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Cutting diagram method for systems of

plane curves with base points

by Marcin Dumnicki (Kraków)

Abstract. We develop a new method of proving non-speciality of a linear system
with base fat points in general position. Using this method we show that the Hirschowitz–
Harbourne conjecture holds for systems with base points of equal multiplicity bounded
by 42.

1. Introduction. Let K be a field of characteristic zero, and N =
{0, 1, 2, . . . }, N

∗ = {1, 2, . . . }.

Definition 1. Let D ⊂ N
2 be finite (any such set will be called a

diagram), and let m1, . . . , mr ∈ N
∗ and p1, . . . , pr ∈ K

2. Define the K-vector
space LD(m1, p1, . . . , mr, pr) ⊂ K[X, Y ] by

LD(m1, p1, . . . , mr, pr)

:=

{
f =

∑

(β1,β2)∈D

c(β1,β2)X
β1Y β2

∣∣∣∣ c(β1,β2) ∈ K,
∂α1+α2f

∂Xα1∂Y α2

(pj) = 0,

α1 + α2 < mj , j = 1, . . . , r

}
.

Definition 2. Let D ⊂ N
2 be a diagram, let m1, . . . , mr ∈ N

∗. De-
fine the system of curves LD(m1, . . . , mr) to be the projective space of all
plane curves (that is, non-zero polynomials) generated by monomials with
exponents from D having multiplicities at least m1, . . . , mr at r general
points (see Remark 4). More formally, LD(m1, . . . , mr) can be viewed as
a map which with any sequence of points p1, . . . , pr associates the space
LD(m1, p1, . . . , mr, pr).

Definition 3. Let L = LD(m1, . . . , mr) be a system of curves. Define
the virtual dimension vdim, expected dimension edim and dimension dim
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of L by

vdim L: = #D − 1 −
r∑

j=1

(
mj + 1

2

)
,

edim L: = max{vdimL,−1},

dim L: = min
{pj}r

j=1
∈(K2)r

dimK LD(m1, p1, . . . , mr, pr) − 1.

Remark 4. If points p1, . . . , pr are in general position we have

dimLD(m1, . . . , mr) = dimK LD(m1, p1, . . . , mr, pr) − 1.

We can look at the space LD(m1, . . . , mr) as being equal to the space
LD(m1, p1, . . . , mr, pr) \ {0} (for p1, . . . , pr in general position) modulo the
equivalence relation: f ∼ g ⇔ ∃c∈K, c6=0 f = cg.

Intuitively, we should have dimL = edimL.

Definition 5. We say that a system of curves L is special if

dimL > edim L.

Otherwise we say that L is non-special.

Observe that by linear algebra we always have dimL ≥ edimL since
multiplicity m imposes

(
m+1

2

)
conditions.

2. The Hirschowitz–Harbourne conjecture. For systems of the
form Ld(m1, . . . , mr) := LD(m1, . . . , mr), D = {α ∈ N

2 | |α| ≤ d}, the
well known Hirschowitz–Harbourne conjecture giving a geometrical descrip-
tion of the speciality of a system was formulated in [9]. To formulate this

conjecture consider the blowing-up π : P̃
2 → P

2 at r general points with
exceptional divisors E1, . . . , Er.

Definition 6. A curve C ⊂ P
2 is said to be a −1-curve if it is irreducible

and the self-intersection C̃2 of its proper transform C̃ ⊂ P̃
2 is equal to −1.

Conjecture 7 (Hirschowitz–Harbourne). A system L=Ld(m1, . . . , mr)
is special if and only if there exists a −1-curve C ⊂ P

2 such that

L̃.C̃ ≤ −2,

where L̃ := |dπ∗(OP2(1)) −
∑r

j=1 mjEj |.

This conjecture was studied by many authors; we refer only to the recent
results. For homogenous systems (m1 = · · · = mr =: m), the above conjec-
ture holds for m ≤ 20 (see [4, 5]). In the general case the conjecture holds
for multiplicities bounded by 11 (see [8]). Both these results were obtained
with the help of computers.

