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Boundary cross theorem in dimension 1

by Peter Pflug (Oldenburg) and Viêt-Anh Nguyên (Trieste)

Abstract. Let X, Y be two complex manifolds of dimension 1 which are countable at
infinity, let D ⊂ X, G ⊂ Y be two open sets, let A (resp. B) be a subset of ∂D (resp. ∂G),
and let W be the 2-fold cross ((D ∪A)×B)∪ (A× (B ∪G)). Suppose in addition that D

(resp. G) is Jordan-curve-like on A (resp. B) and that A and B are of positive length. We

determine the “envelope of holomorphy” Ŵ of W in the sense that any function locally
bounded on W, measurable on A ×B, and separately holomorphic on (A× G) ∪ (D ×B)

“extends” to a function holomorphic on the interior of Ŵ .

1. Introduction. In this paper we consider a boundary version of the
cross theorem in the spirit of the pioneer work of Malgrange–Zerner [16].
Epstein’s survey article [3] gives a historical discussion and motivation for
this kind of theorems.

The first results in this direction were obtained by Komatsu [8] and
Drużkowski [2], but only for some special cases. Recently, Gonchar [5, 6]
has proved a more general result for the one-dimensional case. In recent
works [10, 11] of the authors Gonchar’s result has been generalized to the
higher dimensional case.

However, in all cases considered so far in the literature the hypotheses on
the function being extended and its domain of definition are, in some sense,
rather restrictive. Therefore, the main goal of this work is to establish some
boundary cross theorems in more general (one-dimensional) cases with more
optimal hypotheses. This will perhaps be a first step towards understanding
the higher dimensional case in its full generality.

Our approach here is based on the previous work [10], the Gonchar–
Carleman operator developed in [5, 6], a new result of Zeriahi [15] and a
thorough geometric study of harmonic measures.
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2. Preliminaries. In order to recall the classical versions of the bound-
ary cross theorem and to discuss our motivation in more detail, we need to
introduce some notation and terminology. In fact, we keep the main notation
from [10]. In particular E denotes the open unit disc in C and mes the lin-
ear measure (i.e. the one-dimensional Hausdorff measure). Throughout the
paper, for a topological space M , C(M) denotes the space of all continuous
functions f : M → C equipped with the “sup-norm” |f |M := supM |f | ∈
[0,∞]. Moreover, a function f : M → C is said to be locally bounded on M if,
for any point z ∈ M, there are an open neighborhood U of z and a positive
number K = Kz such that |f |U < K. Finally, for a complex manifold Ω,
SH(Ω) (resp. O(Ω)) denotes the set of all subharmonic (resp. holomorphic)
functions on Ω.

In this work all complex manifolds are supposed to be countable at in-
finity.

2.1. Open sets with partly Jordan-curve-like boundary. Let X be a com-
plex manifold of dimension 1. A Jordan curve in X is the image C :=
{γ(t) : t ∈ [a, b]} of a continuous one-to-one map γ : [a, b] → X, where
a, b ∈ R, a < b. The set {γ(t) : t ∈ (a, b)} is said to be the interior of the
Jordan curve. A Jordan domain is the image {Γ (t) : t ∈ E} of a one-to-one
continuous map Γ : E → X. A closed Jordan curve is the boundary of a
Jordan domain.

Consider an open set D ⊂ X. Then D is said to be Jordan-curve-like at
a point ζ ∈ ∂D if there is a Jordan domain U ⊂ X such that ζ ∈ U and
U∩∂D is the interior of a Jordan curve. Then ζ is said to be of type 1 if there
is a neighborhood V of ζ such that V ∩ D is a Jordan domain. Otherwise,
ζ is said to be of type 2 . We see easily that if ζ is of type 2, then there
are an open neighborhood V of ζ and two Jordan domains V1, V2 such that
V ∩D = V1 ∪V2. Moreover, D is said to be Jordan-curve-like on a subset A
of ∂D if D is Jordan-curve-like at all points of A.

Now let D ⊂ X be an open set which is Jordan-curve-like on a set
A ⊂ ∂D. In the remaining part of this subsection we will introduce various
notions. We point out that they are all intrinsic, i.e., do not depend on any
choice (of open neighborhoods, Jordan domains, conformal mappings etc.)
we made in their definitions.

A is said to be Jordan-measurable if for every ζ ∈ A the following con-
dition is fulfilled:

• if ζ is of type 1 : there are an open neighborhood U = Uζ of ζ such
that U ∩D is a Jordan domain and a conformal mapping Φ = Φζ from U ∩D
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onto the unit disc E which extends homeomorphically from U ∩ D onto E

such that Φ(U ∩ D ∩ A) is Lebesgue measurable on ∂E;
• if ζ is of type 2 : there are an open neighborhood U = Uζ of ζ such that

U ∩D = U1 ∪U2 with Jordan domains U1 = U1,ζ , U2 = U2,ζ , and conformal
mappings Φj = Φj,ζ (j = 1, 2) from Uj onto E which extend homeomor-
phically from U j onto E such that Φj(U j ∩ A) is Lebesgue measurable (on
∂E).

A Jordan-measurable set A ⊂ ∂D is said to be of zero length if for all
ζ ∈ A, if one takes Uζ , Φζ when ζ is of type 1 (resp. Uζ , Φj,ζ when ζ is

of type 2), then mes(Φζ(Uζ ∩ D ∩ A)) = 0 (resp. mes(Φj,ζ(U j,ζ ∩ A)) = 0,
j = 1, 2).

