗∧dimX0T ∗X0 over JrY was described. Next, it was proved that a morphism
B : J2rX → V ∗X ⊗

∧dimX0T ∗X0 over X is locally variational if and only
if H(B) = 0.

Fibered-fibered manifolds generalize fibered manifolds. They are surjec-
tive fibered submersions π : Y → X between fibered manifolds. They appear
naturally in differential geometry if we consider transverse natural bundles
(in the sense of R. Wolak [7]) over foliated manifolds (see [5]). A simple ex-
ample of a fibered-fibered manifold is the following. For any four manifolds
X1, X2, X3, X4, the obvious projection π : X1×X2×X3×X4 → X1×X2 is a
fibered-fibered manifold (we considerX1×X2×X3×X4 as the trivial fibered
manifold over X1×X3 and X1×X2 as the trivial fibered manifold over X1).
In [5], for fibered-fibered manifolds, using the concept of (r, s, q)-jets on
fibered manifolds, [2], we extended the notion of r-jet prolongation bundle
to the (r, s, q)-jet prolongation bundle Jr,s,qY for r, s, q ∈ N\{0}, s ≥ r ≤ q.
In [6], we solved the first variational problem for fibered-fibered manifolds.
We defined (r, s, q)th order Lagrangians as base preserving (over X) mor-

phisms λ : Jr,s,qY →
∧dimX

T ∗X. Then similarly to the fibered manifold
case we defined critical fibered sections of Y . Setting p = max(q, s) we
proved that there exists a canonical Euler morphism E(λ) : Jr+s,2s,r+pY

→ V∗Y ⊗
∧dimX

T ∗X of λ over Y satisfying a decomposition property
similar to the one in the fibered manifold case, where VY ⊂ TY is the
vector subbundle of vectors vertical with respect to two obvious projec-
tions from Y (onto X and onto Y0). Then we deduced that the critical
fibered sections σ are exactly the solutions of the Euler–Lagrange equation
E(λ) ◦ jr+s,2s,r+pσ = 0. Next, we studied invariance properties of the cor-
responding Euler operator E . We proved that any natural operator of the
Euler morphism type is of the form cE for some real number c. (A similar re-
sult for the Euler operator E from variational calculus on fibered manifolds
has been obtained by I. Kolář [1].)

The purpose of the present paper is to solve the second problem of varia-
tional calculus in fibered-fibered manifolds. Similarly to the fibered manifold
case, for any natural numbers s ≥ r ≤ q and a morphism B : Jr,s,qY →
V∗Y ⊗

∧dimX
T ∗X over Y we define canonically a Helmholtz morphism

H(B) : Js+p,s+p,2pY → V∗Jr,s,rY ⊗V∗Y ⊗
∧dimX

T ∗X over Jr,s,rY , where
p = max(s, q). Then we deduce that a morphism B : Jr+s,2s,r+pY →

V∗Y ⊗
∧dimX

T ∗X over Y is locally variational (i.e. locally of the form
B = E(λ) for some (r, s, p)th order Lagrangian λ) if and only if H(B) = 0,
where p = max(s, q). Next, we study naturality of the corresponding Helm-
holtz operator H on fibered-fibered manifolds Y of (fibered-fibered) dimen-
sion (m1,m2, n1, n2). We prove that any natural operator of the Helmholtz
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operator type is of the form cH, c ∈ R, provided n2 ≥ 2. (A similar result
for the Helmholtz operator H from variational calculus on fibered manifolds
has been obtained by I. Kolář and R. Vitolo [3] for r = 1 and 2, and by the
author [4] for all r.)
A 2-fibered manifold is a sequence of two surjective submersions X →

X1 → X0. For example, given a fibered manifold X → M we have the
2-fibered manifolds TX → X → M , T ∗X → X → M , JrX → X →M ,
etc. Every 2-fibered manifold X → X1 → X0 can be considered as a
fibered-fibered manifold X → X1, where we consider X as a fibered man-
ifold X → X0 and X1 as a fibered manifold X1 → X0. So, all our results
apply to 2-fibered manifolds.
All manifolds and maps are assumed to be of class C∞.

1. Background: variational calculus in fibered manifolds

1.1. A fibered manifold is a surjective submersion p : X → X0 be-
tween manifolds. If p′ : X ′ → X ′0 is another fibered manifold then a map
f : X → X ′ is called fibered if there exists a (unique) map f0 : X0 → X ′0
such that p′ ◦ f = f0 ◦ p.
Denote the set of (local) sections of p by ΓX. The r-jet prolongation

JrX = {jrx0σ | σ ∈ ΓX, x0 ∈ X0}

of X is a fibered manifold over X0 with respect to the source projection
pr : JrX → X0. If p

′ : X ′ → X ′0 is another fibered manifold and f :
X → X ′ is a fibered map covering a local diffeomorphism f0 : X → X ′0 then
Jrf : JrX → JrX ′ is given by Jrf(jrxσ) = j

r
f0(x)
(f ◦σ◦f−10 ) for j

r
xσ ∈ J

rX.

1.2. Let p : X → X0 be as above. A vector field V on X is projectable
if there exists a vector field V0 on X0 such that V is p-related to V0. If V is
projectable on X, then its flow Exp tV is formed by local fibered diffeomor-
phisms, and we can define a vector field

J rV =
∂

∂t |t=0
Jr(Exp tV )

on JrX. If V is p-vertical (i.e. V0 = 0), then J
rV is pr-vertical.

1.3. An rth order Lagrangian on a fibered manifold p : X → X0 with
dimX0 = m is a base preserving (over X0) morphism

λ : JrX →
∧m

T ∗X0.

Given a section σ ∈ ΓX and a compact subset K ⊂ dom(σ) contained in a
chart domain, the action is

S(λ, σ,K) =
\
K

(λ ◦ jrσ).
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A section σ ∈ ΓX is called critical if for any compactK ⊂ dom(σ) contained
in a chart domain and any p-vertical vector field η on X with compact
support in p−1(K) we have

d

dt |t=0
S(λ,Exp tη ◦ σ,K) = 0.