For further information about the above conjecture see for example [3,
1, 2].
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In this paper we develop a new method (called “diagram cutting”) based
on some properties of matrices assigned to systems of curves. This method
provides easy proofs of non-speciality for a large family of systems. Moreover,
these proofs can often be found algorithmically with a computer program.
Sometimes looking for a proof needs a lot of computations, but then the
proof itself can easily be checked “by hand”.

As a result of the method we show that in order to check non-speciality
of all homogeneous systems of bounded multiplicity m it is enough to check
a finite number of cases. This result was obtained in a purely theoretical
way.

The second result is Theorem 32 stating that Conjecture 7 holds for
homogeneous multiplicities bounded by 42. This result was obtained by
using a computer program.

3. Diagram cutting method. Before introducing the method we es-
tablish the notation and describe when a system is non-special in the lan-
guage of matrices.

Definition 8. Let j ∈ N
∗ and α ∈ N

2. Define the mapping

ϕj,α : K[X, Y ] ∋ f 7→
∂|α|f

∂Xα
(Pj,X , Pj,Y ) ∈ K[Pj,X , Pj,Y ],

where Pj,X , Pj,Y are new indeterminates used instead of X, Y .

M(n, k; R) will denote the set of n× r matrices with coefficients from R
(a ring or a field). For M ∈ M(n, k; R) we write M[j,ℓ] for the element of M
in the jth row and ℓth column.

Definition 9. Let L = LD(m1, . . . , mr) be a system of curves, and let
D = {(α1,X , α1,Y ), . . . , (αn,X , αn,Y )}, αi,X , αi,Y ∈ N for i = 1, . . . , n. Let
A = {(j, β) ∈ N × N

2 | |β| < mj , j = 1, . . . , r} = {a1, . . . , ac}. Define the
matrix M(L) ∈ M(c, n; K[P1,X , P1,Y , . . . , Pr,X , Pr,Y ]) by

M(L)[j,k] := ϕaj
(Xαk,XY αk,Y ).

For given points p1 = (p1,X , p1,Y ), . . . , pr = (pr,X , pr,Y ) ∈ K
2 we will use

the natural evaluation mapping

νp1,...,pr : K[P1,X , P1,Y , . . . , Pr,X , Pr,Y ] ∋ f 7→ f |Pi,X 7→pi,X ,Pi,Y 7→pi,Y
∈ K.

Proposition 10. Let L = LD(m1, . . . , mr) be a system of curves. Then

dimL = #D − rankM(L) − 1.

Proof. Let p1, . . . , pr ∈ K
2 be points in general position. Consider the

linear mapping

Φ :
{
f =

∑

(αX ,αY )∈D

c(αX ,αY )X
αX Y αY

}
∋ f 7→ (νp1,...,pr ◦ ϕaj

(f))c
j=1 ∈ K

c.
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We have LD(m1, p1, . . . , mr, pr) = kerΦ. Let M denote the matrix of Φ in
the bases {(α1,X , α1,Y ), . . . , (αn,X , αn,Y )}, {a1, . . . , ac}. We have

νp1,...,pr(M(L)[j,k]) = M[j,k],

hence rankM(L) = rank M (we use the facts that char K = 0 and p1, . . . , pr

are in general position). Now we compute

dim L = n − rank M − 1 = #D − rankM(L) − 1.

Definition 11. Define the bidegree bdeg : K[P1,X , P1,Y , . . . , Pr,X , Pr,Y ]
→ N

2 by setting bdeg(Pi,X) := (1, 0), bdeg(Pi,Y ) := (0, 1) for i = 1, . . . , r.