A Jordan-measurable set A ⊂ ∂D is said to be of positive length if it is
not of zero length.

Suppose that D is Jordan-curve-like at a point ζ ∈ ∂D. We define the
concept of angular approach regions at ζ as follows. For any 0 < α < π/2,
the Stolz region or angular approach region Aα(ζ) is given by:

• if ζ is of type 1 :

Aα(ζ) := Φ−1

{
t ∈ E :

∣∣∣∣ arg

(
Φ(ζ) − t

Φ(ζ)

)∣∣∣∣ < α

}
,

where arg : C → (−π, π] is the usual argument function;
• if ζ is of type 2 :

Aα(ζ) :=
⋃

j=1,2

Φ−1
j

{
t ∈ E :

∣∣∣∣ arg

(
Φj(ζ) − t

Φj(ζ)

)∣∣∣∣ < α

}
.

Geometrically, Aα(ζ) is the intersection of D with one or two “cones” of
aperture 2α and vertex ζ according to the type of ζ.

Let ζ ∈ ∂D be a point at which D is Jordan-curve-like and let U be an
open neighborhood of ζ. We say that a function f defined on U ∩ D has
angular limit λ at ζ if

lim
z∈Aα(ζ), z→ζ

f(z) = λ for all 0 < α < π/2.

Let A ⊂ ∂D be a Jordan-measurable set and f : D → C, g : A → C be two
functions. Then f is said to have angular limit g(a) for Jordan a.e. a ∈ A if
the set

{a ∈ A : f does not have angular limit g(a) at a}
is of zero length. For simplicity, we only write “a.e.” instead of “Jordan a.e.”.

We conclude this subsection with a simple example which may clarify
the above definitions. Let G be the open square in C with vertices 1 + i,
−1 + i, −1 − i, and 1 − i. Define the domain

D := G \ [−1/2, 1/2].
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Then D is Jordan-curve-like on ∂G ∪ (−1/2, 1/2). Every point of ∂G is of
type 1 and every point of (−1/2, 1/2) is of type 2.

2.2. Harmonic measure. Let X be a complex manifold of dimension 1,
let D be an open subset of X and let A ⊂ ∂D. Consider the characteristic
function

1∂D\A(ζ) :=

{
1, ζ ∈ ∂D \ A,

0, ζ ∈ A.

Then the harmonic measure of the set ∂D \A (denoted by ω(·, A, D)) is the
Perron solution of the generalized Dirichlet problem with boundary data
1∂D\A. In other words,

ω(·, A, D) := sup
u∈U

u,

where U = U(A, D) denotes the family of all subharmonic functions u on D
such that lim supD∋z→ζ u(z) ≤ 1∂D\A(ζ) for each ζ ∈ ∂D.

It is well known (see, for example, the book of Ransford [13] for the case
X = C) that ω(·, A, D) is harmonic on D.

For a point ζ ∈ ∂D at which D is Jordan-curve-like, we say that is a
locally regular point relative to A if

lim
z→ζ, z∈Aα(ζ)

ω(z, A ∩ U, D ∩ U) = 0

for any 0 < α < π/2 and any open neighborhood U of ζ. Obviously, ζ ∈ A.
If, moreover, ζ ∈ A, then ζ is said to be a locally regular point of A. The
set of all locally regular points relative to A is denoted by A∗. Observe that,
in general, A∗ 6⊂ A and A 6⊂ A∗. However, if A is open in ∂D and D is
Jordan-curve-like on A, then A ⊂ A∗.

As an immediate consequence of the subordination principle for the har-
monic measure (see Corollary 4.3.9 in [13]), one gets

(2.1) lim
z→ζ, z∈Aα(ζ)

ω(z, A, D) = 0, ζ ∈ A∗, 0 < α < π/2.

We extend the function ω(·, A, D) to D ∪ A∗ by simply setting

ω(z, A, D) := 0, z ∈ A∗.

Geometric properties of the harmonic measure will be discussed in Sec-
tion 4 below. By Theorem 4.6, if either A is a Borel set or D ⊂ C, then
ω(·, A, D) ≡ ω(·, A∗, D).

2.3. Cross and separate holomorphy. Let X, Y be two complex mani-
folds of dimension 1, let D ⊂ X, G ⊂ Y be two open sets, let A (resp. B)
be a subset of ∂D (resp. ∂G) such that D (resp. G) is Jordan-curve-like on
A (resp. B) and that A and B are of positive length. We define a 2-fold
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cross W, its regular part W ∗, and its interior W o as

W := X(A, B; D, G) := ((D ∪ A) × B) ∪ (A × (B ∪ G)),

W ∗ := X(A∗, B∗; D, G),

W o := X
o(A, B; D, G) := (A × G) ∪ (D × B).

Moreover, put

ω(z, w) := ω(z, A∗, D) + ω(w, B∗, G), (z, w) ∈ (D ∪ A∗) × (G ∪ B∗).

It is clear that ω|D×G is harmonic.
For a 2-fold cross W := X(A, B; D, G) define its wedge

Ŵ = X̂(A, B; D, G) := {(z, w) ∈ (D ∪ A∗) × (G ∪ B∗) : ω(z, w) < 1}.
Then the set of all interior points of the wedge Ŵ is given by

Ŵ o := X̂
o(A, B; D, G) := {(z, w) ∈ D × G : ω(z, w) < 1}.

