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Modularity of a nonrigid Calabi�Yau manifoldwith bad redution at 13by Grzegorz Kapustka and Michał Kapustka (Kraków)Abstrat. We identify the weight four newform of a modular Calabi�Yau manifoldstudied by Hulek and Verrill. The main obstale is that this Calabi�Yau manifold is notrigid and has bad redution at prime 13. Replaing the original �ber produt of ellipti�brations with a �berwise Kummer onstrution we redue the problem to studying themodularity of a rigid Calabi�Yau manifold with good redution at primes p ≥ 5.1. Introdution. Consider the following ellipti �brations:
E(Γ (3)) := {((t0, t1), (x, y, z)) ∈ P

1 × P
2 : (x3 + y3 + z3)t0 = 3xyzt1},

E(1:−3:−3) := {((t0, t1), (x, y, z)) ∈ P
1 × P

2 :

(x + y + z)(xy − 3(xz + yz))t0 = xyzt1}.By the results of Shoen ([S℄), the �ber produt
Y := E(1:−3:−3) × EMt(Γ (3)),where EMt(Γ (3)) is the twist of E(Γ (3)) by the automorphism Mt =

(t+7)/8, has nodes as only singularities and its small resolution Ŷ is a (non-projetive) Calabi�Yau manifold with h12(Ŷ ) = 1. Hulek and Verrill [HV℄gave a method to prove the modularity of nonrigid Calabi�Yau manifoldsbased on the existene of many ellipti ruled surfaes. Using this methodthey proved the modularity of Ŷ . More preisely, they showed that the
L-series of Ŷ has the form

L(Ŷ , s) = L(g4, s)L(g2, s − 1),where g2 is the unique newform of weight 2 and level 13, and g4 is somenewform of weight 4. They also gave numerial evidene that g4 is a newformof level 27 (27k4B in Stein's notation [St℄). Let us point out that 13 is a2000 Mathematis Subjet Classi�ation: 14G10, 14J32.Key words and phrases: Calabi�Yau, modular forms, double overings.The projet is o-�naned from the European Union funds and national budget.[89℄



90 G. Kapustka and M. Kapustkaprime of bad redution for Ŷ , but it does not divide the level of the weight 4newform.Our main goal is to prove that g4 is the predited newform. In fat,we shall onsider an auxiliary Calabi�Yau manifold onstruted by taking�berwise the quotient by the natural involution. We an easily hek thatthe resulting Kummer �bration is birational to the double over X of P
3(with oordinates x, y, z, t) branhed along the oti surfae

−3y(8z + y − 8t)(x + t)(y2 − 4yz − 8ty − 12z2)(x3 − 3tx2 + 4z3) = 0.In Setion 2, we shall prove that X admits a nonprojetive smooth model
X̂, whih is a rigid Calabi�Yau manifold. Using the Faltings�Serre�Livnémethod we prove in Setion 3 that X̂ is modular with the newform 27k4B.Sine there is a generially 2:1 orrespondene Ŷ 99K X̂, this proves thepredited form of the L-series of Ŷ (see Corollary 3.3). The advantage ofreplaing the �ber produt by the Kummer �bration is that, after takingthe quotient by the involution, 13 beomes a prime of good redution, whihdrastially simpli�es the omputations.Aknowledgements. We would like to express our gratitude to Sªa-womir Cynk for introduing us to the subjet and for his enormous help ineah aspet of the work on this paper.2. Double oti. In this setion, we shall study the smooth model ofthe double over of P

3 branhed along the oti surfae
−3y(8z + y − 8t)(x + t)(y2 − 4yz − 8ty − 12z2)(x3 − 3tx2 + 4z3) = 0.Let us denote the singular double over by X, and the omponents of thebranh lous by H1, H2, H3, C2, C3 respetively.Proposition 2.1. The variety X has a nonsingular (nonprojetive)model that is a rigid Calabi�Yau manifold with Euler harateristi 48. More-over X has a partial resolution whih is a nodal projetive Calabi�Yau varietywith 10 nodes.Before the proof, let us study expliitly a suitable resolution of X. Let us�rst write down all singularities of X. They all orrespond to singularities ofthe branh lous. On this branh lous there are 20 double urves, 5 fourfoldpoints and 18 triple points. Let ε and ε2 be the two nontrivial omplex thirdroots of unity.Fourfold points:

P1 = (1 : 0 : 0 : 0): The vertex of the quadri one. It is a double point of
C2 and lies on the hyperplanes H1 and H2.
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P2 = (0 : 1 : 0 : 0): The vertex of the ubi one. It is a triple point of C3and lies on H3.
P3 = (−1 : 0 : 1 : 1): The intersetion of H1, H2, H3; it lies also on C3.
P4 = (0 : 0 : 0 : 1): The intersetion of H1, C2 and C3. It is a double pointof C3.
P5 = (0 : 8 : 0 : 1): The intersetion of H2, C2 and C3. It is a double pointof C3.Double lines:
L1, L2, L3: The lines H1 ∩ H2, H1 ∩ H3, H2 ∩ H3.
LT : The tangeny line of H1 and C2.
L21a, L21b: The two omponents of the intersetion H2 ∩ C2.
L32: The oni whih is the intersetion H3 ∩ C2.
L31a, L31b, L31c: The three lines that are omponents of the intersetion

H3 ∩ C3, where we denote by L31c the line passing through P3.
K1: The ubi H1 ∩ C3. It has a usp at P4.
K2: The ubi H2 ∩ C3. It has a usp at P5.
S: The sexti C2 ∩C3. It has two usps at P4 and P5 and two nodes, whihwe denote by N1 and N2.
D: The double line of the ubi one C3.Triple points:
H1 ∩ H2 ∩ C3: One triple point, whih we denote by Q. It is a tangenypoint of the line L1 with C3. It has oordinates (2, 0, 1, 1), hene is arational point.
H3 ∩ C2 ∩ C3: Four triple points. Two of them are transversal triple pointsand two of them (denoted by M1, M2) are tangeny points of thelines L31a and L31b with C3. The tangeny points have oordinates

M1 = (−1, 4+2ε, ε, 1) and M2 = (−1, 4+2ε2, ε2, 1), hene they lie onthe lines P1N1 and P2N2 respetively.
H1 ∩ C2 ∩ C3 and H1 ∩ C2 ∩ H3: Two triple points, whih we denote by

T1 and T2, with oordinates (−1, 0, 0, 1) and (3, 0, 0, 1). They are nottransversal, sine H1 is tangent to C2.
H1 ∩ H3 ∩ C3: Two transversal triple points.
H2 ∩ H3 ∩ C3: Two transversal triple points.
H2 ∩ H3 ∩ C2: Two transversal triple points.
H2 ∩ C2 ∩ C3: Three transversal triple points.To onstrut the resolution of X, we �rst blow up the fourfold pointson the branh lous. Then we blow up all double urves that appeared onthe proper transform of the branh lous and take the double over of theresulting blow up of P

3 branhed over the proper transform of the branhlous. We denote the resulting variety by X̌.



92 G. Kapustka and M. KapustkaLet us look at the resolution of the singular points of the branh lous.We �rst blow up the fourfold points:
P1: After blowing up P1, the proper transforms of the branh divisorinterset the exeptional divisor in two lines meeting in a point anda oni tangent to one of these lines at another point and inter-seting the seond line transversely. In partiular the double urvesof the proper transform of the branh divisor do not meet on theexeptional divisor.
P2: After blowing up P2, the proper transforms of the branh divisor in-terset the exeptional divisor in a line and a uspidal oni meetingin three points. Here the double urves of the proper transform ofthe branh divisor also do not meet on the exeptional divisor.
P3: After blowing up P3, the proper transforms of the branh divisorinterset the exeptional divisor in four lines no three meeting ina point. As before, the double urves of the proper transform ofthe branh lous are disjoint in a neighborhood of the exeptionaldivisor.
P4: After blowing up P5, the proper transform of the ubi one is tan-gent to the exeptional divisor along a line. The proper transforms ofthe remaining two omponents of the branh lous passing through

P5 meet eah other transversely in another line on the exeptionaldivisor. Hene we obtain a new double urve on the branh lous,and we denote it by B.
P5: After blowing up P4, the proper transform of the ubi one is tan-gent to the exeptional divisor along a line. The proper transforms ofthe remaining two omponents of the branh lous passing through

P4 meet the exeptional divisor in two more lines.After performing these blowings up, we obtain P
3 blown up at �ve pointsand as the branh lous a surfae without fourfold points. The branh lousis the union of H1 blown up at three points, H2 blown up at three points,