Proposition 12. Let LD(m1, . . . , mr) be a system of curves. Let M
be a square submatrix of M(L) of size s ∈ N

∗. Renumbering columns and

rows if necessary we can assume that M is given by columns (α1,X , α1,Y ), . . .
. . . , (αs,X , αs,Y ) and rows a1, . . . , as. Then detM is a bihomogeneous (w.r.t.

bdeg) polynomial of bidegree (
∑s

i=1 αi,X ,
∑s

i=1 αi,Y ) − γ, where γ ∈ N
2 de-

pends only on the choice of rows.

Proof. We have

detM =
∑

σ∈Ss

sgn(σ)M[1,σ(1)] · · ·M[s,σ(s)].

For M[j,k] 6= 0 we have bdeg M[j,k] = (αk,X , αk,Y ) − βj, where aj = (ℓj, βj)

for some ℓj ∈ N, βj ∈ N
2. Hence

bdeg M[1,σ(1)] · · ·M[s,σ(s)] =
( s∑

i=1

αi,X ,

s∑

i=1

αi,Y

)
−

s∑

i=1

βi.

We finish the proof by taking γ =
∑s

i=1 βi.

Proposition 13. Let m ∈ N
∗ and D ⊂ N

2 with #D =
(
m+1

2

)
. Then

L = LD(m) is non-special if and only if D does not lie on a curve of degree

m − 1.

Proof. From the previous proof we can see that detM(L) = cf , where
f is a monomial and c ∈ K. Let D = {(α1,X , α1,Y ), . . . , (αn,X , αn,Y )}. For
β = (βX , βY ) with |β| < m we have

M(L)[(1,β),j] = ϕ(1,β)(X
αj,XY αj,Y )

=

βX∏

k=1

(αj,X − k + 1) ·

βY∏

k=1

(αj,Y − k + 1) · P
αj,X−βX

1,X P
αj,Y −βY

1,Y .

Since we are only interested in the value of c we compute the determinant
of M = M(L)X 7→1,Y 7→1. By row operations we can change M into M ′ where

M ′
[(1,β),j] = αβX

j,XαβY

j,Y , detM 6= 0 ⇔ detM ′ 6= 0.
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Now det M ′ = 0 if and only if the rows of M ′ are linearly dependent, but
this happens if and only if D lies on a curve of degree m − 1.

Now we can present the diagram cutting method and prove that it can
be used to bound the dimension of a system of curves.

Theorem 14. Let m1, . . . , mr, mr+1, . . . , mp ∈ N
∗, let D ⊂ N

2 be a

diagram, and let F : N
2 ∋ (α1, α2) 7→ r1α1 + r2α2 + r0 ∈ R be an affine

function with r0, r1, r2 ∈ R. Let

D1 := {(α1, α2) ∈ D | F (α1, α2) < 0},

D2 := {(α1, α2) ∈ D | F (α1, α2) > 0}.

If L2 := LD2
(mr+1, . . . , mp) is non-special and vdim L2 = −1 then

dimLD(m1, . . . , mp) ≤ dimLD1
(m1, . . . , mr).

Proof. Put L1 := LD1
(m1, . . . , mr). We can compute the dimension of

the system L := LD(m1, . . . , mp) as dimL = #D − rank M(L) − 1. As
D = D1 ∪ D2, in an appropriate basis the matrix M(L) has the form

M(L) =

[
M(L1) K1

K2 M(L2)

]
.

Pick a maximal non-zero minor M ′ of M(L1) and consider the following
square submatrix of M(L):

M :=

[
M ′ K ′

1

K ′
2 M(L2)

]
,

where K ′
1 and K ′

2 are suitable submatrices of K1 and K2. It suffices to
show that detM 6= 0. The columns of M ′ are indexed by elements of some
D′

1 ⊂ D1, hence the columns of M are indexed by D′ := D′
1 ∪ D2. Let

U = [M ′ K ′
1] and L = [K ′

2 M(L2)] be submatrices of M , and

C := {C ⊂ D′ | #C = #D2}.

