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A Littlewood–Paley type inequality with

applications to the elliptic Dirichlet problem

by Caroline Sweezy (Las Cruces, NM)

Abstract. Let L be a strictly elliptic second order operator on a bounded domain
Ω ⊂ Rn. Let u be a solution to Lu = div ~f in Ω, u = 0 on ∂Ω. Sufficient conditions on two
measures, µ and ν defined on Ω, are established which imply that the Lq(Ω, dµ) norm of

|∇u| is dominated by the Lp(Ω, dv) norms of div ~f and |~f |. If we replace |∇u| by a local
Hölder norm of u, the conditions on µ and ν can be significantly weaker.

Introduction. The intent of this paper is to establish sufficient condi-
tions on two measures, µ and ν, defined on a bounded domain Ω in Rn,
n ≥ 3, so that

(1)
(\
Ω

|∇u(x)|q dµ(x)
)1/q
≤ C
(\
Ω

(|div ~f(x)|p + |~f(x)|p) dν(x)
)1/p

if 2 < p ≤ q < 2 + ε, for any function u(x) that is a weak solution to
{
Lu(x) = div ~f(x), x ∈ Ω,

u(x′)|∂Ω = 0.

Here Ω is assumed to satisfy an exterior cone condition, ~f ∈ H1(Ω), and

L =
∑

1≤i,j≤n

∂

∂xi

(
ai,j(x)

∂

∂xj

)
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is a strictly elliptic divergence form operator, in other words,
∑

1≤i,j≤n

ξiai,j(x)ξj ≥ λ|ξ|
2 for some λ > 0 and all x ∈ Ω.

L’s coefficients are assumed to be symmetric, ai,j(x) = aj,i(x), and bounded
and measurable on Ω. Since Ω is bounded, for µ(Ω) < ∞ and ν(Ω) < ∞
(this is implied by the conditions that will be imposed on µ and ν), we can
extend (1) to be valid for indices 0 < q < 2 + ε and 2 < p < ∞, simply by
using Hölder’s inequality. The constant C in (1) depends on Ω in any case,
so this does not restrict the result too much for the wider range of indices.
However, the presence of the gradient of u does introduce a restriction.
Following a suggestion of Professor Wheeden, we replace |∇u(x)| by a local
Hölder norm of u at x, and prove sufficient conditions on µ and ν so that
for 0 < q <∞, 1 < p <∞,

(2)
(\
Ω

‖u(x)‖qHα dµ(x)
)1/q
≤ C
(\
Ω

(|div ~f(x)|p) dν(x)
)1/p
,

with

‖u(x)‖Hα = sup
y∈P (x)

|u(x)− u(y)|

|x− y|α
,

where

P (x) = {z ∈ Ω : |xi − zi| ≤ bδ(x), i = 1, . . . , n},

δ(x) = dist(x, ∂Ω).

The constant b < 1 is fixed and chosen so that both P (x) and ηP (x) =
{z ∈ Ω : |xi − zi| ≤ ηbδ(x), i = 1, . . . , n} for η0 ≥ η > 1, η0 > 4 fixed, are
Whitney-type cubes in Ω centered at x. Corresponding results for solutions
to the homogeneous Dirichlet problem

{
Lu(x) = 0, x ∈ Ω,

u(x′)|∂Ω = f(x
′),

are proved in [S].

Combining the results of this paper with those in [S] and [SW], and using
superposition, we have established sufficient conditions on measures µ and
ν on Ω, and on a boundary measure, ̺dω, so that for ‖u(x)‖, which denotes
either |∇u(x)| or ‖u(x)‖Hα , it follows that

(3)
(\
Ω

‖u(x)‖q dµ(x)
)1/q

≤ C
((\
Ω

(|div ~f(x)|p + |~f(x)|p
)
dν(x)

)1/p
+
( \
∂Ω

|g(x′)|r̺(x′) dω(x′)
)1/r)
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for solutions to {
Lu(x) = div ~f(x), x ∈ Ω,

u(x′)|∂Ω = g(x
′),

if Ω is a bounded Lipschitz domain in Rn, n ≥ 3. ω = ωx0 is the elliptic
measure on ∂Ω generated by L, measured from a fixed point x0 interior
to Ω. So for L = ∆, ω is harmonic measure.
The method of obtaining the conditions on the measures follows that

of Wheeden and Wilson [WW] in using dual operator norms. This argu-
ment utilizes a norm inequality that derives from Littlewood–Paley theory.
The crucial Littlewood–Paley type inequality is proved in Theorem 1 for
functions of the form

h(x) =
∑

J∈F

λJϕ(J)(x), λJ ∈ R,

using methods closely allied to those in [W], [SW]. The ϕ(J)(x) are members
of a family of functions that have certain decay and cancellation properties,
and F is a finite family of dyadic cubes. The details about the ϕ(J)(x) are
stated below in (a), (a′), (b) and (c). To prove the ϕ(J)(x) satisfy the neces-
sary conditions, we utilize geometric properties of elliptic Green’s functions
on rough domains, proved by Grüter and Widman [GW] (see also [K]).
The results presented in this paper stem from a considerable body of

work. References for situations in which an inequality of the form

(4)
(\
Ω

|∇u(x)|q dµ(x)
)1/q
≤
( \
∂Ω

|g(x′)|pυ(x′) dω(x′)
)1/p

holds when u is harmonic are given in [SW]. The history for semi-discrete
Littlewood–Paley results is mentioned in [W]. Wheeden and Wilson dealt
with the case of the Dirichlet problem in the upper half space for harmonic
u(x). Sweezy and Wilson later found sufficient conditions for µ and ̺dω to
ensure (4) for harmonic gradients on Lipschitz domains; they found that
similar techniques allowed them to deal with elliptic functions on rough do-
mains. A key part of their argument consisted in establishing a Littlewood–
Paley type inequality for functions of the form

∑
J∈F λJϕ(J)(x) with mini-

mal smoothness conditions assumed for the ϕ(J) and for the domain. They
accomplished this by an argument in the spirit of Wilson’s method of prov-
ing a semi-discrete Littlewood–Paley type inequality on Rn for smoother
functions (see [W]). The fact that the operator L has an associated ker-
nel function which has geometric decay was an essential ingredient to their
proof. It remains an important ingredient in the case of a solution to the
inhomogeneous equation.
In Section 1 of this paper the two main theorems are stated. To avoid

becoming immersed in technical details too early we leave the proof of The-
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orem 1 until the last section of the paper. Section 2 contains the proof of
Theorem 2, assuming that Theorem 1 is valid. Theorem 3 for a local Hölder
norm of a solution u instead of the gradient of u is stated and proved after
Theorem 2 in that section. Section 3 presents the proof of Theorem 1, the
Littlewood–Paley type inequality.

1. The main results. To state the first main theorem, the Littlewood–
Paley type inequality, we need to establish some definitions. First recall that
a measure σ defined on a domainD is said to beA∞ with respect to Lebesgue
measure if for any cube Q ⊂ D and any measurable subset E of Q, there
are fixed constants C0 and κ > 0 so that

(
σ(E)

σ(Q)

)κ
≤ C0

|E|

|Q|
(see [CF]).

We will utilize a family D of dyadic cubes which includes all dyadic
subcubes of a given (large) cube Q0. When Q is a cube, l(Q) will denote
the side length of Q. If Q is a region that is comparable to a cube, say, Q
is the image of an actual Euclidean cube under a Lipschitz map, then l(Q)
denotes a length comparable to the side length of the pre-image cube. One
could also take l(Q) to be the diameter of any such region. Q0 is chosen
so that Ω ⊂ Q0 and l(Q0) ∼ diam(Ω). In order to have

⋃
I∈D
I cover Ω

completely, we take the dyadic subcubes I to be half closed, i.e. of the form
[a1, b1) × · · · × [an, bn). W is a collection of special dyadic cubes from D;
these are Whitney-type cubes that lie inside Ω, are pairwise disjoint, and
cover the interior of Ω. I ∈ W implies that l(I) ≃ dist(I, ∂Ω), but the
I ∈ W may be subcubes of a fixed proportion to the usual Whitney cube
decomposition of Ω. We need to be sure that βI (the β-dilate of I, that is,
the cube concentric with I and of side length βl(I)) is also a Whitney cube
for any 1 ≤ β < η0, η0 > 4. The point xJ will denote the geometric center
of the dyadic cube J , and δ(x) = dist(x, ∂Ω).