By interchanging differentiation and integration we see that σ is critical iff
for any compact K and η as above we have\

K

〈δλ,J rη〉 ◦ jrσ = 0,

where δλ : V JrX →
∧m

T ∗X0 is the p
r-vertical part of the differential of λ.

1.4. Given a base preserving morphism ϕ : JqX →
∧k

T ∗X0, its formal

exterior differential Dϕ : Jq+1X →
∧k+1

T ∗X0 is defined by

Dϕ(jq+1x0 σ) = d(ϕ ◦ jqσ)(x0)

for every local section σ of X, where d means the exterior differential at
x0 ∈ X0 of the local k-form ϕ ◦ jqσ on X0.
Further, for every morphism F : JqX →

⊗l
V ∗JsX ⊗

∧k
T ∗X0 over

JsX, s ≤ q, and every l-tuple of vertical vector fields η1, . . . , ηl on X, we
have the evaluation F (J sη1, . . . ,J

sηl) : J
qX →

∧k
T ∗X0. One verifies eas-

ily in coordinates that there exists a unique morphism DF : Jq+1X →⊗l
V ∗Js+1X ⊗

∧k+1
T ∗X0 over J

s+1Y satisfying

D(F (J sη1, . . . ,J
sηl)) = (DF )(J

s+1η1, . . . ,J
s+1ηl)

for all η1, . . . , ηl. It will also be called the formal exterior differential of F .

1.5. In the following assertion we do not explicitly indicate the pull-back
to J2rX.

Proposition 1 ([3]). For every morphism B : JrX→ V ∗JrX⊗
∧m

T ∗X0
over JrX, m = dimX0, there exists a unique pair of morphisms

E(B) : J2rX → V ∗X ⊗
∧m

T ∗X0, F (B) : J2rX → V ∗JrX ⊗
∧m

T ∗X0,

over X and JrX, respectively , such that B = E(B) + F (B), and F (B) is

locally of the form F (B) = DP , with P : J2r−1X → V ∗Jr−1X⊗
∧m−1

T ∗X0
over the identity of Jr−1X.

Remark 1. If f : JqX → R is a function, we have a coordinate decom-
position

Df = (Dif)dx
i,

where

Dif =
∂f

∂xi
+
∑

|α|≤q

∂f

∂y
p
α
y
p
α+1i
: Jq+1X → R
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is the so-called formal (or total) derivative of f and (xi, yk) are fiber coor-
dinates on X and (xi, ykα) are the induced coordinates on J

qX. The local
coordinate form of E(B) is

E(B) =
n∑

k=1

∑

|α|≤r

(−1)|α|DαB
α
k dy

k ⊗ dmx

(see [3]), where dmx = dx1∧· · ·∧dxm, B =
∑n
k=1

∑
|α|≤r B

α
k dy

k
α⊗d

mx and
Dα is the iterated formal derivative corresponding to the multiindex α.
A morphism B̃ : JrX → V ∗X ⊗

∧m
T ∗X0 over X is called an Euler

morphism. The morphism E(B) is called the formal Euler morphism of B.
Let λ : JrX →

∧m
T ∗X0 be an rth order Lagrangian. We have δλ :

JrX → V ∗JrX ⊗
∧m

T ∗X0 over J
rX. The morphism E(λ) := E(δλ) :

J2rX → V ∗X ⊗
∧m

T ∗X0 over X is called the Euler morphism of λ.

Proposition 1 and the Stokes theorem immediately yield the following
well known fact.

Proposition 2 ([2]). A section σ ∈ ΓX is critical iff it satisfies the

Euler–Lagrange equation E(λ) ◦ j2rσ = 0.

1.6. LetB : JrX → V ∗X⊗
∧
T ∗X0 be an Euler morphism.We can inter-

pret B as a vertical
∧m

T ∗X0-valued 1-form on J
rX by using the canonical

projection V JrX → V X. Then its vertical differential δB (defined fiberwise)
is a vertical

∧m
T ∗X0-valued 2-form on J

rX. For every vertical vector field
η on X, we have 〈δB,J rη〉 : JrX → V ∗JrX⊗

∧m
T ∗X0. Then we apply the

formal Euler operator to obtain E(〈δB,J rη〉) : J2rX → V ∗X ⊗
∧m

T ∗X0
over X.

Proposition 3 ([3]). There exists a unique morphism

H(B) : J2rX → V ∗JrX ⊗ V ∗X ⊗
∧m

T ∗X0

over JrX satisfying

E(〈δB,J rη〉) = H(B)(J rη)

for every vertical vector field η on X.

Remark 2. The local coordinate form of H(B) is

H(B) =
n∑

k,l=1

∑

|α|≤r

Hαkldy
k
α ⊗ dy

l ⊗ dmx,

where

Hαkl =
∂Bl

∂ykα
−
∑

|β|≤r−|α|

(−1)|α+β|
(α+ β)!

α!β!
Dβ

∂Bk

∂ylα+β

and B =
∑n
k=1Bkdy

k ⊗ dmx (see [3]).
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The morphism H(B) : J2rX → V ∗JrX ⊗ V ∗X ⊗
∧m

T ∗X0 over J
rX is

called the Helmholtz morphism of B.
We have the following characterization of local variationality.

Proposition 4 ([3]). An rth order Euler morphism B is locally vari-

ational (i.e. locally of the form B = E(λ) for some local rth order La-
grangian λ) if and only if H(B) = 0.