H3 blown up at two points, C2 blown up at its vertex and two more points,and C3 blown up at its vertex and three more points. Next we blow up alldouble urves on this new branh lous. Note that all of them are rationalurves and all exept S̃, the transform of S, are smooth. There are 15 ofthem inluding B; however, we will need to blow up LT twie (this meansthat after blowing up LT the proper transforms of the one C2 and thehyperplane H1 will still interset in a line on the exeptional divisor). Afterthese blowings up we obtain P
3 blown up at �ve points and transformed bya sequene of 15 blowings up of smooth rational urves and the blow up ofa rational urve with two nodes. Observe that this threefold has two nodeslying outside the branh lous; these are nodes that appeared after blowing



Modularity of a Calabi�Yau manifold 93up the nodal sexti S̃. The proper transform of the branh lous by thistransformation is a surfae without double urves and triple points. On theproper transform of C3, when blowing up B, one node appears, while blowingup the proper transform of D yields two nodes. After the �rst blowings upof lines passing through Q, M1 and M2, three more nodes appear. Hene X̌is a nodal variety with ten nodes. We take the small resolution of the nodesand denote the resulting manifold (it is no more projetive) by X̂.Proof of Proposition 2.1. As in the above resolution of singularities weused only blowings up of fourfold points, double urves and a small resolutionof nodes, the resolution X̂ 7→ X is repant. From the adjuntion formula,we dedue that X̂ is a Calabi�Yau variety.To ompute the Euler harateristi we follow the above onstrution.The Euler harateristi of the transformed P
3 is

χ(P̃3) = 4 + 5 · 2 + 15 · 2 + 1 · 0 = 44.To ompute the Euler harateristi of the branh lous we need only observethat eah blown up urve di�erent from B blows up one omponent of thebranh lous at eah triple point through whih it passes. The number ofblowings up at triple points is 19, moreover the exeptional divisor on C3after blowing up B is also a line. This shows that the Euler harateristiof the branh lous is 15 + (3 + 3 + 2 + 3 + 4) + 19 + 1 = 50. The Eulerharateristi of X̌ is thus 2 ∗ 44 − 50 = 38. Taking a small resolution ofthe 10 nodes on the double over X̌ we obtain a smooth variety X̂ with
χ(X̂) = 48.The Hodge number h12 of the Calabi�Yau manifold X̂ equals the dimen-sion of the spae of in�nitesimal deformations. By [CvS℄ it is the dimensionof the spae of equisingular deformations of the branh lous in P

3. We willprove that this spae has dimension 0, hene X is rigid. Let us hoose a oor-dinate system on P
3 suh that the points P1, P2, P3, P5 and M1 orrespondto (1 : 0 : 0 : 0), (0 : 1 : 0 : 0), (0 : 0 : 1 : 0), (0 : 0 : 0 : 1), (1 : 1 : 1 : 1).The inidene and tangeny onditions for the omponents of the branhlous yield a system of equations in the oe�ients. Diret omputations withSINGULAR ([GPS℄) show that the system has a �nite number of solutions.3. Modularity. In this setion, we shall prove the modularity of theCalabi�Yau manifold X̂. Sine X̂ is not projetive, the modulo p redutionsare not algebrai varieties. We an instead study the Galois ation on themiddle ohomology of the big resolution X̃ of X as this ohomology groupan be naturally identi�ed with H3(X̂).Theorem 3.1. The Calabi�Yau manifold X̂ is modular with usp formof weight 4 and level 27.



94 G. Kapustka and M. KapustkaWe will use the method of Faltings�Serre�Livné. First we ompute thebad primes for our variety. Observe that the only andidates are 2, 3 and 13.Lemma 3.2. The redution of X̃ modulo 13 is smooth.Proof. Redution modulo 13 of the plane H2 passes through the points
M1 = (−1,−3, 3, 1) and N1 = (2,−3, 3, 1). The branh lous around M1 is

(8z + y − 8t)(x + t)(x3 − 3x2t + 4z3)(y2 − 4yz − 8yt − 12z2) = 0,hene it is a fourfold point.Changing oordinates, the branh lous takes the form
yx(y2 + 6yz + 6z2 + 5z)(x3 + 4z3 − 6x2 − 3z2 − 4x + 4z) = 0.After blowing up the line {x = 0, y = 0} we have two a�ne harts. In oneof them the branh lous is

y(x2y2 + 6xyz + 6z2 + 5z)(x3 + 4z3 − 6x2 − 3z2 − 4x + 4z) = 0.This is the equation of a transversal triple point at (0, 0, 0), thus the sin-gularity is resolved by further blowings up. In the seond a�ne hart thebranh lous is
x(y2 + 6yz + 6z2 + 5z)(x3y3 + 4z3 − 6x2y2 − 3z2 − 4xy + 4z) = 0.Observe that the intersetion