When f(x) =
∑
J∈F λJϕ(J)(x), the function g

∗(f)(x) = g∗(x) is defined
by

g∗(x) =

(∑

J∈F

λ2J
|J |

(
1 +
|x− xJ |

l(J)

)−n)1/2
.

It is a discrete version of the g∗λ function of classical Littlewood–Paley theory.
Notice that the order of decay in g∗, as defined here, is slightly less than
that said to be optimal in [W]. The reason for this is the order of decay for

the Green function, G(x, y), which appears in u(x) =
T
Ω
G(x, y) div ~f(y) dy,

the integral representation for solutions to Poisson’s equation.
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The four conditions that will be assumed to hold for the family {ϕ(J)(x)}
are:

(a) |ϕ(J)(x)| ≤ Cl(J)
2−n/2

(
1 +
|x− xJ |

l(J)

)2−n
for all x ∈ Ω,

(a′) |ϕ(J)(x)| ≤ Cδ(x)
αl(J)2−n/2−α

(
1+
|x− xJ |

l(J)

)2−n−α
for all x ∈ Ω,

(b) |ϕ(J)(x)− ϕJ (y)| ≤ C|x− y|
αl(J)2−n/2−α

×

(
1 +
|x− xJ |

l(J)
+
|y − xJ |

l(J)

)2−n−α
for all x, y ∈ Ω,

(c)
\∣∣∣∑
J∈F

λJϕ(J)(x)
∣∣∣
2

dx ≤ C
∑

J∈F

λ2J .

Theorem 1. Suppose that f(x) =
∑
J∈F λJϕ(J)(x) is a function defined

on Ω, where F is a finite set of dyadic cubes from W , and the {ϕ(J)}J∈F
are a family of functions that satisfy conditions (a), (a′), (b), and (c), and
ϕ(J)(x) = 0 if x ∈ Q0 \ Ω. Then, if σ ∈ A

∞(Q0, dx), there is a constant
C = C(n, α, p,Ω, κ, C0) such that , for any 0 < p <∞,

‖f‖Lp(Q0,dσ) ≤ C‖g
∗‖Lp(Q0,dσ).

The major application of Theorem 1 of concern here is to demonstrate
sufficient conditions on measures µ and ν so that (1) is valid. To state these
conditions we need to recall what it means for a measure to satisfy a reverse
Hölder condition on a domain D with respect to Lebesgue measure. This is
written as µ ∈ Br(D, dx), with r > 1, if for every cube Q ⊂ D,

(
1

|Q|

\
Q

(
dµ

dx

)r
dx

)1/r
≤ C

(
1

|Q|

\
Q

dµ

dx
dx

)
.

It is true that any measure satisfying a reverse Hölder condition with respect
to Lebesgue measure is also an Ap measure on D, for some exponent p.
(A non-negative L1loc(D) function w is in A

p(D, dx) if

(
1

|Q|

\
Q

w dx

)(
1

|Q|

\
Q

(
1

w

)p′−1
dx

)1/(p′−1)
≤ A0

for all cubes Q ⊂ D.) A measure µ is in Ap(D, dx) if dµ/dx ∈ Ap(D, dx).)
We let p′ denote the Hölder conjugate index for p, that is, 1/p + 1/p′ = 1.
Any measure that is either an Ap measure on D, or satisfies a reverse Hölder
condition on D, is also an A∞ measure on D (see [CF]).
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To avoid cluttering up the statement of Theorem 2 we define, for any
dyadic cube Qj in D,

M(Qj) = max

{
l(Qj)

n/2+1

( \
2Qj

(
dν

dx

)−2/(p−2)
dx

)(p−2)/2p
,

( \
Q0

(
1 +
|y − xQj |

l(Qj)

)−np′/2
dσ(y)

)1/p′}
.

Suppose that L =
∑
1≤i,j≤n(∂/∂xi)(ai,j(x)∂/∂xj) is a strictly elliptic diver-

gence form operator on the domain Ω, as described above. Suppose also that
µ, a Borel measure defined on Ω, satisfies a reverse Hölder condition of order
((q + ε)/q)′ with respect to Lebesgue measure onΩ, i.e. µ ∈ B(q+ε)/ε(Ω, dx).

Theorem 2. Let µ and ν be Borel measures on Ω with ν finite and
absolutely continuous with respect to Lebesgue measure, and suppose that
dσ(x) = (dν/dx)1−p

′

dx satisfies the condition A∞(Ω, dx). Let u be a so-

lution to Lu = div ~f on Ω, u|∂Ω = 0, ~f ∈ H
1(Ω). If there is a constant

C0 > 0 so that for every dyadic cube Qj in W ,

µ(Qj)
1/qM(Qj) ≤ C0l(Qj)

n+1,

then there is a constant C = C(n, p, q, α, b, κ,Ω, λ, η0, ε) such that

(1)
(\
Ω

|∇u(x)|q dµ(x)
)1/q
≤ C

(\
Ω

(|div ~f(x)|p + |~f(x)|p) dν(x)

)1/p

for 2 < p ≤ q < 2 + ε. For 0 < q ≤ q0 and 2 < p0 ≤ p < ∞, the
same inequality is valid upon replacing C by Cµ(Ω)1/q−1/q0ν(Ω)1/p0−1/p,
C = C(p0, q0, n, α, b, κ,Ω, λ, η0, ε), for some fixed pair of indices 2 < p0 ≤
q0 < 2 + ε.

We will start with a brief discussion of the condition on the measures µ
and ν given in Theorem 2. Then we will prove Theorem 2 assuming that
Theorem 1 is valid. Subsequently we prove Theorem 3, the version of Theo-
rem 2 with ‖u(x)‖Hα replacing |∇u(x)| in (1). The companion result, suffi-
cient conditions on a measure µ on Ω and a boundary measure ̺dω on ∂Ω
so that ‖ ‖u(x)‖Hα‖Lq(Ω,dµ) ≤ C‖g‖Lp(∂Ω,̺dω) when Lu = 0 in Ω, u|∂Ω = g,
is proved in [S].

2. Proof of Theorem 2. The condition on the measures µ and ν given
in Theorem 2 may look complicated, but in fact it is closely related to well
known properties of measures such as Ap conditions, geometric decay and
the concept of Carleson measures. To gain an idea of what the condition
in Theorem 2 can mean for the relation between µ and ν, we look at some
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simple examples. The domain Ω is bounded, so we need only consider the
case when l(Qj) ≤ 1.

If ν is taken to be Lebesgue measure, then Theorem 2’s condition be-
comes that µ, on the Whitney-type cubes Qj in Ω, must satisfy µ(Qj)

1/q ≤
Cl(Qj)

n/2 with C = C(p′, n, diam(Ω)). This follows from taking

M(Qj) =

( \
Q0

(
1 +
|y − xQj |

l(Qj)

)−np′/2
dσ(y)

)1/p′

and performing a standard estimate of the integral over Q0 by dividing Q0
into dyadic annular regions centered at Qj . An elementary calculation shows
that this condition also implies that µ(Qj)

1/q multiplied by the other term,

l(Qj)
n/2+1

( \
2Qj

(dν/dx)−2/(p−2) dx
)(p−2)/2p

,

in the definition of M(Qj), is also less than or equal to Cl(Qj)
n+1 since

dν/dx = 1.

As a second example, consider letting p = q = 4, and take µ = ν. The
requirement that

µ(Qj)
1/q · l(Qj)

n/2+1
( \
Qj

(dν/dx)−2/(p−2)dx

)(p−2)/2p

be bounded by Cl(Qj)
n+1 turns out to be equivalent to the followingA2-type

condition:

1

|Qj |

\
Qj

(dµ/dx) dx ·

(
1

|Qj|

\
2Qj

(dµ/dx)−1 dx

)
≤ C.

(In fact we know that µ is an A2 measure by the reverse Hölder condition
on µ.) The second condition, that

µ(Qj)
1/q ·
( \
Q0

(1 + |y − xQj |/l(Qj))
−np′/2dσ(y)

)1/p′
≤ Cl(Qj)

n+1,

does not have an exact interpretation as a well known measure condition,
but it too can be viewed as a weighted version of an Ap-type condition with
vanishing trace.