In particular, if A (resp. B) is an open set of ∂D (resp. ∂G), one has A×B ⊂
A∗ × B∗ and W ⊂ W ∗ ⊂ Ŵ .

We say that a function f : W → C is separately holomorphic on W o,
and write f ∈ Os(W

o), if for any a ∈ A (resp. b ∈ B) the function f(a, ·)|G
(resp. f(·, b)|D) is holomorphic on G (resp. on D).

We say that f : W → C (resp. f : A × B → C) is separately continuous
on W (resp. on A × B), and write f ∈ Cs(W ) (resp. f ∈ Cs(A × B)), if it
is continuous with respect to any variable when the remaining variable is
fixed.

In the remaining part of this subsection we introduce two notions. As
in Subsection 2.1 we point out that these notions are intrinsic, i.e., they do
not depend on any choice we made in their definitions.

We say that a function f : A × B → C is Jordan-measurable on A × B
if for every point ζ ∈ A of type n (resp. η ∈ B of type m) there is an
open neighborhood U of ζ (resp. V of η) such that U ∩ D =

⋃
1≤j≤n Uj

(resp. V ∩ G =
⋃

1≤k≤m Vk) with Jordan domains Uj , Vk, and confor-

mal mappings Φj (resp. Ψk) from Uj (resp. Vk) onto E which extend

homeomorphically from U j (resp. V k) onto E such that f(Φ−1
j (·), Ψ−1

k (·)) :

Φj(U j ∩ A) × Ψk(V k ∩ B) → C is Lebesgue measurable.
Two Jordan-measurable functions f, g : A × B → C are said to be equal

a.e. on A × B if for every point ζ ∈ A of type n (resp. η ∈ B of type m),
the functions

f(Φ−1
j (·), Ψ−1

k (·)), g(Φ−1
j (·), Ψ−1

k (·)) : Φj(U j ∩ A) × Ψk(V k ∩ B) → C

are equal a.e. (we keep the previous notation).

We say that f : Ŵ o → C has angular limit λ ∈ C at (a, b) ∈ Ŵ if the
following limit relation holds:
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• if a ∈ D and b ∈ G:

lim
z→a, w→b

f(z, w) = λ;

• if a ∈ A∗ and b ∈ G:

lim
z→a, z∈Aα(a), w→b

f(z, w) = λ, 0 < α < π/2;

• if a ∈ D and b ∈ B∗:

lim
z→a, w→b, w∈Aα(b)

f(z, w) = λ, 0 < α < π/2;

• if a ∈ A∗ and b ∈ B∗:

lim
z→a, z∈Aα(a), w→b, w∈Aα(b)

f(z, w) = λ, 0 < α < π/2.

2.4. Motivations for our work. We are now able to formulate what we
will refer to as the classical version of the boundary cross theorem.

Theorem 1 (Gonchar [5, 6]). Let D, G ⊂ C be Jordan domains and A
(resp. B) a nonempty open set of the boundary ∂D (resp. ∂G). Then, for

any f ∈ C(W ) ∩ Os(W
o), there is a unique function f̂ ∈ C(Ŵ ) ∩ O(Ŵ o)

such that f̂ = f on W. Moreover , if |f |W < ∞ then

|f̂(z, w)| ≤ |f |1−ω(z,w)
A×B |f |ω(z,w)

W , (z, w) ∈ Ŵ ,

where W , W o, and Ŵ denote the 2-fold cross, its interior and its wedge,
respectively , associated to A, B, D, G.

Theorem 1 admits various generalizations. The following result was an-
nounced by Gonchar in [5].

Theorem 2. Let D, G ⊂ C be Jordan domains and A (resp. B) a non-
empty open and rectifiable subset of ∂D (resp. ∂G). Let f be a function
defined on the 2-fold cross W with the following properties:

(i) f |W o ∈ C(W o) ∩ Os(W
o);

(ii) f is locally bounded on W ;
(iii) for any a ∈ A (resp. b ∈ B), the holomorphic function f(a, ·)|G

(resp. f(·, b)|D) has angular limit f1(a, b) at b for a.e. b ∈ B (resp.
f2(a, b) at a for a.e. a ∈ A) and f1 = f2 = f a.e. on A × B.

Then:

(1) There is a unique function f̂ ∈ O(Ŵ o) such that

lim
(z,w)∈Ŵ o, (z,w)→(ζ,η)

f̂(z, w) = f(ζ, η), (ζ, η) ∈ W o.

(2) If , moreover , |f |W < ∞, then

|f̂(z, w)| ≤ |f |1−ω(z,w)
A×B |f |ω(z,w)

W , (z, w) ∈ Ŵ o.
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(3) If , moreover , f is continuous at a point (a, b) ∈ A × B, then

lim
(z,w)∈Ŵ o, (z,w)→(a,b)

f̂(z, w) = f(a, b).

On the other hand, the following result due to Drużkowski [2] has a
different flavor.

Theorem 3. Let D, G ⊂ C be Jordan domains and A (resp. B) a non-
empty open connected subset of ∂D (resp. ∂G). Let f be a function defined
on W with the following properties:

(i) f ∈ Cs(W ) ∩ Os(W
o);

(ii) f is locally bounded on W ;
(iii) f |A×B is continuous on A × B.

Then all conclusions of Theorem 1 still hold.