2. Variational calculus in fibered-fibered manifolds

2.1. In [5], we generalized the concept of fibered manifolds as follows.
A fibered-fibered manifold is a fibered surjective submersion π : Y → X

between fibered manifolds pY : Y → Y0 and p
X : X → X0, i.e. a surjec-

tive submersion which sends fibers to fibers such that the restricted maps
(between fibers) are submersions. If π′ : Y ′ → X ′ is another fibered-fibered
manifold then a fibered map f : Y → Y ′ is called fibered-fibered if there
exists a (unique) fibered map f0 : X → X ′ such that π′ ◦ f = f0 ◦ π.
Let r, s, q ∈ N \ {0}, s ≥ r ≤ q.
Denote the set of local fibered maps σ : X → Y with π ◦ σ = iddom(σ)

(fibered sections) by ΓfibY . By 12.19 in [2], σ, ̺ ∈ ΓfibY represent the same
(r, s, q)-jet jr,s,qx σ = jr,s,qx ̺ at a point x ∈ X iff

jrxσ = j
r
x̺, jsx(σ|Xx0) = j

s
x(̺|Xx0), jqx0σ0 = j

q
x0
̺0,

where X0 and Y0 are the bases of the fibered manifolds X and Y , x0 ∈ X0
is the element under x, Xx0 is the fiber of X over x0, and σ0, ̺0 : X0 → Y0
are the underlying maps of σ, ̺. The (r, s, q)-jet prolongation

Jr,s,qY = {jr,s,qx σ | σ ∈ ΓfibY, x ∈ X}

of Y is a fibered manifold over X with respect to the source projection
π
r,s,q
X : Jr,s,qY → X (see [4]). We also have the target projection πr,s,qY :
Jr,s,qY → Y . If π′ : Y ′ → X ′ is another fibered-fibered manifold and f :
Y → Y ′ is a fibered-fibered map covering a local fibered diffeomorphism
f0 : X → X ′ then Jr,s,qf : Jr,s,qY → Jr,s,qY ′ is given by Jr,s,qf(jr,s,qx σ) =
j
r,s,q

f0(x)
(f ◦ σ ◦ f−10 ) for any j

r,s,q
x σ ∈ Jr,s,qY .

2.2. Let π : Y → X be a fibered-fibered manifold which is a fibered sub-
mersion between fibered manifolds pY : Y → Y0 and p

X : X → X0. A pro-
jectable vector field W on the fibered manifold Y is projectable-projectable
if there exists a π-related (to W ) projectable vector field W on X. If W
is projectable-projectable on Y , then its flow Exp tW is formed by local
fibered-fibered diffeomorphisms, and we define a vector field

J r,s,qW =
∂

∂t |t=0
Jr,s,q(Exp tW )
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on Jr,s,qY . If additionally W is π-vertical and pY -vertical (i.e. W is π-
related and pY -related to zero vector fields), then J r,s,qW is πr,s,qX -vertical
and pY ◦ πr,s,qY -vertical.

2.3. Let r, s, q be as above.
An (r, s, q)th order Lagrangian on a fibered-fibered manifold π : Y → X

with dimX = m is a base preserving (over X) morphism

λ : Jr,s,qY →
∧m

T ∗X.

Given a fibered section σ ∈ ΓfibY and a compact subset K ⊂ dom(σ) ⊂ X
contained in a chart domain, the action is

S(λ, σ,K) =
\
K

(λ ◦ jr,s,qσ).

A fibered section σ ∈ ΓfibY is called critical (with respect to λ) if for any
compact K ⊂ dom(σ) contained in a chart domain and any π-vertical and
pY -vertical vector field η on Y with compact support in π−1(K) contained
in a chart domain we have

d

dt |t=0
S(λ,Exp tη ◦ σ,K) = 0.

Again we see that σ is critical iff for any compact K and η as above we have\
〈δλ,J r,s,qη〉jr,s,qσ = 0,

where δλ : VJr,s,qY →
∧m

T ∗X is the restriction of the differential of λ to
the vector subbundle VJr,s,qY ⊂ TJr,sqY of vectors vertical with respect to
the projections from Jr,s,qY onto X and onto Y0.

2.4. Given a base preserving morphism ϕ : J p̃,p̃,p̃Y →
∧k

T ∗X, its for-

mal exterior differential Dϕ : J p̃+1,p̃+1,p̃+1Y →
∧k+1

T ∗X over X is defined
by

Dϕ(jp̃+1,p̃+1,p̃+1x σ) = d(ϕ ◦ jp̃,p̃,p̃σ)(x)

for every local fibered section σ of Y , where d means the exterior differential
at x ∈ X of the local k-form ϕ ◦ jp̃,p̃,p̃σ on X.
For every morphism F : J p̃,p̃,p̃Y →

⊗l
V∗Jp,p,pY ⊗

∧k
T ∗X, p ≤ p̃, over

Jp,p,pY , and every l-tuple of π-vertical and pY -vertical vector fields η1, . . . , ηl
on Y , we have the evaluation F (J p,p,pη1, . . . ,J

p,p,pηl) : J
p̃,p̃,p̃Y →

∧k
T ∗X.

One verifies easily in coordinates that there exists a unique morphism DF :
J p̃+1,p̃+1,p̃+1Y →

⊗l
V∗Jp+1,p+1,p+1Y ⊗

∧k+1
T ∗X over Jp+1,p+1,p+1Y sat-

isfying

D(F (J p,p,pη1, . . . ,J
p,p,pηl)) = (DF )(J

p+1,p+1,p+1η1, . . . ,J
p+1,p+1,p+1ηl)

for all η1, . . . , ηl. Here and throughout, VJ
p,p,pY is the vector subbundle of

TJp,p,pY of vectors vertical with respect to the obvious projections from
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Jp,p,pY onto X and onto Y0. Also in this case DF will be called the formal
exterior differential of F .