To prove Theorem 2 we start by dividing the integral ‖∇u‖qLq(Ω,dµ) into

a sum of integrals over Whitney cubes from W :
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Ω

|∇u(x)|q dµ(x) =
∑

Qj∈W

\
Qj

|∇u(x)|q dµ(x)

≤
∑

Qj∈W

( \
Qj

|∇u(x)|q+ε dx
)q/(q+ε)( \

Qj

(
dµ

dx

)((q+ε)/q)′
dx

)ε/(q+ε)
.

Now we can use the reverse Hölder conditions on both dµ/dx and |∇u(x)|q+ε

if ε is sufficiently small (see [GM], [A] for reverse Hölder inequalities for ∇u),
to bound the last sum by

C
∑

Qj∈W

|Qj |

((
1

|Qj |

\
2Qj

|∇u(x)|2 dx

)q/2
+

(
1

|Qj |

\
2Qj

|~f(x)|q+ε
)q/(q+ε))

×

(
1

|Qj |

\
Qj

(
dµ

dx

)
dx

)
.

Assuming that ~f lies in H1(Ω), the Sobolev inequality allows us to replace

(|Qj |
−1
T
2Qj
|~f(x)|q+ε)q/(q+ε) by

C

((
1

|Qj|

\
2Qj

|~f(x)|2
)q/2
+

(
1

|Qj |

\
2Qj

|div ~f(x)|2
)q/2)

.

Simplifying gives\
Ω

|∇u(x)|q dµ(x) ≤ C
∑

Qj∈W

µ(Qj)

(
1

|Qj |

\
2Qj

|∇u(x)|2dx

)q/2

+C
∑

Qj∈W

µ(Qj)

((
1

|Qj|

\
2Qj

|~f(x)|2
)q/2
+

(
1

|Qj |

\
2Qj

|div ~f(x)|2
)q/2)

.

By duality it will suffice to bound the three expressions:

sup
‖{g(Qj)}‖

lq
′
(Ω,µ)

=1

∑

Qj∈W

g(Qj)µ(Qj)

(
1

|Qj |

\
2Qj

|∇u(x)|2 dx

)1/2
,

sup
‖{g(Qj)}‖

lq
′
(Ω,µ)

=1

∑

Qj∈W

g(Qj)µ(Qj)

(
1

|Qj |

\
2Qj

|~f(x)|2
)1/2
,

sup
‖{g(Qj)}‖

lq
′
(Ω,µ)

=1

∑

Qj∈W

g(Qj)µ(Qj)

(
1

|Qj |

\
2Qj

|div ~f(x)|2
)1/2
.

Moreover we can assume {g(Qj)} is a finite sequence. The second and
third sums are handled in the same way, so we only write out the details of
bounding the second sum. By Hölder’s inequality
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( \
2Qj

|~f(x)|2
)1/2
≤
( \
2Qj

|~f(x)|p dν(x)
)1/p( \

2Qj

(
dν

dx

)−(2/p)(p/2)′
dx

)1/2(p/2)′
.

Using Hölder’s inequality on the sum now gives

∑

Qj∈W

g(Qj)µ(Qj)

(
1

|Qj |

\
2Qj

|~f(x)|2
)1/2

≤
( ∑

Qj∈W

\
2Qj

|~f(x)|pdν(x)
)1/p

×

( ∑

Qj∈W

(
g(Qj)µ(Qj)

|Qj|1/2

)p′( \
2Qj

(
dν

dx

)−2/(p−2)
dx

)p′/2(p/2)′)1/p′
.

So we need to bound the second term by

C
( ∑

Qj∈W

g(Qj)
q′µ(Qj)

)1/q′
.

It is enough show that

( ∑

Qj∈W

(
g(Qj)µ(Qj)

|Qj |1/2

)p′( \
2Qj

(
dν

dx

)−2/(p−2)
dx

)p′/2(p/2)′)q′/p′

≤ C
∑

Qj∈W

g(Qj)
q′µ(Qj).

Now, p ≤ q so q′ ≤ p′ and q′/p′ ≤ 1. Consequently, the left hand side of
the last inequality is less than or equal to

∑

Qj∈W

(
g(Qj)µ(Qj)

|Qj |1/2

)q′( \
2Qj

(
dν

dx

)−2/(p−2)
dx

)q′/2(p/2)′
.

If we compare the last two expressions term by term we will have a sufficient
condition to obtain the desired inequality. So we need to have

(
g(Qj)µ(Qj)

|Qj |1/2

)q′( \
2Qj

(
dν

dx

)−2/(p−2)
dx

)q′/2(p/2)′
. g(Qj)

q′µ(Qj)

or

µ(Qj)
q′−1

|Qj |q
′/2

( \
2Qj

(
dν

dx

)−2/(p−2)
dx

)q′/2(p/2)′
≤ C ′0.

Taking q′th roots gives

µ(Qj)
1/q

( \
2Qj

(
dν

dx

)−2/(p−2)
dx

)(p−2)/2p
≤ C0|Qj|

1/2.
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This condition also implies that

sup
‖{g(Qj)}‖

lq
′
(Ω,µ)

=1

∑

Qj∈W

g(Qj)µ(Qj)

(
1

|Qj |

\
2Qj

|div ~f(x)|2
)1/2

≤ C
(\
Ω

|div ~f(x)|p dν(x)
)1/p
.

To handle the first sum,

sup
‖{g(Qj)}‖

lq
′
(Ω,µ)

=1

∑

Qj∈W

g(Qj)µ(Qj)

(
1

|Qj |

\
2Qj

|∇u(x)|2 dx

)1/2
,

we note that
(
1

|Qj |

\
2Qj

|∇u(x)|2 dx

)1/2
≤

(
1

|Qj|

\
2Qj

|∇u(x)−∇ũ(x)|2 dx

)1/2

+

(
1

|Qj |

\
2Qj

|∇ũ(x)|2 dx

)1/2
= I + II,

with ũ(x) =
T
4Qj
(div ~f(y))G̃(x, y) dy, where G̃(x, y) is the Green function

for L on the domain 4Qj . Since
(
1

|Qj |

\
2Qj

|∇ũ(x)|2 dx

)1/2
≤ C

(
1

|Qj |

\
4Qj

|~f(x)|2 dx

)1/2

by standard results, the sum containing II can be handled as above. We are
left with estimating

sup
‖{g(Qj)}‖

lq
′
(Ω,µ)

=1

∑

Qj∈W

g(Qj)µ(Qj)

(
1

|Qj |

\
2Qj

|∇(u− ũ)(x)|2 dx

)1/2
.

To do this, notice that
(
1

|Qj |

\
2Qj

|∇(u− ũ)(x)|2 dx

)1/2

=

(
1

|Qj |

\
2Qj

∣∣∣
\
Ω

(div ~f(y))(∇xG(x, y)−∇xG̃(x, y)) dy
∣∣∣
2

dx

)1/2

≤
\
Ω

|div ~f(y)|

(
1

|Qj|

\
2Qj

|∇x(G(x, y)− G̃(x, y))|
2 dx

)1/2
dy.

Now for each y ∈ 4Qj , G(x, y) − G̃(x, y) is a solution to Lv = 0 in

supp(G̃(·, y)) ⊂ 4Qj (see [K, pp. 87–88]), and we have, by the Caccioppoli
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inequality,
(
1

|Qj |

\
2Qj

|∇x(G(x, y)− G̃(x, y))|
2 dx

)1/2

≤
1

l(Qj)

(
C

|Qj |

\
3Qj

|(G(x, y)− G̃(x, y))|2 dx

)1/2
.

Since G(x, y) − G̃(x, y) ≥ 0 by the maximum principle, we can use the
Harnack inequality to obtain
(
C

|Qj |

\
3Qj

|G(x, y)− G̃(x, y)|2 dx

)1/2
≤
C

|Qj |

\
3Qj

(G(x, y)− G̃(x, y)) dx.