Observe that all these theorems require the following very strong hy-
pothesis: D and G are Jordan domains in C and A×B is an open subset of
∂D × ∂G. Moreover, the boundedness and continuity assumptions on f are
rather restrictive.

A natural question is whether Theorems 1–3 are still true if D, G are
open sets in complex manifolds of dimension 1 and A (resp. B) is a not
necessarily open subset of ∂D (resp. ∂G). In addition, if one drops the
hypothesis on the local boundedness and continuity of f, can one obtain a
holomorphic extension of f and what are its properties? These matters seem
to be of interest, especially when one seeks to generalize Theorems 1–3 to
higher dimensions.

The present paper is motivated by these questions. Our first purpose is
to generalize Gonchar’s theorems to a very general situation, where D, G
are, in some sense, almost general open subsets of complex manifolds of
dimension 1 and where the boundary sets A, B are almost general subsets of
∂D, ∂G. Our second goal is to establish, in this general context, an extension
theorem analogous to Drużkowski’s theorem with minimal hypotheses on f.

3. Statement of the main results and outline of the proofs. We
are now ready to state our main result.

Theorem A. Let X, Y be complex manifolds of dimension 1, let D ⊂ X,
G ⊂ Y be open sets and A (resp. B) a subset of ∂D (resp. ∂G) such that
D (resp. G) is Jordan-curve-like on A (resp. B) and both A and B are of
positive length. Let f : W → C be such that :

(i) f is locally bounded on W and f ∈ Os(W
o);

(ii) f |A×B is Jordan-measurable;
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(iii) for any a ∈ A (resp. b ∈ B), the holomorphic function f(a, ·)|G
(resp. f(·, b)|D) has angular limit f1(a, b) at b for a.e. b ∈ B (resp.
f2(a, b) at a for a.e. a ∈ A) and f1 = f2 = f a.e. on A × B.

Then there exists a unique function f̂ ∈ O(Ŵ o) with the following property :

(1) There are subsets Ã ⊂ A ∩ A∗ and B̃ ⊂ B ∩ B∗ such that the sets

A\Ã and B\B̃ are of zero length (1) and f̂ has angular limit f(ζ, η)

at every point (ζ, η) ∈ X
o(Ã, B̃; D, G).

In addition, f̂ enjoys the following properties:

(2) If |f |W < ∞, then

|f̂(z, w)| ≤ |f |1−ω(z,w)
A×B |f |ω(z,w)

W , (z, w) ∈ Ŵ o.

(3) For any (a0, w0) ∈ A∗ × G (resp. (z0, b0) ∈ D × B∗) if

lim
(z,w)→(a0,w0), (z,w)∈W

f(z, w) (resp. lim
(z,w)→(z0,b0), (z,w)∈W

f(z, w)) (=: λ)

exists, then f̂ has angular limit λ at (a0, w0) (resp. at (z0, b0)).
(4) For any (a0, b0) ∈ A∗ × B∗, if

lim
(a,b)→(a0,b0), (a,b)∈A×B

f(a, b) (=: λ)

exists, then f̂ has angular limit λ at (a0, b0).
(5) If f |A×B can be extended to a continuous function defined on

A∗ × B∗, then f can be extended to a unique continuous function
(still denoted by) f defined on W ∗ := X(A∗, B∗; D, G) and f̂ has
angular limit f(ζ, η) at every (ζ, η) ∈ W ∗ and f1 = f2 = f on
(A ∩ A∗) × (B ∩ B∗).

Theorem A has an immediate consequence.

Corollary A. Under the hypotheses and notation of Theorem A, sup-
pose in addition that f ∈ C(W o). Then the function f̂ ∈ O(Ŵ o) provided
by Theorem A has angular limit f(ζ, η) at every (ζ, η) ∈ ((A ∩ A∗) × G) ∪
(D × (B ∩ B∗)).

It is worth noting that Theorem A and Corollary A generalize, in some
sense, Theorems 1–3.

Now we drop the local boundedness and continuity hypotheses on f. The
examples of Drużkowski in [2] (see Section 10 below) show that, without

these conditions, the extended function f̂ (if it exists) is, in general, not

continuous on Ŵ . However, our second main result partially solves this
problem.

(1) Under this condition it follows from Theorem 4.6(1) below that Ã ⊂ Ã∗ and

B̃ ⊂ B̃∗.
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Theorem B. Let X, Y be complex manifolds of dimension 1, let D ⊂ X,
G ⊂ Y be open sets, and let A (resp. B) be a subset of ∂D (resp. ∂G) such
that D (resp. G) is Jordan-curve-like on A (resp. B) and that A and B are
of positive length. Let f : W → C have the following properties:

(i) f |A×B ∈ Cs(A × B) and f ∈ Os(W
o);

(ii) for any a ∈ A (resp. b ∈ B), the function f(a, ·) (resp. f(·, b))
is locally bounded on G ∪ B (resp. D ∪ A) and the (holomorphic)
restriction f(a, ·)|G (resp. f(·, b)|D) has angular limit f(a, b) at b
for every b ∈ B (resp. at a for every a ∈ A).

Then there are subsets Ã ⊂ A∩A∗ and B̃ ⊂ B ∩B∗, and a unique function

f̂ ∈ O(Ŵ o) with the following properties:

(1) A \ Ã and B \ B̃ are of zero length;

(2) f̂ has angular limit f(ζ, η) at every (ζ, η) ∈ X(Ã, B̃; D, G).