2.5. In the following assertion we do not explicitly indicate the pull-
backs to J2p,2p,2pY and Jp,p,pY .

Proposition 5. Let r, s, q be natural numbers with s ≥ r ≤ q, and set
p = max(q, s). For every morphism B : Jr,s,qY → V∗Jr,s,qY ⊗

∧m
T ∗X over

Jr,s,qY , there is a unique pair of morphisms

Ẽ(B) : J2p,2p,2pY → V∗Y ⊗
∧m

T ∗X

and

F(B) : J2p,2p,2pY → V∗Jp,p,pY ⊗
∧m

T ∗X,

over Y and Jp,p,pY , respectively , such that B = Ẽ(B)+F(B), and F(B) is
locally of the form F(B) = DP , P : J2p−1,2p−1,2p−1Y → V∗Jp−1,p−1,p−1Y

⊗
∧m−1

T ∗X. Here VY , VJp−1,p−1,p−1Y and VJp,p,pY are as in Sections 2.3
and 2.4.

Proof. Let πp,p,pr,s,q : J
p,p,pY → Jr,s,qY be the jet projection and let ip :

Jp,p,pY → JpY be the canonical inclusion, where in JpY we consider Y as a
fibered manifold over X. Using a suitable partition of unity on X and local
fibered-fibered coordinate arguments we produce a morphism B̃ : JpY →
V ∗JpY ⊗

∧m
T ∗X over JpY such that (ip)

∗B̃ = (πp,p,pr,s,q )
∗B. Then by the

decomposition formula (Proposition 1) there exists a pair of morphisms

E(B̃) : J2pY → V ∗Y ⊗
∧m

T ∗X, F (B̃) : J2pX → V ∗JpY ⊗
∧m

T ∗X

satisfying B̃ = E(B̃) + F (B̃), and F (B̃) is locally of the form F (B̃) = DP̃ ,

with P̃ : J2p−1Y → V ∗Jp−1Y ⊗
∧m−1

T ∗X. Taking the pullback (i2p)
∗ of

both sides of the last formula and using the obvious equalityD((πp,p,pr,s,q )
∗B)=

the restriction of (i2p)
∗D(B̃) to VJ2p,2p,2pY , we have the desired decom-

position, provided we put Ẽ(B)= the restriction of (i2p)
∗E(B̃) to VY and

F(B) = the restriction of (i2p)
∗F (B̃) to VJp,p,pY . Since locally F (B̃) = DP̃ ,

F(B) = DP for P = the restriction of (i2p−1)
∗P̃ to VJp−1,p−1,p−1Y . Using

Remark 1 it is easy to see (see Remark 3) that the definition of Ẽ(B) does

not depend on the choice of B̃.

Remark 3. Let (xi, XI , yk, Y K) for i = 1, . . . ,m1, I = 1, . . . ,m2,
k = 1, . . . , n1 and K = 1, . . . , n2 be a fibered-fibered local coordinate sys-
tem on a fibered-fibered manifold Y . For any f : J p̃,p̃,p̃Y → R we have the
decomposition

D(f) = Di(f)dx
i +DI(f)dX

I ,

where Di(f) : J
p̃+1,p̃+1,p̃+1Y → R and DI(f) : J

p̃+1,p̃+1,p̃+1Y → R are the
“total” derivatives of f . Let F : J p̃Y → R be such that F ◦ ip̃ = f . From the
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clear equalityD(F )◦ip̃+1 = D(f) we easily deduce that Di(f) = Di(F )◦ip̃+1
and DI(f) = DI(F )◦ip̃+1. In particular, sinceDi, DI andDi′ , DI′ commute,
so do Di,DI and Di′ ,DI′ . From the formulas for Di and DI (see Remark 1)
and from the above formulas for Di and DI we easily see that in local
coordinates

Di(f) =
∂f

∂xi
+

n1∑

k=1

∑

|α̃|≤p̃

∂f

∂ykα̃
ykα̃+1i +

n2∑

K=1

∑

|β̃|+|γ̃|≤p̃

∂f

∂Y K
(β̃,γ̃)

Y K
(β̃+1i,γ̃)

and

DI(f) =
∂f

∂XI
+

n2∑

K=1

∑

|β̃|+|γ̃|≤p̃

∂f

∂Y K
(β̃,γ̃)

Y K
(β̃,γ̃+1I)

,

where (xi, XI , ykα̃, Y
K

(β̃,γ̃)
) is the induced coordinate system on J p̃,p̃,p̃Y , α̃ =

(α̃1, . . . ., α̃m1), β̃ = (β̃m1 , . . . , β̃m1) and γ̃ = (γ̃1, . . . , γ̃m2) .

Let (xi, XI , ykα, Y
K
(β,γ)) be the induced coordinates on J

p,p,pY , where p =

max(s, q). Then using the formula in Remark 1 it is easy to see that the

local coordinate form of Ẽ(B) is

Ẽ(B) =

n2∑

K=1

∑

|β|+|γ|≤p

(−1)|β|+|γ|D(β,γ)B
(β,γ)
K dY K ⊗ (dm1x ∧ dm2X),

where dm1x = dx1 ∧ · · · ∧ dxm1 , dm2X = dX1 ∧ · · · ∧ dXm2 , (πp,p,pr,s,q )
∗B =

∑n2
K=1

∑
|β|+|γ|≤pB

(β,γ)
K dK(β,γ)⊗(d

m1∧dm2X) andD(β,γ) denotes the iterated

“total” derivative with β = (β1, . . . , βm1), γ = (γ1, . . . , γm2).

From the above local formula it follows that Ẽ(B) can be factorized
through Jr+s,2s,r+pY , p = max(s, q).

A morphism B̃ : Jr,s,qY → V∗Y ⊗
∧m

T ∗X over Y is called an Euler

morphism. The morphism Ẽ(B) : J2p,2p,2pY → V∗Y ⊗
∧m

T ∗X over Y is
called the formal Euler morphism of B.

Let λ be an (r, s, q)th order Lagrangian on Y , and p = max(s, q). We

have δλ : Jr,s,qY → V∗Jr,s,qY ⊗
∧m

T ∗X. The morphism E(λ) = Ẽ(δλ) :
J2p,2p,2pY → V∗Y ⊗

∧m
T ∗X over Y is called the Euler morphism of λ.