If y ∈ Ω \ 4Qj , then G̃(x, y) = 0 for x ∈ 2Qj , and G(x, y) is a positive
solution to Lxv = 0 in 3.5Qj . In this case
(
1

|Qj |

\
2Qj

|∇x(G(x, y)− G̃(x, y))|
2 dx

)1/2
=

(
1

|Qj |

\
2Qj

|∇xG(x, y)|
2 dx

)1/2

≤
1

l(Qj)

(
C

|Qj |

\
3Qj

|G(x, y)|2 dx

)1/2
≤
1

l(Qj)

C

|Qj |

\
3Qj

G(x, y) dx

=
1

l(Qj)

C

|Qj |

\
3Qj

(G(x, y)− G̃(x, y)) dx

for the same reasons. Putting all this together we see that

∑

Qj∈W

g(Qj)µ(Qj)

(
1

|Qj |

\
2Qj

|∇(u− ũ)(x)|2 dx

)1/2

≤ C
∑

Qj∈W

g(Qj)µ(Qj)
\
Ω

|div ~f(y)|
1

l(Qj)

(
1

|Qj |

\
3Qj

(G(x, y)− G̃(x, y)) dx

)
dy.

The last expression is then dominated by

C
\
Ω

|div ~f(y)|
∑

Qj∈W

g(Qj)µ(Qj)
1

l(Qj)

(
1

|Qj |

\
3Qj

(G(x, y)− G̃(x, y)) dx

)
dy

= C
\
Ω

|div ~f(y)|
∑

Qj∈W

λjϕ(Qj)(y) dy.

The constants λj are taken to be

λj =
g(Qj)µ(Qj)

l(Qj)
√
|Qj |
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and the functions ϕ(Qj) are defined by

ϕ(Qj)(y) =
1√
|Qj |

\
3Qj

(G(x, y)− G̃(x, y)) dx.

Assuming for now that the ϕ(Qj)(y) satisfy (a), (a
′), (b), and (c), Hölder’s

inequality followed by the application of Theorem 1 to the function h(y) =∑
Qj∈W

λjϕ(Qj)(y) gives\
Ω

|div ~f(y)|
∑

Qj∈W

λjϕ(Qj)(y) dy

≤
(\
Ω

|div ~f(y)|p dν(y)
)1/p(\

Ω

|h(y)|p
′

dσ(y)
)1/p′

≤ C|div ~f‖Lp(Ω,dν)‖g
∗(h)‖Lp′ (Ω,dσ).

It will suffice to show that ‖g∗(h)‖p
′

Lp
′

(Ω,dσ)
≤ C‖{g(Qj)}‖

p′

lq
′

(Ω,µ)
. Using

p > 2 implies p′/2 < 1. Recall that the sum defining h(y) is finite. We have

‖g∗(h)‖p
′

Lp′ (Ω,dσ)
=
\
Ω

(∑ λ2j
|Qj |

(
1 +
|y − xj |

l(Qj)

)−n)p′/2
dσ(y)

≤
∑ λp

′

j

|Qj|p
′/2

\
Ω

(
1 +
|y − xj |

l(Qj)

)−np′/2
dσ(y).

So it suffices to show that the last sum is dominated by (
∑
g(Qj)

q′

× µ(Qj))
p′/q′ . Once again, taking advantage of the fact that q′/p′ ≤ 1,

this is equivalent to showing that

∑ λq
′

j

|Qj |q
′/2

(\
Ω

(
1 +
|y − xj |

l(Qj)

)−np′/2
dσ(y)

)q′/p′
≤
∑
g(Qj)

q′µ(Qj).

So if

λq
′

j

|Qj |q
′/2

(\
Ω

(
1 +
|y − xj |

l(Qj)

)−np′/2
dσ(y)

)q′/p′
≤ Cg(Qj)

q′µ(Qj)

we will have the desired result. But this is the same as requiring that

µ(Qj)
1/q

(\
Ω

(
1 +
|y − xj |

l(Qj)

)−np′/2
dσ(y)

)1/p′
≤ Cl(Qj)

n+1.

The verification of (a), (a′), and (b) for the functions

ϕ(Qj)(y) =
1√
|Qj |

\
3Qj

(G(x, y)− G̃(x, y)) dx
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follows directly from the estimates of Grüter and Widman [GW] for the
Green function on any bounded domain satisfying an exterior cone condition.
To see that (c) is also true, we may assume that λj ≥ 0 and that ϕ(Qj)(y) ≥ 0
on Ω. We can write\
Ω

|h(y)|2 dy =
\
Ω

∣∣∣
∑

Qj∈F

λjϕ(Qj)(y)
∣∣∣
2

dy =
∑

Qj∈F

λj
\
Ω

h(y)ϕ(Qj)(y) dy

=
∑

Qj∈F

λj
\
Ω

h(y)

(
1√
|Qj |

\
3Qj

(G(x, y)− G̃(x, y)) dx

)
dy

≤
∑

Qj∈F

λj
1√
|Qj |

\
3Qj

v(x) dx

≤
( ∑

Qj∈F

λ2j

)1/2( ∑

Qj∈F

(
1√
|Qj |

\
3Qj

v(x) dx

)2)1/2

≤
( ∑

Qj∈F

λ2j

)1/2( ∑

Qj∈F

\
3Qj

v(x)2 dx
)1/2

≤C
(∑

Qj∈F

λ2j

)1/2(\
Ω

v(x)2 dx
)1/2
≤ C ′
(∑

Qj∈F

λ2j

)1/2(\
Ω

h(x)2 dx
)1/2
.

We have taken v(x) =
T
Ω
G(x, y)h(y) dy to be the solution to Lv = h in Ω.

Dividing by (
T
Ω
h(x)2 dx)1/2 gives the property of almost orthogonality.

In contrast to Theorem 2 the condition on the weights for the inequal-
ity with the local Hölder norm replacing |∇u| is much simpler. The other
obvious advantage of using Hölder norms is that one obtains results for a
larger range of exponents p and q. Suppose Ω is a bounded domain in Rn

that satisfies an exterior cone condition. Then we have

Theorem 3. Let u be a solution to Lu = div ~f on Ω, u|∂Ω = 0, and
let µ and ν be Borel measures on Ω, with ν finite and absolutely continuous
with respect to Lebesgue measure, and dσ(x) = (dν/dx)1−p

′

dx. If there is a
constant C > 0 so that

µ(Qj)
1/q sup
w∈2Qj

(\
Ω

1

|w − y|(n+α−2)p′
dσ(y)

)1/p′
≤ C|Qj |

1/q

for all dyadic cubes Qj in W , then for any 0 < q <∞, 1 < p <∞, there is
a constant C ′ = C ′(C, n, λ, α, q,Ω) so that

(2)
(\
Ω

‖u(x)‖qHα dµ(x)
)1/q
≤ C ′
(\
Ω

|div ~f(x)|p dν(x)
)1/p
,

with ‖u(x)‖Hα defined as above, α = α(n, λ, ∂Ω).
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Proof. As in the proof of Theorem 2 we start by subdividing Ω into
Whitney cubes Qj :\

Ω

‖u(x)‖qHα dµ(x) =
∑

Qj∈W

\
Qj

‖u(x)‖qHα dµ(x)

=
∑

Qj∈W

\
Qj

(
sup

w∈P (x), w 6=x

|u(x)− u(w)|

|x− w|α

)q
dµ(x)

≤
∑

Qj∈W

\
Qj

(
sup

x∈Qj , x6=w
w∈2Qj

|u(x)− u(w)|

|x− w|α

)q
dµ(x)

=
∑

Qj∈W

(
sup

x∈Qj , x6=w
w∈2Qj

|u(x)− u(w)|

|x− w|α

)q \
Qj

dµ(x).

Now the integral representation of u(x) and the fact that the Green function
is Hölder continuous imply the last expression is dominated by

C
∑

Qj∈W

µ(Qj)

(
sup

x∈Qj , x6=w
w∈2Qj

1

|x− w|α

\
Ω

|div ~f(y)| |G(x, y)−G(w, y)| dy

)q

≤ C
∑

Qj∈W

µ(Qj)

(
sup

x∈Qj , x6=w
w∈2Qj

1

|x− w|α

×
\
Ω

|div ~f(y)| |x− w|α
(

1

|x− y|n−2+α
+

1

|w − y|n−2+α

)
dy

)q

≤ C
∑

Qj∈W

µ(Qj)

(
sup
w∈2Qj

\
Ω

|div ~f(y)| |w − y|2−n−α dy

)q
.