Observe that if f ∈ Cs(W ) ∩ Os(W
o), then conditions (i)–(ii) above

are fulfilled. Although our results have been stated only for the case of
a 2-fold cross, they can be formulated for an N -fold cross with any N ≥ 2
(see also [9, 10]).

Now we present the main ideas of the proof of Theorems A and B.

Our method consists of two steps: first, we suppose that D and G are
Jordan domains in C, and then we treat the general case. The key technique
is to use level sets of the harmonic measure. More precisely, we exhaust
D (resp. G) by the level sets of the harmonic measure ω(·, A, D) (resp.
ω(·, B, G)), i.e. by the sets Dδ := {z ∈ D : ω(z, A, D) < 1 − δ} (resp.
Gδ := {w ∈ G : ω(w, B, G) < 1 − δ}) for 0 < δ < 1.

In the first step, we improve Gonchar’s method [5, 6] and make intensive
use of Carleman’s formula and of the geometric properties of the level sets
of harmonic measures.

The main ingredient for the second step is a mixed cross type theorem
(see also [10]) valid for measurable boundary sets on complex manifolds of
dimension 1. We prove it using a recent work of Zeriahi (see [15]) and the
classical method of doubly orthogonal bases of Bergman type.

We apply the mixed cross type theorem to prove Theorems A and B
with D (resp. G) replaced by Dδ (resp. Gδ). Then we construct the solution
for the original open sets D and G by a gluing procedure (see also [9]).

4. Properties of the harmonic measure and its level sets. In this
section X is a complex manifold of dimension 1, D ⊂ X an open set, and
A a nonempty Jordan-measurable subset of ∂D. Observe that ∂D is then
nonpolar.
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Let PD be the generalized Poisson integral of D. If, in addition, A is a
Borel set, then, by Theorem 4.3.3 of [13], the harmonic measure of ∂D \ A
is given by

(4.1) ω(·, A, D) = PD[1∂D\A].

The following elementary lemma will be useful.

Lemma 4.1. Let E be the unit disc and A a measurable subset of ∂E.

(1) Let u be a subharmonic function on E with u ≤ 1 and let α ∈
(0, π/2) be such that

lim sup
z→ζ, z∈Aα(ζ)

u(z) ≤ 0 for a.e. ζ ∈ A.

Then u ≤ ω(·, A, E) on E.
(2) For all density points ζ of A,

lim
z→ζ, z∈Aα(ζ)

ω(z, A, E) = 0, 0 < α < π/2.

In particular , all density points of A are contained in A∗.
(3) For all interior points ζ of A,

lim
z→ζ

ω(z, A, E) = 0.

Proof. This follows almost immediately from the explicit formula for the
Poisson integral PE .

Proposition 4.2 (Maximum principle). Let u ∈ SH(D) be bounded
from above and

lim sup
z→ζ

u(z) ≤ 0, ζ ∈ ∂D \ A,

lim sup
z→ζ, z∈Aα(ζ)

u(z) ≤ 0, ζ ∈ A, 0 < α < π/2.

Then u ≤ 0 on D.

Proof. Suppose that u < M for some M. Let ζ0 ∈ A. Fix a Jordan
domain U ⊂ D such that ∂U ∩ ∂D is a closed arc which is a neighborhood
of ζ0 in ∂D. Let B be an open arc in ∂U ∩ ∂D which contains ζ0. Lem-
ma 4.1(1), (3) applied to u|U yields

lim sup
z→ζ, z∈U

u(z) ≤ M lim sup
z→ζ, z∈U

ω(z, B, U) = 0, ζ ∈ B.

Hence

lim sup
z→ζ, z∈D

u(z) ≤ 0, ζ ∈ A.

Combining this with the hypothesis, we obtain the desired conclusion from
the classical maximum principle (see Theorem 2.3.1 in [13]).
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We formulate an important stability property of the harmonic measure.
Let φ : ∂D → R be a bounded function. The associated Perron function
HD,A : D → R is defined by

(4.2) HD,A[φ] := sup
u∈Û

u,

where Û = Û(φ, A, D) denotes the family of all subharmonic functions u on
D such that

lim sup
z→ζ

u(z) ≤ φ(ζ), ζ ∈ ∂D \ A,

lim sup
z→ζ, z∈Aα(ζ)

u(z) ≤ φ(ζ), ζ ∈ A, 0 < α < π/2.

In the following, Û(A, D) will stand for Û(1∂D\A, A, D).
By the above proposition, several results in Sections 4.1 and 4.2 of [13]

are still valid with HD,A in place of HD upon making the obvious changes.
In particular, we have the following (see Corollary 4.2.6 in [13]):

Proposition 4.3. Let D be an open subset of X, A a nonempty Jordan-
measurable subset of ∂D, and φ : ∂D → R a bounded function which is
continuous nearly everywhere (2) on ∂D. Then there exists a unique bounded
harmonic function h on D such that limz→ζ h(z) = φ(ζ) for nearly every
ζ ∈ ∂D. Moreover , h = HD[φ] = HD,A[φ].

In view of this result, Theorem 4.3.3 in [13] is still valid in the context
of HD,A. More precisely,

Proposition 4.4. Let D be an open subset of X, A a nonempty Jordan-
measurable subset of ∂D, and φ : ∂D → R a bounded Borel function. Then
HD[φ] = HD,A[φ] = PD[φ].

In the special case X = C we can say even more.