{x = 0} ∩ {x3y3 + 4z3 − 6x2y2 − 3z2 − 4xy + 4z = 0}splits into smooth and disjoint piees. Only one of them needs to be onsid-ered more throughly. Blowing up the line {x = 0, z = 0} we get one a�nepiee of the branh lous given by
(y2 + 6xyz + 6x2z2 + 5xz)(x2y3 + 4x2z3 − 6xy2 − 3xz2 − 4y + 4z) = 0,the other a�ne piee ontains only normal rossings. If we blow up theintersetion of the above parts over (0, 0, 0) we obtain a node on P

3 inidentwith a node on the orresponding omponent of the branh lous. Taking adouble over we obtain a singularity that is not a node, but it is resolvedby blowing up the point. Hene over the �eld F13 the singularity over M1 isalso resolved.Over N1 the situation is similar. After blowing up the line M1N1 ⊂
H2 ∩ C2 and the remaining singular intersetion we obtain a node on P

3lying on the branh lous. We blow up the point and take the double overobtaining a smooth surfae.Proof of Theorem 3.1. Sine the redution of X̃ modulo p is smoothfor any prime p ≥ 5, it remains to ompute the number of points on theredutions X̃p of X̃ to Fp for primes p ∈ {5, 7, 11, 13, 17, 19, 23}. In theseases we an ompute the number of points on Xp using a C++ program,then ompute the number of points added during the resolution. For p =
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13 the situation is di�erent than in other ases. However, in the methodof Faltings�Serre�Livné we an replae 13 by 37, hene from now on weassume p 6= 13. We will ount separately the number of points added on theexeptional lous of eah blowing up.We �rst ount the number of points added when blowing up the fourfoldpoints. The method is to look at the number of points on proper transformsof lines lying on the exeptional divisors and passing through a hosen point.They are all double overings of lines, hene have 1, p + 1 or 2p + 1 pointsdepending on the indued equations of the branh loi. Expliit omputationsyield

♯EP1
=





(p − 2)(p + 1) + 2(p + 1) + 2p + 1 = p2 + 2p + 1if −3 is a square mod p,
(p − 2)(p + 1) + 2(p + 1) + 1 = p2 + 1if −3 is not a square mod p,

♯EP2
=





(p − 2)(p + 1) + 3(2p + 1) − 2p = p2 + 3p + 1if −3 is a square modulo p,

p(p + 1) + (2p + 1) − 2p = p2 + p + 1if −3 is not a square modulo p,

♯EP3
= p(p + 1) + 2p + 1 − p = p2 + 2p + 1,

♯EP4
= 2p2 + 1,

♯EP5
= 2(p + 1) + (2p + 1)

p − 1

2
+

p − 1

2
− p = p2 + p + 1.In addition to the above, we also need to ount the points on the exep-tional loi of the blowings up of all urves.If we blow up a transversal double urve, we produe a oni bundle oversome P

1, where the �bers over triple points are lines. This gives p2 + p newpoints for 13 transversal blowings up, together 13(p2 + p) new points.If we blow up the tangeny line, we get a double over of P
1 × P

1 withoordinates ((a : b), (c : d)) branhed over the urve
−3c2(a − b)(a − 3b) = 0.This adds p2 + p points. The next blow up will be transversal.On the blow up of D we have p2 +p new points, sine the equation of thebranh lous on the exeptional lous of the blow up is given by the produtof two lines and the square of the setion.On the blow up of S the number of added points is p times the numberof points on the urve S. We know that resolving the singularities on S weget a smooth rational urve, hene onsisting of p + 1 points. However, byresolving a nodal urve over Fp we meet two possibilities. Either there appear



96 G. Kapustka and M. Kapustkatwo new points over the node or there are no points over it (i.e. we have lostone point by taking the resolution).We have several possibilities:
• There were no nodes on S. This happens if −3 is not a square mod p.Then the number of points is the same as the number of points on theresolution, thus equals p + 1.
• There were two nodes on S and after blowing them up we get twopoints over eah. This happens when both ε−1 and ε2−1 are squares.Then the number of points on S is p − 1.
• There were two nodes on S and after blowing them up we loose thetwo points. This happens when neither ε− 1 nor ε2 − 1 is a square. Inthis ase the number of points on S is p + 3.
• There were two nodes, one of whih vanished after the resolution andthe other has been replaed by two points. This happens when exatlyone of ε− 1, ε2 − 1 is a square. The number of points on S in this aseis p + 1.Taking all the above into onsideration, we an give the number of pointsadded before the small resolution of nodes:

♯(X̌p) − ♯(Xp) =





22p2 + 24p if −3 is a square mod p and exatly one of
ε − 1, ε2 − 1 is a square,

22p2 + 22p if −3 is a square mod p and both
ε − 1, ε2 − 1 are squares,

22p2 + 26p if −3 is a square mod p and none of
ε − 1, ε2 − 1 is a square,

22p2 + 20p if −3 is not a square mod p.We next need to resolve the nodes that appeared on X̌. For this purpose,we perform a straightforward omputation of the loal equations of the nodesto deide how many points are added during the resolution.We �rst hek the omplex nodes over the triple point Q. In this ase weadd {
p2 + 2p if −1 is a square mod p,
p2 if −1 is not a square mod p.Three more nodes appear while blowing up B and D. We an omputethat resolving eah of these nodes we always add p2 + 2p new points.Next, we hek the nodes over M1 and M2. The points M1 and M2 haverational oordinates depending on the rationality of ε. The latter is rationalif and only if −3 is a square in Fp.



Modularity of a Calabi�Yau manifold 97Over Fp for whih −3 is a square, resolving the nodes M1 and M2 adds




2(p2 + 2p) if 3 − ε, 3 − ε2 are squares mod p,
p2 + 2p + p2 if exatly one of 3 − ε, 3 − ε2 is a square mod p,
2p2 if none of 3 − ε, 3 − ε2 is a square mod p.We also have four omplex nodes that appeared outside the branh louswhen blowing up the urve S. For this ase there are three possibilities:

• There are no rational nodes; this happens if −3 is not a square or thevalue of the polynomial de�ning the branh lous is not a square atthese points. That ours when none of 5ε − 2, 5ε2 − 2 is a squaremod p.
• There are two rational nodes; this happens if the value of the polyno-mial de�ning the branh lous at one of the nodes is a square. Thatours when exatly one of 5ε − 2, 5ε2 − 2 is a square mod p.
• There are four rational nodes; this happens if the value of the polyno-mial de�ning the branh lous at both nodes is a square. That ourswhen both 5ε − 2, 5ε2 − 2 are squares mod p.Moreover, for eah of these ases the resolution of the nodes adds either

p2 +2p or p2 new points. The atual ase is determined by the answer to thequestion: �Is 1 − ε a square mod p ?�.Hene the number of points added by taking the big resolution X̃ of Xdepends on p in the following way.Let
f(p) =

(
3 − ε

p

)
+

(
3 − ε2

p

)
+

(
1 +

(
5ε − 2

p

))
·

(
1 − ε

p

)

+

(
1 +

(
5ε2 − 2

p

))
·

(
1 − ε2

p

)
−

(
ε − 1

p

)
−

(
ε2 − 1

p

)
,where (

a
b

) is the Legendre symbol. Then
♯(X̃p)−♯(Xp) =





26p2 + 28p if −3 is not a square mod p,
28p2 +34p+f(p)p if −3 is a square mod p and noneof 5ε − 2, 5ε2 − 2 is a square mod p,
30p2 +36p+f(p)p if −3 is a square mod p and oneof 5ε − 2, 5ε2 − 2 is a square mod p,
32p2 +38p+f(p)p if −3 is a square mod p and both

5ε − 2, 5ε2 − 2 are squares mod p.The following table presents the expliit numbers needed in the methodof Faltings�Serre�Livné:



98 G. Kapustka and M. Kapustka
p ♯(Xp) ♯(X̃p) ap5 191 981 −157 439 2273 −2511 1559 5013 1537 53674 96076 −43017 5564 13554 −7219 7504 18258 223 13340 27738 −114Comparing the values of ♯(X̃p) with the oe�ients ap of the usp formfrom [St℄ we onlude the proof of the modularity of X̂.Using the 2:1 orrespondene Ŷ 99K X̂ we obtain the following.Corollary 3.3. The variety Ŷ is a modular Calabi�Yau manifold withthe L-series L(Ŷ , s) = L(g4, s)L(g2, s−1), where g2 is the unique newform ofweight 2 and level 13, and g4 is the newform 27k4B of weight 4 and degree 27.
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