By the above-mentioned property of Ẽ(B) it follows that E(λ) can also
be factorized through Jr+s,2s,r+pY .

Proposition 5 and the Stokes theorem yield the following fact.

Proposition 6 ([6]). A fibered section σ ∈ ΓfibY is critical iff it satisfies
the Euler–Lagrange equation E(λ) ◦ j2p,2p,2pσ = 0. By the above-mentioned
property of E(λ) this equation is E(λ) ◦ jr+s,2s,r+pσ = 0.
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2.6. Let B : Jr,s,qY → V∗Y ⊗
∧m

T ∗X be an Euler morphism, and
p = max(s, q). Using the canonical projections V∗Jr,s,qY → VY , we can
interpret B as a vertical

∧m
T ∗X-valued 1-form on Jr,s,qY . Then the vertical

differential δB (defined fiberwise) is a vertical
∧m

T ∗X-valued 2-form on
Jr,s,qY . For every π-vertical and pY -vertical vector field η on Y , we have
〈δB,J r,s,qη〉 : Jr,s,qY → V∗Jr,s,qY ⊗

∧m
T ∗X over Jr,s,qY . Then we can

apply the formal Euler operator to obtain Ẽ(〈δB,J r,s,qη〉) : J2p,2p,2pY →
V∗Y ⊗

∧m
T ∗X over Y .

Proposition 7. There exists a unique morphism

H(B) : J2p,2p,2pY → V∗Jp,p,pY ⊗ V∗Y ⊗
∧m

T ∗X

over Jp,p,pY satisfying

Ẽ(〈δB,J r,s,qη〉) = H(B)(J p,p,pη)

for every π-vertical and pY-vertical vector field η on Y .

Proof. That H(B) is unique is clear. We prove the existence.

As in the proof of Proposition 5, we have a morphism B̃ : JpY →
V ∗Y ⊗

∧m
T ∗X over Y such that (πp,p,pr,s,q )

∗B= the restriction of (ip)
∗B̃ to

V∗Y . Then by Proposition 3, E(〈δB̃,J pη〉) = H(B̃)(J pη), where H(B̃) is

the Helmholtz morphism of B̃. Applying the pull-back (i2p)
∗ to both sides of

the last equality and using the definition of Ẽ(〈δB,J r,s,qη〉) (see the proof
of Proposition 5) we obtain the desired equality for H(B)= the restriction

of (i2p)
∗H(B̃) to VJp,p,pY ×Y VY . One can show (see Remark 4 below) that

the definition of H(B) is independent of the choice of B̃.

Remark 4. It follows from the formula in Remark 2 and from the defi-
nition of H(B) in the proof of Proposition 7 that the local coordinate form
of H(B) is

H(B) =

n2∑

K,L=1

∑

|β|+|γ|≤p

H
(β,γ)
KL dY K(β,γ) ⊗ dY

L ⊗ dm1x⊗ dm2X,

where

H
(β,γ)
KL =

∂BL

∂Y K(β,γ)

−
∑

|β̃|+|γ̃|≤p−|β|−|γ|

(−1)|β̃|+|γ̃|
(β + β̃)!(γ + γ̃)!

β!β̃!γ!γ̃!
D(β̃,γ̃)

∂BK

∂Y L
(β+β̃,γ+γ̃)

and B =
∑n1
K=1BKdY

K ⊗ dm1x ∧ dm2X.

From this local formula it follows easily that H(B) can be factorized
through (Js+p,s+p,2pY ×Jr,s,rY VJ

r,s,rY )×Y VY .
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We have the following characterization of local variationality.

Proposition 8. Let s ≥ r ≤ q be natural numbers and p = max(s, q).
A (2p, 2p, 2p)th order Euler morphism B is locally variational (i.e. locally
of the form E(λ) for some (p, p, p)th order Lagrangian λ) if and only if
H(B) = 0.
Moreover , if a (2p, 2p, 2p)th order Euler morphism B is locally varia-

tional and factorizes through Jr+s,2s,r+pY , then locally B = E(λ) for some
(r, s, p)th order Lagrangian.

Proof. Suppose locally B = E(λ). Choose a local pth order Lagrangian
Λ : JpY →

∧m
T ∗X such that λ ◦ πp,p,pr,s,q = (ip)

∗Λ. We see that δλ is the

restriction of (ip)
∗δΛ to VY . Hence H(B) = H(E(λ)) is the restriction of

(i4p)
∗H(E(Λ)) to VJ2pY ×Y VY . Since H(E(Λ)) = 0 (see Proposition 4),

also H(B) = 0.
To prove the converse we choose local fibered-fibered coordinates

(xi, XI , yk, Y K) on U ⊂ Y . In this coordinate system we have the obvi-
ous projection Π : J p̃U = R

M → J p̃,p̃,p̃U = R
N for any p̃. Let H(B) = 0.

Then (using the local formula) we have H(Π∗B) = 0. Proposition 4 yields
Π∗B = E(Λ) for some pth order Lagrangian Λ on U . Thus B = E(λ) for
λ = (ip)

∗Λ.
The “moreover” part can be deduced in the following way. By the as-

sumption, there is λ̃ of order (p, p, p) such that B = E(λ̃) over U , where
(U, xi, XI , yk, Y K) are fibered-fibered coordinates. Using these coordinates
we can consider the obvious inclusion J : Jr,s,pU = R

M → Jp,p,pU = R
N ,

J(v) = (v, 0). Then (using the local expression of Ẽ(δλ)) we see that

B = E(J∗λ̃).