Proposition 4.5. Let D be a proper open subset of C. Let A be a non-
empty Borel subset of ∂D such that D is Jordan-curve-like on A and A is
of zero length. Then PD[1A] ≡ 0 on D.

Proof. Suppose without loss of generality that D is Jordan-curve-like
on the interval [0, 1] ⊂ ∂D and that A is a Borel subset of [0, 1] with
mes(A) = 0. Since D ⊂ C \ [0, 1], it follows from the subordination prin-
ciple that

PD[1A] ≤ PC\[0,1][1A] on D.

Therefore, it suffices to show that PC\[0,1][1A] ≡ 0 on C \ [0, 1]. To this end

consider the conformal mapping Φ(z) :=
√

1/z − 1 from C ∪ {∞} \ [0, 1]

(2) A property is said to hold nearly everywhere on ∂D if it holds everywhere on
∂D \ N for some Borel polar set N .
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onto H := {z ∈ C : Im z > 0}. It is not difficult to show that

PC\[0,1][1A] = PH[1Φ(A)] ◦ Φ−1 ≡ 0.

Now we arrive at one of the main results of this section.

Theorem 4.6. Let D be an open subset of X, A a nonempty Jordan-
measurable subset of ∂D, and N a Jordan-measurable subset of ∂D which
is of zero length.

(1) Then A∗ is a Borel set , (A∗)∗ = A∗, (A \ N )∗ = A∗, and A \ A∗ is
of zero length.

(2) If A is a Borel set then ω(z, A, D) = HD,A[1∂D\A] for z ∈ D. In
particular ,

ω(z, A∗, D) = HD,A∗ [1∂D\A∗] = HD,(A∩A∗)\N [1∂D\[(A∩A∗)\N ]]

= ω(z, A, D), z ∈ D.

(3) If X = C then ω(z, A, D) = ω(z, A \ N , D) = ω(z, A∗, D).

Proof. (1) can be checked using the definition and Lemma 4.1, and (2)
is an immediate consequence of Proposition 4.4 and (1).

Now we turn to (3). Choose Borel sets A1, A2 so that A1 ⊂ A \ N ,
A ⊂ A2 ⊂ ∂D and A2\A1 is of zero length. Then the subordination principle
and Proposition 4.5 show that

ω(z, A2, D) ≤ ω(z, A, D) ≤ ω(z, A \ N , D) ≤ ω(z, A1, D)

= ω(z, A2, D), z ∈ D.

This proves the first identity.
Since A∗ is, by (1), a Borel set, (2) gives that

ω(z, A∗, D) = HD,A∗ [1∂D\A∗ ].

Consequently, ω(z, A, D) ≤ ω(z, A∗, D), z ∈ D. On the other hand, let B be
a Borel set such that B ⊂ A ∩ A∗ and A \ B is of zero length. Then

ω(·, A, D) = ω(·, B, D) = HD,B[1∂D\B]

≥ HD,A∗ [1∂D\A∗ ] = ω(·, A∗, D) on D.

Combining the above estimates yields the last identity in (3).

Proposition 4.7. Let D be an open subset of X and A a nonempty
Jordan-measurable subset of ∂D. Let (Dk)

∞
k=1 be a sequence of open subsets

of D and (Ak)
∞
k=1 a sequence of Jordan-measurable subsets of A such that :

(i) Dk ⊂ Dk+1 and
⋃∞

k=1 Dk = D;
(ii) Ak ⊂ Ak+1, Ak ⊂ ∂D ∩ ∂Dk, Dk is Jordan-curve-like on Ak, and⋃∞

k=1 Ak = A;
(iii) for any ζ ∈ A there is an open neighborhood V = Vζ of ζ in C such

that V ∩ D = V ∩ Dk for some k.
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Then

ω(z, A∗, D) = lim
k→∞

ω(z, A∗
k, Dk), z ∈ D.

Proof. Using the subordination principle it is easy to see that the se-
quence (ω(·, A∗

k, Dk))
∞
k=1 is decreasing and the limit

u := lim
k→∞

ω(·, A∗
k, Dk)

exists and defines a subharmonic function in D. By the subordination prin-
ciple again, we have u ≥ ω(·, A∗, D). Therefore, it remains to establish the
opposite inequality. In view of (i)–(iii), we conclude that

(4.3) sup
0<α<π/2

lim sup
z→ζ, z∈Aα(ζ)

u = 0, ζ ∈ B,

where B :=
⋃∞

k=1 A∗
k.

On the other hand, since (A∩A∗) \B ⊂ ⋃∞
k=1(Ak \A∗

k), Theorem 4.6(1)
implies that (A∩A∗)\B is of zero length. Consequently, we deduce from (4.3)
and Theorem 4.6(2) that u(z) ≤ ω(z, A∗, D), z ∈ D.

Next, we introduce a notion which will be relevant for our further study.

Definition 4.8. Let D, G ⊂ X be open sets such that G ⊂ D and let
ζ ∈ ∂D be such that D is Jordan-curve-like at ζ. Then ζ is said to be an
end-point of G in D if, for every 0 < α < π/2, there is an open neighborhood
U = Uα of ζ such that U ∩ Aα(ζ) ⊂ G. The set of all end-points of G in D
is denoted by GD.

Note that the above definition is intrinsic.
The remaining part of this section is devoted to the study of level sets

of the harmonic measure. We begin with the following important properties
of these sets.