For C ⊂ D′ define LC (respectively UC) as the submatrix of L (resp. U)
consisting of the columns indexed by elements of C. Now we can compute

detM =
∑

C∈C

ε(C) detLC detUD′\C ,

with ε(C) = ±1. Observe that detLC ∈ K[Pr+1,X , Pr+1,Y , . . . , Pp,X , Pp,Y ]
and detUD′\C ∈ K[P1,X , P1,Y , . . . , Pr,X , Pr,Y ], and consider detM as a poly-
nomial of the indeterminates {Pℓ,X , Pℓ,Y }ℓ>r over K[{Pℓ,X , Pℓ,Y }ℓ≤r]. We
have

detM = ±detM ′ detM(L2) + f.

Assume that det M = 0. As detM ′ 6= 0 and detM(L2) 6= 0 by the assump-
tions, we must have another non-zero term g ∈ K[{Pℓ,X , Pℓ,Y }ℓ>r] appearing
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in f such that bdeg(g) = bdeg(detM(L2)). The term g is given by some
C ∈ C, C 6= D2. Since

bdeg(g) =
∑

(α1,α2)∈C

(α1, α2)−γ, bdeg(detM(L2)) =
∑

(α1,α2)∈D2

(α1, α2)−γ

we have

F
( ∑

(α1,α2)∈C

(α1, α2)
)

= F
( ∑

(α1,α2)∈D2

(α1, α2)
)
.

As F is an affine form and #C = #D2 we have
∑

(α1,α2)∈C

F (α1, α2) =
∑

(α1,α2)∈D2

F (α1, α2),

but from the definition of D2 this is possible only when C = D2, a contra-
diction.

4. Reduction of homogeneous systems. We will use the following
notation for a sequence of multiplicities:

Definition 15. Let m1, . . . , mr ∈ N
∗ and k1, . . . , kr ∈ N. Define

(m×k1

1 , . . . , m×kr
r ) = (m1, . . . , m1︸ ︷︷ ︸

k1

, . . . , mr, . . . , mr︸ ︷︷ ︸
kr

).

We will use diagrams of the following form:

Definition 16. Let a1, . . . , an, u1, . . . , un ∈ N. Define

(a↑u1

1 , . . . , a↑un
n ) :=

n⋃

i=1

{i − 1} × {ui, . . . , ui + ai − 1} ⊂ N
2.

Example 17.

N

N

Fig. 1. Diagram (2↑3
, 1↑0)

N

N

Fig. 2. Diagram (2↑3
, 1↑0

, 0↑0
, 3↑2)

Observe that #(a↑u1

1 , . . . , a↑un
n ) =

∑n
i=1 ai.

Definition 18. We say that two diagrams D1, D2 are equivalent if there
exists α ∈ Z

2 such that D1 = D2 + α.

Remark 19. Observe that the diagram (0↑0, . . . , 0↑0, a↑u1

1 , . . . , a↑un
n ) is

equivalent to (a↑u1

1 , . . . , a↑un
n ), which, in turn, is equivalent to (a↑u1+u

1 , . . .

. . . , a↑un+u
n ).
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Proposition 20. Let m1, . . . , mr ∈N
∗, and let D1, D2 be diagrams. If D1

and D2 are equivalent , then dimLD1
(m1, . . . , mr) = dimLD2

(m1, . . . , mr).

Proof. Let D1 + (α1, α2) = D2, and let p1, . . . , pr ∈ K
2 be points in

general position. The maps

LD1
(m1p1, . . . , mrpr) ∋ f 7→ Xα1Y α2f ∈ LD2

(m1p1, . . . , mrpr),

LD2
(m1p1, . . . , mrpr) ∋ f 7→ X−α1Y −α2f ∈ LD1

(m1p1, . . . , mrpr)

are well defined (we can assume that none of the coordinates of p1, . . . , pr

are zero), linear and inverse to each other.

Lemma 21. Let m ∈ N
∗ and D = (1↑m−1, 2↑m−2, . . . , (m − 1)↑1, m↑0).