3. On naturality of the Helmholtz operator. We say that a fibered
manifold p : X → X0 is of dimension (m,n) if dimX0 = m and dimX =
m+ n. All (m,n)-dimensional fibered manifolds and their local fibered dif-
feomorphisms form a category which we denote by FMm,n and which is
local and admissible in the sense of [2].
Similarly, a fibered-fibered manifold π : Y → X is of dimension (m1,m2,

n1, n2) if the fibered manifold X is of dimension (m1, n1) and the fibered
manifold Y is of dimension (m1 + n1,m2 + n2). All (m1,m2, n1, n2)-di-
mensional fibered-fibered manifolds and their fibered-fibered local diffeo-
morphisms form a category which we denote by FMm1,m2,n1,n2 and which
is local and admissible in the sense of [2]. The standard (m1,m2, n1, n2)-
dimensional trivial fibered-fibered manifold π : Rm1 × R

m2 × R
n1 × R

n2 →
R
m1 × R

m2 will be denoted by R
m1,m2,n1,n2 . Any (m1,m2, n1, n2)-dimen-

sional fibered-fibered manifold is locally FMm1,m2,n1,n2-isomorphic to the
standard FMm1,m2,n1,n2-object R

m1,m2,n1,n2 .
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Given two fibered manifolds Z1 → M and Z2 → M over the same base
M , we denote the space of all base preserving fibered manifold morphisms
of Z1 into Z2 by C

∞
M (Z1, Z2). In [3], [4], the authors studied the rth order

Helmholtz morphism H(B) of variational calculus on an (m,n)-dimensional
fibered manifold p : X → X0 as the Helmholtz operator

H : C∞X (J
rX,V ∗X⊗

∧m
T ∗X0)→ C

∞
JrX(J

2rX,V ∗JrX⊗V ∗X⊗
∧m

T ∗X0).

They deduced the following classification theorem:

Theorem 1 ([3], [4]). Any FMm,n-natural operator (in the sense of [2])
of the type of the Helmholtz operator is of the form cH, c ∈ R, provided
n ≥ 2.

The purpose of the present section is to obtain a similar result in the
fibered-fibered manifold case. Namely, we study the Helmholtz morphism
H(B) of variational calculus on an (m1,m2, n1, n2)-dimensional fibered-
fibered manifold π : Y → X as the Helmholtz operator

H : C∞Y (J
r,s,qY,V∗Y ⊗

∧m
T ∗X)

→ C∞Jp,p,pY (J
2p,2p,2pY,V∗Jp,p,pY ⊗ V∗Y ⊗

∧m
T ∗X),

where s ≥ r ≤ q are natural numbers, p = max(s, q) and m = m1 + m2
= dimX. We prove the following classification theorem.

Theorem 2. Any FMm1,m2,n1,n2-natural operator (in the sense of [2])
of the type of the Helmholtz operator is of the form cH, c ∈ R, provided
n2 ≥ 2.

Remark 5. In view of Remark 3 the assertion of Theorem 2 also holds
for natural operators

D : C∞Y (J
r,s,qY,V∗Y ⊗

∧m
T ∗X)

→ C∞Jr,s,rY (J
s+p,s+p,2pY,V∗Jr,s,rY ⊗ V∗Y ⊗

∧m
T ∗X).

Remark 6. The assumption of the last theorem means that for any
FMm1,m2,n1,n2-morphism f : Y → Y ′ and any morphisms

B ∈ C∞Y (J
r,s,qY,V∗Y ⊗

∧m
T ∗X)

and

B′ ∈ C∞Y ′(J
r,s,qY ′,V∗Y ′ ⊗

∧m
T ∗X ′),

if B and B′ are f -related then so areD(B) andD(B′). MoreoverD is regular
and local. The regularity means that D transforms a smoothly parametrized
family of appriopriate type morphisms into a smoothly parametrized family
of appriopriate type morphisms. The locality means that D(B)u depends
on the germ of B at πp,p,pr,s,q (u).
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Proof of Theorem 2. Let D be an operator in question.

Let (xi, XI , yk, Y K) be the usual fibered-fibered coordinate system on
R
m1,m2,n1,n2 , i = 1, . . . ,m1, I = 1, . . . ,m2, k = 1, . . . , n1, K = 1, . . . , n2.

Since an FMm1,m2,n1,n2-map

(xi, XI , yk − σk(xi, XI), Y K −ΣK(xi, XI))

sends j2p,2p,2p(0,0) (xi, XI , σk, ΣK) to

Θ = j2p,2p,2p(0,0) (xi, XI , 0, 0) ∈ (J2p,2p,2p(Rm1,m2,n1,n2))(0,0,0,0),

J2p,2p,2p(Rm1,m2,n1,n2) is the FMm1,m2,n1,n2 -orbit of Θ. Then D is uniquely
determined by the evaluations

〈D(B)Θ, w ⊗ v〉 ∈
∧m

T ∗0R
m

for all

B ∈ C∞
Rm1,m2,n1,n2

(Jr,s,q(Rm1,m2,n1,n2),V∗Rm1,m2,n1,n2 ⊗
∧m

T ∗Rm),

w ∈ Vπ2p,2p,2pp,p,p (Θ)J
p,p,p(Rm1,m2,n1,n2), v ∈ T0R

n2 = V(0,0,0,0)R
m1,m2,n1,n2 .

Using the invariance of D with respect to FMm1m2,n1,n2 -maps of the
form idRm ×ψ for appriopriate linear ψ (since n2 ≥ 2) we find that D is
uniquely determined by the evaluations
〈
D(B)Θ,

d

dt0
(tjp,p,p(0,0) (x

i, XI , 0, . . . , 0, f(xi, XI), 0, . . . , 0))⊗
∂

∂Y 2 0

〉

for all

B ∈ C∞
Rm1,m2,n1,n2

(Jr,s,q(Rm1,m2,n1,n2),V∗Rm1,m2,n1,n2 ⊗
∧m

T ∗Rm)

and all f : Rm → R, where f(xi, XI) is at position Y 1.