The next to last inequality was obtained from the result of Theorem 1.9
in [GW]. The constant C has changed from one line to the next, but is
independent of u, f and Qj . The last sum is less than or equal to

C
∑

Qj∈W

µ(Qj)
(\
Ω

|div ~f(x)|p dν(x)
)q/p(

sup
w∈2Qj

(\
Ω

|w−y|(2−n−α)p
′

dσ(y)
)1/p′)

= C
(\
Ω

|div ~f(x)|pdν(x)
)q/p

∑

Qj∈W

µ(Qj)
(
sup
w∈2Qj

(\
Ω

|w − y|(2−n−α)p
′

dσ(y)
)1/p′)

.

The qth root of this last expression will be bounded by

C|Ω|1/q
(\
Ω

|div ~f(x)|p dν(x)
)1/p
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if

µ(Qj)
1/q sup
w∈2Qj

(\
Ω

|w − y|(2−n−α)p
′

dσ(y)
)1/p′

≤ |Qj|
1/q

for every Qj ∈ W .

3. Proof of Theorem 1. To prove Theorem 1 we follow the method
of Wilson [W] in using the functions

F (I, x) =
∑

J∈S(I)

λJϕ(J)(x), F (I) = F (I, xI), F ∗(x) = sup
I∋x
F (I)

and

G(I, x) =

( ∑

J∈S(I)

λ2J
|J |

(
1 +
|x− xJ |

l(J)

)−n)1/2
,

G(I) = G(I, xI), G∗(x) = sup
I∋x
G(I).

They are always generated by a given function f(x) =
∑
J∈F λJϕ(J)(x),

where F is a finite family of dyadic cubes, S(I) = {J ∈ F : J 6⊂ I}, and l(I)
is the side length of the dyadic cube I. F (I, x) and G(I, x) are only defined
for x ∈ I. We note some special properties of the particular functions ϕ(J)(x)
that were used in the proof of Theorem 2. These properties will be crucial
in proving the estimates in Lemmas 1–7 and the Central Lemma. We have
ϕ(J)(x) = 0 whenever x lies outside Ω. Also each ϕ(J) is chosen so that
J ∈ W . As in [W] we obtain local estimates relating the functions F (I, x),
G(I, x), etc. in order to use these functions to prove the crucial good-λ
inequality of the Corollary to the Central Lemma. The good-λ inequality
then yields the result of Theorem 1 by standard methods. The local estimates
are established in Lemmas 1–7 below.
For the remaining part of the paper we take f(x) =

∑
J∈F λJϕ(J)(x),

where F is a finite family of dyadic cubes; the ϕ(J) satisfy properties (a),
(a′), (b), and (c), and they have all the properties mentioned in the previous
paragraph. We note that many of the constants obtained in Lemmas 1–7
depend on diam(Ω). For the functions ϕ(J) that appeared in the proof of
Theorem 2, i.e.

ϕ(J)(y) =
1√
|J |

(\
2J

(G(x, y)− G̃(x, y)) dx
)
,

the constants in (a′) and (b) also depend on diam(Ω) and Ω (see [GW]), so
this is no new restriction. We also note that having ϕ(J)(x) = 0 whenever
x lies outside Ω means that F (I, x) = 0 when x ∈ Ωc. However, F ∗(x),
G(I, x), G∗(x) are not necessarily zero for x outside Ω. FollowingWilson [W]
we start with
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Lemma 1. f(x) ≤ F ∗(x) for a.e. x ∈ Q0.

Proof. This follows from the definition of F ∗(x), the fact that F is a
finite family, and that (a) and (b) imply that f is continuous.

Lemma 2. There is a constant C so that G∗(x) ≤ Cg∗(x).

Proof. We have G∗(x) = supQ∋xG(Q). If x ∈ Q and I ∈ S(Q), then
either I ) Q or I lies outside Q. In both cases, |xI − xQ| ≥ cl(Q) and
|x− xQ| ≤ c

′l(Q). Therefore |x− xI | ≤ |x− xQ|+ |xQ − xI | ≤ C|xQ − xI |.
So 1 + |x− xI |/l(I) ≤ C

′(1 + |xQ − xI |/l(I)) or

(1 + |xQ − xI |/l(I))
−n ≤ C ′′(1 + |x− xI |/l(I))

−n.

For I ∈ F , whenever the term on the left is in G(Q), the term on the right
appears in g∗(x), x ∈ Q, multiplied by 1/C ′′. This is true for all dyadic
cubes Q with the same constant C = max(1, C ′′), so G(Q) ≤ Cg∗(x).

Lemma 3. For any 0 < η < 1, if x ∈ ηQ, then there is a constant
C1 = C(n, η) so that C

−1
1 G(Q) ≤ G(Q, x) ≤ C1G(Q).

Proof. For any cube I ∈ S(Q), |x− xI |/|xQ− xI | is bounded above and
below by constants that depend on η and n.

Lemma 4. For any 0 < η < 1, if x, y ∈ ηQ, then there is a constant
C2 = C(n, λ, η, diam(Ω), Ω, α) so that |F (Q, x)− F (Q, y)| ≤ C2G(Q).

Proof. As in [W] we write

|F (Q, x)− F (Q, y)| =
∣∣∣
∑

J∈S(Q)

λJ (ϕ(J)(x)− ϕ(J)(y))
∣∣∣

≤
∑

J∈S(Q), l(J)≥l(Q)

|λJ | |ϕ(J)(x)− ϕ(J)(y)|

+
∑

J∈S(Q), l(J)<l(Q)

|λJ | |ϕ(J)(x)− ϕ(J)(y)| = I + II.

When x and y both lie insideΩ, I will be shown to be bounded by CG(Q)
using the Hölder continuity of the ϕ(J)’s (property (b)), and II should be
bounded using Hölder continuity. When both x and y lie outside Ω, F (Q, x)
and F (Q, y) are both 0, so the estimate of Lemma 4 is trivially valid. How-
ever, the situation when x ∈ Ω but y ∈ Ωc needs to be considered separately.
We are not guaranteed that (b) is valid when one point, x or y, lies outside
the domain Ω. In this case I and II should be estimated using (a′).

We start with the proof for x, y ∈ ηQ ⊂ Ω. Then by (b) and the Cauchy–
Schwarz inequality (remember that n ≥ 3),



A Littlewood–Paley type inequality 121

I =
∑

J∈S(Q), l(J)≥l(Q)

|λJ | |ϕ(J)(x)− ϕ(J)(y)|

.
∑

J∈S(Q), l(J)≥l(Q)

|λJ | |x− y|
αl(J)2−n/2−α

(
1+
|x− xJ |

l(J)
+
|y − xJ |

l(J)

)2−n−α

.
∑

J∈S(Q), l(J)≥l(Q)

|λJ |

(
|x− y|

l(J)

)α
l(J)2−n/2

(
1+
|x− xJ |

l(J)
+
|y − xJ |

l(J)

)2−n−α

.

( ∑

J∈S(Q), l(J)≥l(Q)

λ2J
|J |

(
1 +
|x− xJ |

l(J)

)−n)1/2

×

( ∑

J∈S(Q), l(J)≥l(Q)

(
|x− y|

l(J)

)2α
l(J)4
(
1 +
|x− xJ |

l(J)

)4−n−2α)1/2

. G(Q, x) · C(d(Ω))2

×

( ∑

J∈S(Q), l(J)≥l(Q)

(
|x− y|

l(J)

)2α(
1 +
|x− xJ |

l(J)

)−n−2α)1/2
.

The last inequality follows from the fact that l(J)(1 + |x− xJ |/l(J)) ≤
cdiam(Ω) = cd(Ω). From Lemma 3, G(Q, x) ≤ C(n, η)G(Q) because x ∈
ηQ. So we need only show that

( ∑

J∈S(Q), l(J)≥l(Q)

(
|x− y|

l(J)

)2α(
1 +
|x− xJ |

l(J)

)−n−2α)
≤ C.