Then LD(m) is non-special and vdimLD(m) = −1.

Proof. By Proposition 13 it is enough to show that D (Fig. 3 shows
an example for m = 3) does not lie on a curve C of degree m − 1. Let
Lj = {(x, y) ∈ R

2 | x+y+j = 0}, j = 0, . . . , m−1. Observe that #(D∩Lj) =

j + 1 so by the Bézout theorem and induction we have
⋃m−1

j=0 Lj ⊂ C, a
contradiction.

Remark 22. Observe that we can do the same for the diagram (m↑0,
(m − 1)↑0, . . . , 1↑0).

Lemma 23. Let m∈N
∗ and D = (m↑m, m↑m−1, . . . , m↑0). Then LD(m×2)

is non-special and vdimLD(m×2) = −1.

Proof. Let F = y − m + 1/2. Observe that D = D1 ∪ D2 (Fig. 4 shows
an example for m = 3), where

D1 := {p ∈ D | F (p) < 0} = (0, 1↑m−1, 2↑m−2, . . . , (m − 1)↑1, m↑0),

D2 := {p ∈ D | F (p) > 0} = (m↑m, (m − 1)↑m, . . . , 1↑m).

The diagram D1 is equivalent to (1↑m−1, 2↑m−2, . . . , (m − 1)↑1, m↑0) hence
from Lemma 21 the system LD1

(m) is non-special. The diagram D2 is equiv-
alent to (m↑0, (m−1)↑0, . . . , 1↑0) so LD2

(m) is non-special. As #D2 =
(
m+1

2

)
,

we can use Theorem 14 to obtain non-speciality of LD(m×2).

Lemma 24. Let m, k ∈N
∗ and D=(m↑k−1, m↑k−2, . . . , m↑0). If (m+1) | k

then L = LD(m×2k/(m+1)) is non-special and vdimL = −1.

Proof. We proceed by induction on k. For k = m+1 we use the previous
lemma. Let k > m+1. Put F = x−(m+1)+1/2. Observe that D = D1∪D2

(Fig. 5 shows an example for m = 3, k = 12), where

D1 := {p ∈ D | F (p) < 0} = (m↑k−1, . . . , m↑k−1−m),

D2 := {p ∈ D | F (p) > 0} = (0, . . . , 0, m↑k−(m+1)−1, . . . , m↑0).
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The diagram D1 is equivalent to (m↑m, . . . , m↑0), hence from Lemma 23 the
system LD1

(m×2) is non-special. The diagram D2 is equivalent to
(m↑k−(m+1)−1, . . . , m↑0) and from the induction hypothesis we know that
the system LD2

(m×2(k−(m+1))/(m+1)) is non-special. Now, Theorem 14 fin-
ishes the proof.

Lemma 25. Let m, k, h∈N
∗ and D=(h↑k−1, h↑k−2, . . . , h↑0). If (m+1) | k

and m |h then L = LD(m×2kh/m(m+1)) is non-special and vdimL = −1.

Proof. We proceed by induction on h. The case h = m was treated in
the previous lemma. Let h > m. Set F = y +x− (k− 1+m)+1/2. Observe
that D = D1 ∪ D2 (Fig. 6 shows an example for m = 3, k = 12, h = 9),
where

D1 := {p ∈ D | F (p) < 0} = (m↑k−1, m↑k−2, . . . , m↑0),

D2 := {p ∈ D | F (p) > 0} = ((h − m)↑k−1+m, . . . , (h − m)↑m).

According to Lemma 24 the system LD1
(m×2k/(m+1)) is non-special. The

diagram D2 is equivalent to ((h−m)↑k−1, (h−m)↑k−2, . . . , (h−m)↑0) and by
the induction hypothesis the system LD2

(m×2k(h−m)/m(m+1)) is non-special.
Again we finish the proof by using Theorem 14.