Using the invariance of D with respect to the FMm1m2,n1,n2-map

(x1, . . . , xm1 , X1, . . . , Xm2 , y1, . . . , yn1 , Y 1 + f(xi, XI)Y 1, Y 2, . . . , Y n2)

preserving Θ we can assume f = 1, i.e. D is uniquely determined by the
evaluations
〈
D(B)Θ,

d

dt0
(tjp,p,p(0,0) (x

i, XI , 0, . . . , 0, 1, 0, . . . , 0))⊗
∂

∂Y 2 0

〉
∈
∧m

T ∗0R
m

for all

B ∈ C∞
Rm1,m2,n1,n2

(Jr,s,q(Rm1,m2,n1,n2),V∗Rm1,m2,n1,n2 ⊗
∧m

T ∗Rm),

where 1 is at position Y 1.

Consider a morphism

B ∈ C∞
Rm1,m2,n1,n2

(Jr,s,q(Rm1,m2,n1,n2),V∗Rm1,m2,n1,n2 ⊗
∧m

T ∗Rm).
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Using the invariance of D with respect to the FMm1,m2,n1,n2-maps

ψτ,T =

(
xi, XI ,

1

τk
yk,
1

T K
Y K
)

for τk 6= 0 and τK 6= 0 we get the homogeneity condition
〈
D((ψτ,T )∗B)Θ,

d

dt0
(tjp,p,p(0,0) (x

i, XI , 0, . . . , 0, 1, 0, . . . , 0))⊗
∂

∂Y 2 0

〉

= T 1T 2
〈
D(B)Θ,

d

dt0
(tjp,p,p(0,0) (x

i, XI , 0, . . . , 0, 1, 0, . . . , 0))⊗
∂

∂Y 2 0

〉

for τ = (τk) and T = (T K). By Corollary 19.8 in [1] of the non-linear Peetre
theorem we can assume that B is a polynomial (of arbitrary degree). The
regularity of D implies that

〈
D(B)Θ,

d

dt0
(tjp,p,p(0,0) (x

i, XI , 0, . . . , 0, 1, 0, . . . , 0))⊗
∂

∂Y 2 0

〉

is smooth with respect to the coordinates of B. Then by the homogeneous
function theorem (and the above type of homogeneity) we deduce that

〈
D(B)Θ,

d

dt0
(tjp,p,p(0,0) (x

i, XI , 0, . . . , 0, 1, 0, . . . , 0))⊗
∂

∂Y 2 0

〉

depends linearly on the coordinates of B on all x̺XσY 1(β,γ)dY
2 ⊗ dm1x ∧

dm2X and x̺XσY 2(β,γ)dY
1 ⊗ dm1x ∧ dm2X, it depends bilinearly on the

coordinates of B on all x̺XσdY 1 ⊗ dm1x ∧ dm2X and x̺XσdY 2 ⊗ dm1x ∧
dm2X, and it is independent of the other coordinates of B, where (of course)
(xi, XI , ykα, Y

K
(β,γ)) is the induced coordinate system on the prolongation

Jr,s,q(Rm1,m2,n1,n2) and dm1x = dx1 ∧ · · · ∧ dxm1 and dm2X = dX1 ∧ · · · ∧
dXm2 . (Here and in what follows, α, β are arbitrary m1-tuples and γ is an
arbitrary m2-tuple with |α| ≤ q, |β|+ |γ| ≤ r or |γ| ≤ s if β = (0)).
In other words (and more precisely),
〈
D(B)Θ,

d

dt0
(tjr,s,q(0,0)(x

i, XI , 0, . . . , 0, 1, 0, . . . , 0))⊗
∂

∂Y 2 0

〉

is determined by the values
〈
D(x̺XσY 2(β,γ)dY

1 ⊗ dm1x ∧ dm2X)Θ,

d

dt0
(tjr,s,q(0,0)(x

i, XI , 0, . . . , 0, 1, 0, . . . , 0))⊗
∂

∂Y 2 0

〉
,

〈
D(x̺XσY 1(β,γ)dY

2 ⊗ dm1x ∧ dm2X)Θ,

d

dt0
(tjr,s,q(0,0)(x

i, XI , 0, . . . , 0, 1, 0, . . . , 0))⊗
∂

∂Y 2 0

〉
,



Helmholtz operator in fibered-fibered manifolds 73

〈
D(x̺XσdY 1 ⊗ dm1x ∧ dm2X + x ˜̺X σ̃dY 2 ⊗ dm1x ∧ dm2X)Θ,

d

dt0
(tjr,s,q(0,0)(x

i, XI , 0, . . . , 0, 1, 0, . . . , 0))⊗
∂

∂Y 2 0

〉
.

Furthermore, 〈D(B )Θ,
d
dt0
(tjr,s,q(0,0)(x

i, XI , 0, . . . , 0, 1, 0, . . . , 0)) ⊗ ∂
∂Y 2 0
〉 is

linear in B for B from the R-vector subspace spanned by all elements
x̺XσY 1(β,γ)dY

2⊗ dm1x∧ dm2X and x ˜̺X σ̃Y 2(β,γ)dY
1⊗ dm1x∧ dm2X; more-

over,
〈
D(dY 1 ⊗ dm1x ∧ dm2X +B)Θ,

d

dt0
(tjr,s,q(0,0)(x

i, XI , 0, . . . , 0, 1, 0, . . . , 0))⊗
∂

∂Y 2 0

〉

=

〈
D(B)Θ,

d

dt0
(tjr,s,q(0,0)(x

i, XI , 0, . . . , 0, 1, 0, . . . , 0))⊗
∂

∂Y 2 0

〉

for B from the vector subspace (over R) spanned by all x̺XσY 1(β,γ)dY
2 ⊗

dm1x ∧ dm2X and x ˜̺X σ̃Y 2(β,γ)dY
1 ⊗ dm1x ∧ dm2X; and

(1)

〈
D(ax̺XσdY 1 ⊗ dm1x ∧ dm2X + bx ˜̺X σ̃dY 2 ⊗ dm1x ∧ dm2X)Θ,

d

dt0
(tjr,s,q(0,0)(x

i, XI , 0, . . . , 0, 1, 0, . . . , 0))⊗
∂

∂Y 2 0

〉

= ab

〈
D(x̺XσdY 1 ⊗ dm1x ∧ dm2X + x ˜̺X σ̃dY 2 ⊗ dm1x ∧ dm2X)Θ,

d

dt0
(tjr,s,q(0,0)(x

i, XI , 0, . . . , 0, 1, 0, . . . , 0))⊗
∂

∂Y 2 0

〉

for all real numbers a and b.