Since x and y lie in ηQ, the sum on the left can be written as
∞∑

k=0

∑

l(J)=2kl(Q)
J∈S(Q)

2−2αk
(
1 +
|x− xJ |

l(J)

)−n−2α

=

∞∑

k=0

2−2αk
∑

j≥k

∑

2j−1l(Q)<l(J)+|x−xJ |≤2
j l(Q)

l(J)=2kl(Q), J∈S(Q)

(
1 +
|x− xJ |

l(J)

)−n−2α

≤
∞∑

k=0

2−2αk
∑

j≥k

∑

2j−k−1<1+|x−xJ |/l(J)≤2
j−k

l(J)=2kl(Q), J∈S(Q)

(
1 +
|x− xJ |

l(J)

)−n−2α

≤ C(n)
∞∑

k=0

2−2αk
∞∑

j=k

2n(j−k)
(
1 +
|x− xJ |

l(J)

)−n−2α
.
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The last estimate follows from counting the number of cubes J of side length
2kl(Q) that can exist in the annular region 2j−k−1 < 1 + |xQ − xJ |/l(J) ≤
2j−k if j ≥ k. It is easy to see that the last expression is bounded by

C(n)
∞∑

k=0

2−2αk
∞∑

j=k

2n(j−k)(2j−k−1)−(n+2α) ≤ C(n, α)
∞∑

k=0

∞∑

j=k

2−2αj

≤ C(n, α)
∞∑

k=0

2−2αk
∞∑

j=0

2−2αj ≤ C(n, α).

Now to bound II, still keeping x, y ∈ ηQ ⊂ Ω, we have

II ≤
∑

J∈S(Q), l(J)<l(Q)

|λJ | |ϕ(J)(x)− ϕ(J)(y)|,

so by Lemma 3 it is enough to show this sum is ≤ CG(Q, x). Using (b) gives

(A)
∑

J∈S(Q), l(J)<l(Q)

|λJ | |ϕ(J)(x)− ϕ(J)(y)|

.
∑

J∈S(Q), l(J)<l(Q)

|λJ | |x− y|
αl(J)2−n/2−α

(
1 +
|x− xJ |

l(J)
+
|y − xJ |

l(J)

)2−n−α

.

( ∑

J∈S(Q)

λ2J
|J |

(
1 +
|x− xJ |

l(J)

)−n)1/2

×

( ∑

J∈S(Q), l(J)<l(Q)

l(Q)2αl(J)4−2α
(
1 +
|x− xJ |

l(J)

)4−n−2α)1/2

= CG(Q, x)

( ∑

J∈S(Q), l(J)<l(Q)

(
l(Q)

l(J)

)2α
l(J)4
(
1 +
|x− xJ |

l(J)

)4−n−2α)1/2

≤ CG(Q) ·H(Q)(x).

Now,

HQ(x) ≤ C(diamΩ)
2

( ∑

J∈S(Q), l(J)<l(Q)

(
l(Q)

l(J)

)2α(
1 +
|x− xJ |

l(J)

)−n−2α)1/2

≤ C(d(Ω), n, η)

×

( ∑

J∈S(Q), l(J)<l(Q)

(
l(Q)

l(J)

)−n−2α+2α(
1 +
|xQ − xJ |

l(Q)

)−n−2α)1/2
.

The last inequality follows from the fact that for J ∩ Q = ∅, J ∈ S(Q),
x ∈ ηQ, we have |x − xJ |/|xQ − xJ | ∼ C, and since |xQ − xJ | & l(Q), we
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have

1 +
|x− xJ |

l(J)
&
l(Q)

l(J)

|xQ − xJ |

l(Q)
&
l(Q)

l(J)

(
1 +
|xQ − xJ |

l(Q)

)
.

This means that
(
1 +
|x− xJ |

l(J)

)−n−2α
.

(
l(Q)

l(J)

(
1 +
|xQ − xJ |

l(Q)

))−n−2α
.

Finally, to estimate
( ∑

J∈S(Q), l(J)<l(Q)

(
l(Q)

l(J)

)−n(
1 +
|xQ − xJ |

l(Q)

)−n−2α)1/2

we can proceed as in [W] to divide Q0 \Q into dyadic cubes Q
′ whose size

is the same as that of Q. We write the sum as
( ∑

Q′⊂Q0\Q

∑

J∈S(Q), J⊂Q′

(
l(J)

l(Q)

)n(
1 +
|xQ − xJ |

l(Q)

)−n−2α)1/2

.

( ∑

Q′⊂Q0\Q

∑

J∈S(Q), J⊂Q′

(
l(J)

l(Q)

)n(
1 +
|xQ − xQ′ |

l(Q′)

)−n−2α)1/2
,

which is valid since |xQ − xJ | & |xQ − xQ′ |. Now the J are Whitney cubes
from F , so they are disjoint. Consequently, for each Q′,

∑

J⊂Q′

(
l(J)

l(Q)

)n
=
∑

J⊂Q′

|J |

|Q′|
≤ 1.

Therefore we can write

HQ(x)
2 .

∞∑

k=0

∑

Q′⊂Q0\Q

2k−1l(Q)≤|xQ−xQ′ |<2
kl(Q)

(
1 +
|xQ − xQ′ |

l(Q′)

)−n−2α

.

∞∑

k=0

2kn2−k(n+2α) ≤ C(α, n),

by counting the maximum number of cubesQ′ that can lie inside the annular
region 2k−1l(Q) ≤ |xQ − xQ′ | < 2

kl(Q).

We have shown that |F (Q, x)− F (Q, y)| ≤ C2G(Q) when both x and y
lie inside Ω, or when both points lie in Q0 \Ω. The remaining case is for one
point lying inside Ω and the other outside Ω. This implies of course that the
dyadic cube Q is such that ηQ ∩ Ω 6= ∅ and ηQ ∩ Ωc 6= ∅. Without loss of
generality x ∈ Ω and y /∈ Ω. So F (Q, y) = 0. Here we cannot use (b), since
the decay in (b) is not necessarily valid for points outside Ω. However, we
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note that (a′) is useful. Since Q overlaps the boundary of Ω, and x ∈ Q∩Ω,
we have δ(x) = dist(x, ∂Ω) . l(Q). So

|F (Q, x)− F (Q, y)| = |F (Q, x)|

≤
∑

J∈S(Q), l(J)≥l(Q)

|λJ | |ϕJ(x)|+
∑

J∈S(Q), l(J)<l(Q)

|λJ | |ϕJ(x)| = I
′ + II ′.

Now,

(I ′)2 .
∑

J∈S(Q), l(J)≥l(Q)

|λJ |δ(x)
αl(J)2−n/2−α

(
1 +
|x− xJ |

l(J)

)2−n−α

from using (a′) on the |ϕJ(x)|’s in I
′. The last sum is bounded by

C(diam(Ω))2
∑

J∈S(Q), l(J)≥l(Q)

|λJ |

(
l(Q)

l(J)

)α
l(J)−n/2

(
1+
|x− xJ |

l(J)

)−n−α

≤ C(d(Ω), n, α, λ, η)G(Q)

×

( ∑

J∈S(Q), l(J)≥l(Q)

(
l(Q)

l(J)

)2α(
1 +
|x− xJ |

l(J)

)−n−2α)1/2
.

Dominating the last sum by a constant follows as before. Estimating II ′ fol-
lows from almost the same proof that gave the bound for II in the first case,
in which x and y were both located inside Ω. Here the fact that δ(x) . l(Q)
replaces the similar estimate for |x − y| in (A). After that the calculations
are identical.

For the next four lemmas we define

N(I) = {I∗ ∈ D : I∗ ⊂ I and l(I∗) = 0.5l(I)}

for any dyadic cube I ∈ D. We have

Lemma 5. G(I) ≤ CG(I∗).

Proof. We have xI∗ ∈ ηI if 0 < η < 1 is sufficiently large, depend-
ing on n. By Lemma 3, G(I) ≤ CG(I, xI∗), and by definition G(I, xI∗) ≤
G(I∗, xI∗) = G(I

∗).

Lemma 6. For I∗ ∈ N(I), G(I∗) ≤ CG∗(x) whenever x ∈ I.