Theorem 4.9. Let D ⊂ X be an open set and A a Jordan-measurable
set of ∂D such that A is of positive length. Then, for any 0 < ε < 1, the
“ε-level set”

Dε := {z ∈ D : ω(z, A∗, D) < 1 − ε}
enjoys the following properties:

(i) Let G1, G2 be arbitrary distinct connected components of Dε. Then
GD

1 ∩ GD
2 = ∅.

(ii) For any ζ ∈ A∗, there is exactly one connected component G of Dε

such that ζ ∈ GD.
(iii) GD ∩ A is Jordan-measurable (on ∂D) and of positive length for

every connected component G of Dε.

Proof. To prove (i), suppose for contradiction that GD
1 ∩ GD

2 6= ∅. Fix
ζ0 ∈ GD

1 ∩GD
2 . Then, for every 0 < α < π/2, there is an open neighborhood
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Uα of ζ0 such that Aα(ζ0) ∩ Uα ⊂ G1 ∩ G2. This implies that G1 ∩ G2 6= ∅.
Hence, G1 = G2, contrary to hypothesis.

Next, we turn to the proof of (ii). Fix ζ0 ∈ A∗. By (i), it suffices to prove
the existence of a connected component G of Dε such that ζ0 ∈ GD. Since
ζ ∈ A∗, for every 0 < α < π/2, there is an open neighborhood Uα of ζ0 such
that

(4.4) Aα(ζ0) ∩ Uα ⊂ Dε.

Fix 0 < α0 < π/2, and let G be the connected component of Dε containing
Aα0

(ζ0) ∩ Uα0
. Since

(Aα0
(ζ0) ∩ Uα0

) ∩ (Aα(ζ0) ∩ Uα) 6= ∅, 0 < α < π/2,

we deduce from (4.4) that G also contains Aα(ζ0)∩Uα for every 0 < α < π/2.
Hence ζ0 ∈ GD. The proof of (ii) is finished.

Finally, we prove (iii). First, we find a sequence (Uk)
∞
k=1 of open sets of

X such that Uk ∩ D is either a Jordan domain or the disjoint union of two
Jordan domains and A ⊂ ⋃∞

k=1 ∂(Uk ∩ D). Since A is Jordan-measurable,
we see that to prove the Jordan-measurability of GD ∩ A, it is sufficient to
check that GD ∩ ∂(D ∩ Uk) is Jordan-measurable for every k ≥ 1. To see
this, fix k0 ≥ 1 and let U := Uk0

. Let Φ be a conformal mapping from D∩U
onto E which extends to a homeomorphic mapping (still denoted by) Φ from
D ∩ U onto E. It is clear that for any ζ ∈ ∂(D ∩ U), ζ ∈ GD if and only if
Φ(ζ) ∈ [Φ(G∩U)]E. We shall prove that [Φ(G∩U)]E is a Borel subset of ∂E.
Taking this for granted, GD ∩ ∂(D ∩ U) is also a Borel set. Consequently,
GD ∩ A is Jordan-measurable.

To check that [Φ(G ∩ U)]E is a Borel set, put

(4.5) An,m(η) := {w ∈ E ∩ A(1−1/n)·π/2(η) : |w − η| < 1/m},
n, m ≥ 1, η ∈ ∂E.

For any n, m, p ≥ 1, let

(4.6) Tnmp := {η ∈ ∂E : An,m(η) ⊂ Φ(G ∩ U) and

ω(Φ−1(w), A∗, D) ≤ 1 − ε − 1/p, ∀w ∈ An,m(η)}.
We observe the following geometric fact :

Let η0 ∈ ∂E and (ηq)
∞
q=1 ⊂ ∂E be such that limq→∞ ηq = η0. Then

An,m(η0) ⊂
∞⋃

q=1

An,m(ηq).

This follows immediately from the geometric shape of the cone An,m(η)
given in (4.5).

Let (ηq)
∞
q=1 ⊂ Tnmp be such that limq→∞ ηq = η0 ∈ ∂E. Using the above

geometric fact, we see that An,m(η0) ⊂ Φ(G∩U). This, combined with (4.6)
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and the continuity of ω(Φ−1(·), A, D)|E, implies that η0 ∈ Tnmp. Hence, the
set Tnmp is closed. Clearly, we have

[Φ(G ∩ U)]E =
∞⋂

n=1

∞⋃

m=1

∞⋃

p=1

Tnmp,

and so [Φ(G∩U)]E is a Borel set. Consequently, as already discussed before,
GD ∩ A is Jordan-measurable.

To finish the proof of (iii), it remains to show that GE ∩A is of positive
length. Suppose otherwise and consider the function

u(z) :=

{
ω(z, A∗, D), z ∈ D \ G,

1 − ε, z ∈ G.

Then clearly u ∈ SH(D) and u ≤ 1. By (i), (ii) and the definition of locally
regular points, we have

sup
0<α<π/2

lim sup
z→ζ, z∈Aα(ζ)

u(z) = sup
0<α<π/2

lim sup
z→ζ, z∈Aα(ζ)

ω(z, A∗, E)

= 0, ζ ∈ (A ∩ A∗) \ (GD ∩ A).

Consequently, in the notation of (4.2),

u ∈ Û((A ∩ A∗) \ N , D),

where N := GD ∩ A. Since, by assumption, N is of zero length, it follows
from Theorem 4.6 that u ≤ ω(·, A∗, D). But on the other hand, ω(z, A∗, D) <
1 − ε = u(z) for z ∈ G. This is the desired contradiction.