Then by the invariance of D with respect to (τ ixi, T IXI , yk, Y K) for
τ i 6= 0 and T I 6= 0 we get
〈
D(x̺XσY 2(β,γ)dY

1 ⊗ dm1x ∧ dm2X)Θ,

d

dt0
(tjr,s,q(0,0)(x

i, XI , 0, . . . , 0, 1, 0, . . . , 0))⊗
∂

∂Y 2 0

〉

=

〈
D(x̺XσY 1(β,γ)dY

2 ⊗ dm1x ∧ dm2X)Θ,

d

dt0
(tjr,s,q(0,0)(x

i, XI , 0, . . . , 0, 1, 0, . . . , 0))⊗
∂

∂Y 2 0

〉
= 0
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for (β, γ) 6= (̺, σ), and
〈
D(x̺XσdY 1 ⊗ dm1x ∧ dm2X + x ˜̺X σ̃dY 2 ⊗ dm1x ∧ dm2X)Θ,

d

dt0
(tjr,s,q(0,0)(x

i, XI , 0, . . . , 0, 1, 0, . . . , 0))⊗
∂

∂Y 2 0

〉
= 0

for all ̺, ˜̺, σ and σ̃.
Hence D is determined by the evaluations

(2)

〈
D(xβXγY 1(β,γ)dY

2 ⊗ dm1x ∧ dm2X)Θ,

d

dt0
(tjr,s,q(0,0)(x

i, XI , 0, . . . , 0, 1, 0, . . . , 0))⊗
∂

∂Y2 0

〉
,

(3)

〈
D(xβXγY 2(β,γ)dY

1 ⊗ dm1x ∧ dm2X)Θ,

d

dt0
(tjr,s,q(0,0)(x

i, XI , 0, . . . , 0, 1, . . . , 0))⊗
∂

∂Y 2 0

〉
.

Suppose βi0 6= 0 for some i0 = 1, . . . ,m1. We use the invariance of D
with respect to the locally defined FMm1,m2,n1,n2-map

ψi0 = (xi, XI , yk, Y 1, Y 2 + xi0Y 2, Y 3, . . . , Y n2)−1

preserving xi, XI , , Θ, Y 1, jr,s,q(0,0)(x
i, XI , 0, . . . , 0, 1, 0, . . . , 0), ∂

∂Y 2 0
and send-

ing Y 2(β,γ) to Y
2
(β,γ) + x

i0Y 2(β,γ) + Y
2
(β−1i0 ,γ)

. Applying this invariance to

〈
D(xβ−1i0XγY 2(β,γ)dY

1 ⊗ dm1x ∧ dm2X)Θ,

d

dt0
(tjr,s,q(0,0)(x

i, XI , 0, . . . , 0, 1, 0, . . . , 0))⊗
∂

∂Y 2 0

〉

it follows that the value (3) is zero if it is zero for β − 1i0 instead of β.
Continuing this process and a similar one for the FMm1,m2,n1,n2-morphism

Ψ I0 = (xi, XI , yk, Y 1, Y 2 +XI0Y 2, Y 3, . . . , Y n0)−1

instead of ψi0 we see that (3) is zero if it is zero for (β, γ) = ((0), (0)).

By similar arguments (since ψi0 sends dY 2 to dY 2 + xi0dY 2 and Ψ I0

sends dY 2 to dY 2 +XI0dY 2), from the equality
〈
D(xβ−1i0XγY 1(β,γ)dY

2 ⊗ dm1x ∧ dm2X)Θ,

d

dt
(tjr,s,q(0,0)(x

i, XI , 0, . . . , 0, 1, 0, . . . , 0))⊗
∂

∂Y 2 0

〉
= 0
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for βi0 6= 0 (or a similar equality for γI0 6= 0) we find that (2) is zero if
(β, γ) 6= ((0), (0)).
In other words, D is uniquely determined by the values (2) and (3) for

(β, γ) = ((0), (0)).
Using the invariance ofD with respect to the (local) FMm1,m2,n1,n2-map

(xi, XI , yk, Y 1 + Y 1Y 2, Y 2, . . . , Y n1)−1

preserving Θ, jr,s,q(0,0)(x
i, XI , 0, . . . , 0, 1, 0, . . . , 0) and ∂

∂Y 2 0
, from the equality

〈
D(dY 1 ⊗ dm1x ∧ dm2X)Θ,

d

dt0
(tjr,s,q(0,0)(x

i, XI , 0, . . . , 0, 1, 0, . . . , 0))⊗
∂

∂Y 2 0

〉
= 0

(see (1)) we deduce that
〈
D(Y 2((0),(0))dY

1 ⊗ dm1x ∧ dm2X)Θ,

d

dt0
(tjr,s,q(0,0)(x

i, XI , 0, . . . , 0, 1, 0, . . . , 0))⊗
∂

∂Y 2 0

〉

= −

〈
D(Y 1((0),(0))dY

2 ⊗ dm1x ∧ dm2X)Θ,

d

dt0
(tjr,s,q(0,0)(x

i, XI , 0, . . . , 0, 1, 0, . . . , 0))⊗
∂

∂Y 2 0

〉
.

Thus D is uniquely determined by
〈
D(Y 2((0),(0))dY

1 ⊗ dm1x ∧ dm2X)Θ,

d

dt0
(tjr,s,q(0,0)(x

i, XI , 0, . . . , 0, 1, 0, . . . , 0))⊗
∂

∂Y 2 0

〉
∈
∧m

T ∗0R
m = R.

So the vector space of all D in question is of dimension less than or equal
to 1. Hence D = cH for some c ∈ R.
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