Proof. By definition G∗(x) = supJ∋xG(J), so if x ∈ I
∗, then G(I∗) ≤

G∗(x). Suppose that x lies in I \ I∗. For any J ⊂ I \ I∗ such that x ∈ J ,
we have G(I∗)2 ≤ CG(J)2 +B, where

B =
∑

K⊂J,K∈S(I∗)

λ2K
|K|

(
1 +
|xI∗ − xK |

l(K)

)−n
.
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All the terms in B occur in G(I∗)2. If L ∈ S(I∗)\{K ⊂ J : K ∈ S(I∗)}, then
L ∈ S(J). Moreover |xL−xJ | ≤ |xL−xI∗ |+ |xJ−xI∗ | ≤ |xL−xI∗ |+cl(I) ≤
c′|xL−xI∗ | since |xL−xI∗ | & l(I). We may assume c

′ ≥ 1; this implies that

(
1 +
|xL − xJ |

l(L)

)−n
≥ C ′
(
1 +
|xL − xI∗ |

l(L)

)−n
.

So each term in G(I∗) that does not occur in B is less than or equal to a
constant times a term that occurs in G(J). Now F is a finite family, so for
|J | sufficiently small, the sum in B will be empty, and G(J) ≤ G∗(x).

Lemma 7. |F (I∗)− F (I)| ≤ CG(I∗).

Proof. Lemmas 4 and 5 imply that |F (I, xI∗) − F (I)| ≤ CG(I) ≤
C ′G(I∗); consequently, it is enough to show that |F (I, xI∗) − F (I

∗)| ≤
CG(I∗). If xI∗ ∈ Ω

c, then both functions on the left are zero, so we can
assume that xI∗ ∈ Ω. We have

|F (I, xI∗)− F (I
∗)| =

∣∣∣
∑

J∈S(I∗)\S(I)

λJϕJ (xI∗)
∣∣∣

≤
∑

J∈S(I∗)\S(I)

|λJ | · l(J)
2−n/2 ·

(
1 +
|xI∗ − xJ |

l(J)

)2−n

from (a). The Cauchy–Schwarz inequality gives

|F (I, xI∗)− F (I
∗)| ≤

( ∑

J∈S(I∗)\S(I)

|λJ |
2

|J |

(
1 +
|xI∗ − xJ |

l(J)

)−n)1/2

×

( ∑

J∈S(I∗)\S(I)

l(J)4
(
1 +
|xI∗ − xJ |

l(J)

)4−n)1/2

≤ CG(I∗) · C(diam(Ω))2 ·

( ∑

J∈S(I∗)\S(I)

(
1 +
|xI∗ − xJ |

l(J)

)−n)1/2
.

If we can show that (
∑
J∈S(I∗)\S(I)(1 + |xI∗ − xJ |/l(J))

−n)1/2 is bounded
by a constant, we will be done. Notice that

1 +
|xI∗ − xJ |

l(J)
≥
|xI∗ − xJ |

l(J)
=
l(I)

l(J)
·
|xI∗ − xJ |

l(I)
,

and |xI∗ − xJ | ∼ l(I) because J ∈ S(I
∗) \ S(I). So

l(I)

l(J)
·
|xI∗ − xJ |

l(I)
≥ C
l(I)

l(J)

(
1 +
|xI∗ − xJ |

l(I)

)
.
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We have
(
1 +
|xI∗ − xJ |

l(J)

)−n
≤ C

(
l(J)

l(I)

)n(
1 +
|xI∗ − xJ |

l(I)

)−n
.

This gives

∑

J∈S(I∗)\S(I)

(
1+
|xI∗ − xJ |

l(J)

)−n
≤ C

∑

J∈S(I∗)\S(I)

(
l(J)

l(I)

)n(
1+
|xI∗ − xJ |

l(I)

)−n
.

Now remember that the cubes J originally came from F so they are disjoint.
Also J ∈ S(I∗) \ S(I) means that either J = I or J ⊂ I \ I∗. As a result

∑

J∈S(I∗)\S(I)

(
l(J)

l(I)

)n(
1 +
|xI∗ − xJ |

l(I)

)−n
≤

∑

J∈S(I∗)\S(I)

(
l(J)

l(I)

)n
≤ 1.

The purpose of establishing Lemmas 1–7 is to prove the following

Central Lemma. Let f(x) =
∑
I∈F λIϕ(I)(x), where F is a finite fam-

ily of cubes from W , the ϕ(I) satisfy (a), (a
′), (b) and (c), and λI = 0 for

any I 6⊂ I0, where I0 is a fixed cube in D. For any 0 < β < 1, there is a
γ = γ(β, n, λ, α,Ω, η) such that

|{x ∈ I0 : F
∗(x) > 1 and G∗(x) ≤ γ}| ≤ β|I0|.

Proof. Let Ij be the dyadic cubes for which one of the subcubes I
∗
j ∈

N(Ij) is a maximal dyadic cube in I0 so that G(I
∗
j ) > Aγ for A large enough

so AC−1 > 1, C being the constant in Lemma 6. Notice that G(I0) = 0 (and
so F (I0, x) = 0 for any x ∈ I0), and Ij ⊂ I0. We see that G(Ij) ≤ Aγ, x ∈ Ij
implies that G∗(x) > AC−1γ > γ from Lemma 6, and G∗(x) ≤ Aγ for all
x ∈ I0 \

⋃
Ij .

Let E = {x ∈ I0 : F
∗(x) > 1 and G∗(x) ≤ γ}. For any x ∈ E there

is a maximal dyadic cube Qi such that F (Qi) > 1. We have Qi ⊂ I0 and
Qi 6⊂ Ij for any of the maximal cubes defined in the previous paragraph,
because G∗(x) ≤ γ means that x cannot lie in Ij . Following the argument
in the proof of the Main Lemma in [W], we create the family G = {Pk} of
dyadic cubes which consists of the maximal disjoint cubes that result from
combining the Ij and the Qi. So E ⊂

⋃
k Pk. In fact x ∈ E implies that

x ∈ Pk′ for some maximal cube in G for which F (Pk′) > 1. It is also true
that G(Pk′) ≤ γ, since G

∗(x) ≤ γ. We proceed to divide the cubes in F
into two sets, F1 = {J : J 6⊂ Pk for any Pk ∈ G} and F2 = {J : J ⊂ Pk
for some Pk ∈ G}. Writing f(x) =

∑
J∈F1
λJϕ(J)(x) +

∑
J∈F2
λJϕ(J)(x) =

f1(x) + f2(x), we can define Fi(Q, x), F
∗
i (Q), Gi(Q, x), G

∗
i (x) for i = 1, 2

just as we did for f(x). We have F (Q, x) = F1(Q, x) + F2(Q, x), while
Gi(Q, x) ≤ G1(Q, x) +G2(Q, x) = G(Q, x).
The facts that E ⊂

⋃
Pk′ and that Lebesgue measure is a doubling

measure mean |E| ≤ C(n)
∑
k′ |c(Pk′)|, where c(Pk) = {x ∈ Pk : x ∈

1
10Pk}.
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For x ∈ Pk′ , we must have either F1(Pk′) > 0.5 or F2(Pk′) > 0.5. For
x ∈ c(Pk′), Lemma 4 says that either F1(Pk′ , x) > 0.25 or F2(Pk′ , x) > 0.25
whenever γ is small enough. Also
∑

k′

|c(Pk′)| ≤
∑

F1(Pk′ )>0.5

|c(Pk′)|+
∑

F2(Pk′ )>0.5

|c(Pk′)|

≤
∑

k

|{x ∈ c(Pk) : F1(Pk, x) > 0.25}|+
∑

k

|{x ∈ c(Pk) : F2(Pk, x) > 0.25}|.

Using Chebyshev’s inequality we can say we only need to estimate
∑

k

16
\

c(Pk)

|F1(Pk, x)|
2dx and

∑

k

16
\

c(Pk)

|F2(Pk, x)|
2 dx.

In fact, for the second sum we will estimate each integral taken over a smaller
set than c(Pk). This will be explained after we obtain a bound for the first
sum. Notice that the definition of F1 gives that F1(Pk, x) = f1(x) for any
x ∈ Pk. Then
∑

k

16
\

c(Pk)

|F1(Pk, x)|
2 dx =

∑

k

16
\

c(Pk)

|f1(x)|
2 dx ≤ C

\
I0

|f1(x)|
2 dx.