Definition 26. Let m ∈ N
∗ and h = m(m + 1). Define the set (called

the end of layer systems)

EoLS(m) = {LD(m×2k+h−1) |

D = (h↑k−1, . . . , h↑0, (h − 1)↑0, . . . , 1↑0), k = 1, . . . , m + 1}.

Observe that for every L ∈ EoLS(m) we have vdimL = −1.

Lemma 27. Let m, k ∈ N
∗, h = m(m + 1), p = 2k + h − 1 and D =

(h↑k−1, h↑k−2, . . . , h↑0, (h − 1)↑0, . . . , 1↑0). If EoLS(m) contains only non-

special systems then the system L = LD(m×p) is non-special.

Proof. Take k1, k2 ∈ N such that k = k1(m + 1) + k2, 1 ≤ k2 ≤ m + 1.
Put F = x − k1(m + 1) + 1/2. Observe that D = D1 ∪ D2 (Fig. 7 shows an
example for m = 3, k = 11), where

D1 := {p ∈ D | F (p) < 0} = (h↑k−1, h↑k−2, . . . , h↑k2),

D2 := {p ∈ D | F (p) > 0} = (h↑k2−1, . . . , h↑0, (h − 1)↑0, . . . , 1↑0).

The diagram D1 is equivalent to the diagram (h↑k−k2−1, h↑k−k2−2, . . . , h↑0)
and since (m + 1) | (k − k2), it follows from Lemma 25 that
LD1

(m×2(k−k2)h/m(m+1)) is non-special. The system LD2
(m×2k2+h−1) is in

EoLS(m) and we can use Theorem 14 to complete the proof.
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Theorem 28. Let m, dL ∈ N
∗. Assume that for d = dL, . . . , dL+m(m+1)

every system Ld(m
×p), p ∈ N, is non-special. Moreover , assume that

EoLS(m) contains only non-special systems. Then for any d ≥ dL and p ∈ N

the system Ld(m
×p) is non-special.

Proof. We proceed by induction on d. For dL ≤ d ≤ dL + m(m + 1) the
conclusion is obvious. Choose d > dL + m(m + 1). We want to show that
the system LD(m×p) is non-special, where D = ((d + 1)↑0, . . . , 1↑0). Let

h = m(m + 1) and F = y + x − (d − h) + 1/2.

Observe that D = D1 ∪ D2 (Fig. 8 shows an example for m = 3, dL = 3,
d = 16), where

D1 := {p ∈ D | F (p) < 0} = ((d + 1 − h)↑0, . . . , 1↑0),

D2 := {p ∈ D | F (p) > 0} = (h↑d+1−h, . . . , h0, (h − 1)↑0, . . . , 1↑0).

As d + 1 − h ≥ dL we may use the induction hypothesis for the sys-
tem LD1

(m×p−(2d−h+3)). By Lemma 27 the system LD2
(m×2d−h+3) is non-

special. Again we finish the proof by using Theorem 14.

Definition 29. Let m, d0 ∈ N
∗. Put

S(m, d0) := EoLS(m)

∪ {Ld(m
×r) | vdimLd(m

×r) ≥ −2m2, d0 ≤ d ≤ d0 + m(m + 1), r ∈ N
∗}.

Theorem 30. Let m, d0 ∈ N. If S(m, d0) contains only non-special sys-

tems then every system Ld(m
×r) for d ≥ d0, r ∈ N is non-special.

Proof. By Theorem 28 it suffices to show that every system L = Ld(m
×r),

r ∈ N, d = d0, . . . , d0+m(m+1), is non-special. If vdimL ≥ −2m2 then L is
non-special by the assumptions. Let vdimL < −2m2. From now on we use
the notations and theory of reductions introduced in [7, 8]. We want to apply
a sequence of r weak m-reductions to the diagram D = {α ∈ N

2 | |α| ≤ d}
to end with the empty diagram,

D
m w
−→ D1

m w
−→ D2

m w
−→ D3

m w
−→ · · ·

m w
−→ ∅.

