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Invisible obstacles

by A. G. Ramm (Manhattan, Kansas)

Abstract. It is proved that one can choose a control function on an arbitrarilly small
open subset of the boundary of an obstacle so that the total radiation from this obstacle
for a fixed direction of the incident plane wave and for a fixed wave number will be as
small as one wishes. The obstacle is called “invisible” in this case.

1. Introduction. Consider a bounded domain D ⊂ R
n, n = 3, with a

connected Lipschitz boundary S. Let F be an arbitrarily small, fixed, open
subset of S, F ′ = S \ F , and N be the outer unit normal to S. The domain
D is the obstacle. Consider the scattering problem:

(1)
∇2u+ k2u = 0 in D′ := R

3 \D,

u = w on F, uN + hu = 0 on F ′.

Here w is the function we can set up at will (the control function), h is a
piecewise-continuous function with Imh ≥ 0, and k > 0 is a fixed constant,
and uN is the normal derivative of u. The function u satisfies the following
condition:

(2) u = u0 + v, u0 = eikα·x,

and

(3) v =
eikr

r
A(β, α) + o

(

1

r

)

, r := |x| → ∞, β :=
x

r
.

The function A(β, α) is called the scattering amplitude, α, β ∈ S2 are the
unit vectors, S2 is the unit sphere, α, the direction of the incident wave u0,
is assumed fixed, so A(β, α) = A(β). Problem (1)–(3) has a unique solution
([1]).

Define the cross-section σ, or the total radiation from the obstacle, as

(4) σ =
\

S2

|A(β)|2 dβ.
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The problem is:

Given an arbitrary small ε > 0, can one choose w so that σ < ε?

If this choice is possible, we call the obstacle “invisible” for the fixed α

and k.
Our basic result is the following theorem:

Theorem 1. Given an arbitrarily small ε > 0 and an arbitrarily small

open subset F ∈ S, one can find w ∈ C∞
0 (F ) such that σ < ε. The same

result holds for the boundary conditions u|F = w, u|F ′ = 0.

A similar problem was first posed and solved in [2], where the Neumann
boundary condition was assumed and the control function was not u on F ,
but uN on F . The boundary conditions in this paper allow one to consider
impedance obstacles, so it broadens the possible applications of our theory.
Inverse problems for scattering by obstacles are considered in [1] and [3].

2. Proof of Theorem 1. By Green’s formula we get

(5) v(x) =
\

F ′

G(x, s)(u0N + hu0) ds+
\
F

GN (x, s)v ds,

where G is the Green’s function:

(6) ∇2G+ k2G = −δ(x− y) in D′, lim
|x|→∞

|x|

(

∂G

∂|x|
− ikG

)

= 0,

and

(7) GN + hG = 0 on F ′, G = 0 on F.

By Ramm’s lemma ([1, p. 46]), one gets

(8) G(x, y) =
eikr

4πr
ψ(y, ν) + o

(

1

r

)

, r := |x| → ∞,
x

r
= −ν.

Here ψ := ψ(y, ν) = ψ(y, ν, k) is the scattering solution:

(9) ∇2ψ + k2ψ = 0 in D′, ψN + hψ = 0 on F ′, ψ = 0 on F,

and

(10) ψ = eikν·x + η, lim
|x|→∞

|x|(ηr − ikη) = 0.

Using (4), (5) and (8), we get

(11) A(β) =
1

4π

\
F ′

ψ(s,−β)(u0N + hu0) ds+
1

4π

\
F

(w − u0)ψN (s,−β) ds,

and

(12) σ =
\

S2

|A0(β) −A1(β)|2 dβ,
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where

(13) A0(β) :=
1

4π

\
F ′

ψ(s,−β)(u0N + hu0) ds−
1

4π

\
F

u0ψN (s,−β) ds,

and

(14) A1(β) := −
1

4π

\
F

w(s)ψN (s,−β) ds.

The conclusion of Theorem 1 follows immediately from Lemma 1.

Lemma 1. Given an arbitrary function f ∈ L2(S2) and an arbitrarily

small ε > 0, one can find w ∈ C∞
0 (F ) such that ‖f(β) −A1(β)‖ < ε, where

‖ · ‖ := ‖ · ‖L2(S2).

Indeed, one can take f(β) = A0(β) and use Lemma 1.

Let us prove Lemma 1. If this lemma is false, then there is an f ∈ L2(S2),
f 6= 0, such that

(15)
\

S2

dβ f(β)
\
F

dsw(s)ψN (s,−β) = 0 ∀w ∈ C∞
0 (F ).

This implies

(16)
\

S2

dβ f(β)ψN (s,−β) = 0 ∀s ∈ F.

Define the function

(17) z(x) :=
\

S2

dβ f(β)ψ(x,−β).

This function solves the equation

∇2z + k2z = 0 in D′

and satisfies the boundary conditions

z = zN = 0 on F.

By the uniqueness of the solution to the Cauchy problem for elliptic equa-
tions, this implies

(18) z(x) = 0 in D′.

It follows from (18) that f = 0. This contradiction proves Lemma 1 and,
consequently, Theorem 1.

To complete the proof, let us derive from (18) that f = 0. The function
ψ satisfies

ψ(x, β) = Teikβ·x,

where T is a linear boundedly invertible operator, acting on the x variable
only (see [1]). The specific form of T is not important for our argument.



148 A. G. Ramm

Applying the inverse operator T−1 to (17) and taking into account (18), one
gets

(19)
\

S2

dβ f(β)e−ikβ·x = 0 ∀x ∈ D′.

The left-hand side in (19) is an entire function of x. Therefore (19) implies

(20)
\

S2

dβ f(β)e−ikβ·x = 0 ∀x ∈ R
3.

Equation (20) means that the Fourier transform of the distribution

f(β)
δ(|ξ| − k)

|ξ|2

is zero. Here ξ = |ξ|β is the (dual to x) Fourier transform variable. By the
injectivity of the Fourier transform, it follows that this distribution is zero,
so f = 0, and the proof is completed. The last statement of Theorem 1 is
proved similarly.

3. Conclusion. The basic result of this note is the proof of the following
statement:

By choosing a suitable control function on an arbitrarily small open sub-

set of the boundary of a bounded obstacle, one can make the total radiation

from this obstacle, although positive, but as small as one wishes, for a fixed

wave number and a fixed direction of the incident wave. Thus, the obstacle

can be made practically invisible.
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