By almost orthogonality, property (c) for the ϕ(I)’s,\
I0

|f1(x)|
2 dx ≤

∑

J∈F1

λ2J =
\
I0

∑

J∈F1
J∋x

λ2J
|J |
dx ≤ (Aγ)2|I0| ≤

β

3
|I0|

for γ sufficiently small. The second to the last estimate follows from the fact
that for x ∈ I0 \

⋃
Ij (Ij are the maximal cubes defined at the beginning

of the proof),
∑
J∋x λ

2
J/|J | ≤ G

∗(x)2 ≤ (Aγ)2 , and for x ∈ Ij , the sum∑
J∋x,J∈F1

is empty.

Next we bound
∑
k |{x ∈ c(Pk) : F2(Pk, x) > 0.25}|. As in [W] we

cut out a thin annular region around each of the Pk’s to handle edge effects.
Choosing τ > 1 so that |τPk\Pk| ≤ (β/3)|Pk|, and lettingD =

⋃
{τPk\Pk},

we have |D| ≤ (β/3)|I0| (remember the Pk are disjoint). Also
∑

k

|{x ∈ c(Pk) : F2(Pk, x) > 0.25}| ≤ |D|+
∑

k

16
\

c(Pk)\D

|F2(Pk, x)|
2 dx.

We need only prove that
∑

k

16
\

c(Pk)\D

|F2(Pk, x)|
2 dx ≤ C ′(Aγ)2|I0|,

and take γ small enough so that C ′(Aγ)2 ≤ β/3.
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If k is temporarily fixed and x ∈ c(Pk) \ D, then F2(Pk, x) =∑
J∈F2,J 6⊂Pk

λJϕ(J)(x), so

|F2(Pk, x)|
2 ≤
∣∣∣
∑

J∈F2, J 6⊂Pk

λJϕ(J)(x)
∣∣∣
2

≤

( ∑

J∈F2, J 6⊂Pk

|λJ |l(J)
2−n/2

(
1 +
|x− xJ |

l(J)

)2−n)2

by (a). Again, the Cauchy–Schwarz inequality gives

|F2(Pk, x)|
2

≤

( ∑

J⊂Pj , j 6=k

λ2J
|J |

(
1 +
|x− xJ |

l(J)

)−n)
·

( ∑

J⊂Pj , j 6=k

l(J)4
(
1 +
|x− xJ |

l(J)

)4−n)

≤ CG(Pk)
2 · C(diam(Ω))4 ·

( ∑

J⊂Pj , j 6=k

(
1 +
|x− xJ |

l(J)

)−n)
.

To bound the last sum by a constant we note that |x−xJ | ≥ C|x−xPj |
whenever x ∈ c(Pk) \ D and J ⊂ Pj , j 6= k. So as above

1 +
|x− xJ |

l(J)
≥
|x− xJ |

l(J)
≥ C
|x− xPj |

l(Pj)
·
l(Pj)

l(J)
≥ C ′

l(Pj)

l(J)

(
1 +
|x− xPj |

l(Pj)

)
,

since also |x− xPj | ≥ C
′′l(Pj). We have

∑

J⊂Pj , j 6=k

(
1 +
|x− xJ |

l(J)

)−n
≤ C

∑

J⊂Pj , j 6=k

(
l(Pj)

l(J)

)−n(
1 +
|x− xPj |

l(Pj)

)−n
.

This means that
∑

k

\
c(Pk)\D

|F2(Pk, x)|
2 dx

≤ C
∑

k

\
c(Pk)\D

∑

j 6=k

∑

J⊂Pj

|J |

|Pj |

(
1 +
|x− xPj |

l(Pj)

)−n
dx

≤ C
\
I0

∑

j

(
1 +
|x− xPj |

l(Pj)

)−n
dx

≤ C
∑

j

\
I0

(
1 +
|x− xPj |

l(Pj)

)−n
l(Pj)

n d

(
(x− xPj )

l(Pj)

)

≤ C
∑

j

|Pj |
\ rn−1
(1 + r)n

dr dωn−1 ≤ C|I0| log(1 + diam(Ω)),
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using polar coordinates and the fact that the Pj ’s are disjoint in I0. The
Central Lemma is proved.

Corollary. Suppose σ ∈ A∞(Q0, dx) and f(x) =
∑
J∈F λJϕ(J)(x)

with F a finite family of cubes from W and the ϕ(J) satisfying (a), (a
′), (b)

and (c). Then for any β > 0 there exists a γ = γ(n, λ, ε,Ω, α, β) so that ,
for every ξ > 0,

σ({x ∈ Q0 : F
∗(x) > 2ξ, G∗(x) ≤ γξ}) ≤ βσ({x ∈ Q0 : F

∗(x) > ξ}).

Proof. Let {Ij} be the maximal dyadic cubes in Q0 such that F (Ij) > ξ.
We need only show that

|{x ∈ Ij : F
∗(x) > 2ξ, G∗(x) ≤ γξ}| ≤ β̂|{x ∈ Ij : F

∗(x) > ξ}|

for some β̂ such that (C0β̂)
1/κ ≤ β, because σ ∈ A∞(dx). Notice that

{x ∈ Q0 : F
∗(x) > ξ} =

⋃
Ij . Once again we cut out a small annular region

for each cube Ij , but here the region lies inside Ij . We take ε > 0 so small

that |{x ∈ Ij : dist(x, I
c
j ) ≤ ε}| ≤ (β̂/3)|Ij |. For x ∈ (1 − ε)Ij we have

|F (Ij) − F (Ij , x)| ≤ CG(Ij), by Lemma 4. It is also true that for Îj ⊃ Ij
with l(Ij) = 0.5l(Îj), Lemma 7 implies that |F (Îj)− F (Ij)| ≤ C

′G(Ij). By

maximality F (Îj) ≤ ξ. We also have

Ej = {x ∈ Ij : F
∗(x) > 2ξ, G∗(x) ≤ γξ}

⊂ {x ∈ (1− ε)Ij : F
∗(x) > 2ξ, G∗(x) ≤ γξ}

∪ {x ∈ Ij : dist(x, I
c
j ) ≤ ε}.

For any Ij such that Ej 6= ∅, we have G(Ij) ≤ γξ. From the previous

calculations we obtain |F (Ij , x)| ≤ F (Îj) + cG(Ij) for any x ∈ ηIj . So if γ
is small enough then |F (Ij , x)| ≤ 1.2ξ. Writing

f(x) =
∑

J 6⊂Ij , J∈F

λJϕ(J)(x) +
∑

J⊂Ij ,J∈F

λJϕ(J)(x) = F (Ij , x) + h(x),

we get

F ∗(x)− 1.2ξ ≤ H∗(x) with H∗(x) = sup
I∋x
H(I, xI).

This happens since Ij is maximal so that F (Ij) > ξ; consequently, any
dyadic cube Q ∋ x such that F (Q) > 2ξ must be contained in the Ij that
contains x. Setting Fj(x) = F (Ij , x), we have

sup
J∋x
J⊂Ij

Fj(J, xJ) = sup
J∋x
J⊂Ij

Fj(xJ).

Also, x ∈ (1 − ε)Ij means that for any dyadic J ⊂ Ij such that x ∈ J ,
dist(xJ , I

c
j ) ≥ (ε/2)l(Ij). Taking η = 1−ε/2, we have Fj(xJ) ≤ 1.2ξ for any
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such J , so

{x ∈ (1− ε)Ij : F
∗(x) > 2ξ, G∗(x) ≤ γξ}

⊂ {x ∈ (1− ε)Ij : H
∗(x) > 0.8ξ, G∗(x) ≤ γξ}.

After rescaling, the Central Lemma can be applied to the function h(x).
The full result of Theorem 1 follows from the Corollary by a standard

argument because Ω is bounded and f(x) being a finite sum, means that
F ∗ ∈ Lp(Ω, dσ). To prove Theorem 1 for infinite sums we can use Fatou’s
lemma on |fn(x)|

p, for fn(x) =
∑
J∈F, l(J)≥1/n λJϕ(J)(x), taking F to be

an infinite family of dyadic cubes from W .
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