Following the notations of [8] consider a diagram D = (a1, . . . , an). Observe
that an m-reduction is not possible only if ai = ai+1 < m. As D is the result
of a sequence of weak m-reductions this can only happen for i ≤ 2m. While
performing an m-weak reduction we use at most m additional points for
each ai, i = 1, . . . , 2m, and for each i it is sufficient to do it only once. So
we use at most 2m2 additional points to reduce D to the empty diagram,
hence if vdimL < −2m2 then L is non-special.
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Example 31.

N

N

Fig. 3

N

N

Fig. 4

N

N

Fig. 5

N

N

Fig. 6

N

N

Fig. 7

N

N

Fig. 8

5. Homogeneous systems with bounded multiplicity

Theorem 32. The Hirschowitz–Harbourne conjecture holds for homo-

geneous systems with multiplicities bounded by 42.

Proof. For m < 20 the result can be found in [5]. For m = 20, . . . , 42 we
choose d0(m) = 3m. To check the conjecture we have to do the following:

1. We have to find all non-special systems among Ld(m
×r) for d ≤ d0(m)

(there are only finitely many of them). Next, for every such system
we must show that it satisfies the Hirschowitz–Harbourne conjecture.
This was done with the help of computer programs. By the proof
of Theorem 30 the maximal size of a matrix (for m = 42) can be
8128 × 11656, but in most cases the combination of the reduction
method and Cremona transformation gives an immediate answer.

2. For every system in S(m, d0(m)) we must prove its non-speciality.

As S(m, d0(m)) contains systems with diagrams of big size, this cannot
be done without preparations. For a system L = LD(m×r) ∈ EoLS(m)
we use the reduction method described in [8] to reduce the problem to
the question of non-speciality of L′ = LD′(m×5) for some diagram D′. For
m = 42 this forces us to compute the determinants of 4515× 4515 matrices
43 times. For the other systems from S(m, d0(m)) we use the following fact
(see Proposition 28 in [8]).
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Theorem 33. Let m1, . . . , mr ∈ N
∗. There exists a diagram D with the

property : if LD(m1, . . . , mr) is non-special then for all d ∈ N the system

Ld(m1, . . . , mr) is non-special.

So for each r such that Ld(m
×r) ∈ S(m, d0(m)) we have to check only one

system LD(m×r) for some diagram D depending on r. We also reduce this
system to LD′(m×9). In [6] the reader can find a table with the actual number
of cases to be checked, as well as all necessary software with instructions on
how to perform the tests.

Remark 34. The test decribed above can also be performed for greater
values of m, but for each m ≥ 43 this will take at least several days of
computation. It seems that one should reorganize the method.

6. Closing remarks

Remark 35. There exists another method of proving non-speciality
of a given system (or a family of systems) based on blowing-up the
projective space introduced by C. Ciliberto and R. Miranda ([5]). It seems
that the diagram cutting method is different from the blowing-up method
and sometimes works better. Moreover, all definitions and results of Sec-
tion 3 can be easily carried over to the higher-dimensional case of the sys-
tems of polynomials in n variables vanishing (with multiplicities) at points
in general position. This is not known for the method of C. Ciliberto and
R. Miranda.

Remark 36. Observe that Theorem 28 can be reformulated as follows.

Theorem 37. If the set EoLS(m) contains only non-special systems and

Ld(m1, . . . , mr) is non-special then

Ld+m(m+1)(m1, . . . , mr, m
×p)

is non-special , where

p = 2d + m(m + 1) + 1.

This shows that in order to find all non-special systems of the form
Ld(m1, . . . , mr) with mi ≤ M , i = 1, . . . , r, it is sufficient to check a finite
number of cases.

Example 38. We show that L = L21(7
×6, 6×4, 1) is non-special by the

diagram cutting method. The proof (found by computer) can be easily read
off from the picture. The system L was studied in [10].
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