Theorem 4.10. Let D ⊂ X be an open set and A a Jordan-measurable
subset of ∂D such that A is of positive length. For any 0 ≤ ε < 1, let
Dε := {z ∈ D : ω(z, A∗, D) < 1 − ε}.

(1) For any Jordan-measurable subset N ⊂ ∂D of zero length, let

Uε(A,N , D) := {u ∈ SH(Dε) : u ≤ 1 and

sup
0<α<π/2

lim sup
z→ζ, z∈Aα(ζ)

u(z) ≤ 0, ζ ∈ (A ∩ A∗) \ N}.

Then Uε(A,N , D) = Uε(A, ∅, D).
(2) Define the “harmonic measure of the ε-level set” ωε(·, A, D) as

ωε(z, A, D) :=

{
supu∈Uε(A,∅,D) u(z), z ∈ Dε,

0, z ∈ A∗.

Then

ωε(z, A, D) =
ω(z, A∗, D)

1 − ε
, z ∈ Dε ∪ A∗.
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Proof. Clearly, by definition, Uε(A, ∅, D) ⊂ Uε(A,N , D). To prove the
reverse inclusion, fix u ∈ Uε(A,N , D) and consider the function

û(z) :=

{
max{(1 − ε)u(z), ω(z, A∗, D)}, z ∈ Dε,

ω(z, A∗, D), z ∈ D \ Dε.

Then û ∈ SH(D) and û ≤ 1. Moreover, by Theorem 4.9(ii), we have
A∗ ⊂ (Dε)

D. Consequently, for every ζ ∈ (A ∩ A∗) \ N ,

(4.7) sup
0<α<π/2

lim sup
z→ζ, z∈Aα(ζ)

û(z)

≤ max{ sup
0<α<π/2

lim sup
z→ζ, z∈Aα(ζ)

u(z), sup
0<α<π/2

lim sup
z→ζ, z∈Aα(ζ)

ω(z, A, D)}.

Observe that the first sup in the line above is 0 because u ∈ Uε(A,N , D).

In addition, the second sup is also 0. Hence, û ∈ Û((A ∩ A∗) \ N , D). Con-
sequently, by Theorem 4.6, û ≤ ω(·, A∗, D). In particular,

(4.8) u(z) ≤ ω(z, A∗, D)

1 − ε
, z ∈ D, u ∈ Uε(A,N , D).

On the other hand, it is clear that ω(·, A∗, D)/(1 − ε) ∈ Uε(A, ∅, D) ⊂
Uε(A,N , D). This, combined with (4.8), implies (1) and (2).

An immediate consequence of Theorem 4.10 is the following two-constant
theorem for level sets.

Corollary 4.11. Let D ⊂ X be an open set and A, N two Jordan-
measurable subsets of ∂D such that A is of positive length and N of zero
length. Let 0 ≤ ε < 1 and put Dε := {z ∈ D : ω(z, A∗, D) < 1 − ε}. If
u ∈ SH(Dε) satisfies u ≤ M on Dε and

sup
0<α<π/2

lim sup
z→ζ, z∈Aα(ζ)

u(z) ≤ m, ζ ∈ (A ∩ A∗) \ N ,

then

u(z) ≤ m(1 − ωε(z, A, D)) + Mωε(z, A, D).

5. Boundary behavior of the Gonchar–Carleman operator. Be-
fore recalling the Gonchar–Carleman operator and investigating its bound-
ary behavior, we first introduce the following notion and study its properties.

5.1. Angular Jordan domains. Let E be the unit disc. We begin with

Definition 5.1. For every closed subset F of ∂E and any real number
h such that mes(F ) > 0 and supx,y∈F |x − y| < h < 1 −

√
2/2, the open set

Ω = Ω(F, h) :=
⋃

ζ∈F

{z ∈ Aπ/4(ζ) : |z| > 1 − h}

is called the angular Jordan domain with base F and height h.
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Now we list some properties of angular Jordan domains.

Proposition 5.2. Let Ω = Ω(F, h) be an angular Jordan domain.

(1) There exist exactly two points ζ1, ζ2 ∈ F such that |ζ1 − ζ2| =
supx,y∈F |x − y| and F ⊂ [ζ1, ζ2], where [ζ1, ζ2] is the (small) closed
arc of ∂E from ζ1 to ζ2, oriented in the positive sense.

(2) Write the open set [ζ1, ζ2] \ F as the union of disjoint open arcs

[ζ1, ζ2] \ F =
⋃

j∈J

(aj , bj),

where (aj , bj) is the (small) open arc of ∂E which goes from aj to
bj and which is oriented in the positive sense, and the index set J is
finite or countable. For j ∈ J, we construct the isosceles triangle with
vertices aj , bj and cj whose base is the segment [aj , bj ] connecting
aj to bj , and cj satisfies

arg

(
cj − aj

aj

)
=

3π

4
and arg

(
cj − bj

bj

)
=

−3π

4
.

Set

F0 := F ∪
⋃

j∈J

([aj, cj] ∪ [cj, bj ]).

Then F0 is a rectifiable Jordan curve from ζ1 to ζ2.
(3) Let η1 (resp. η2) be the unique point in the circle ∂B(0, 1 − h) such

that

arg

(
η1 − ζ1

ζ1

)
=

−3π

4

(
resp. arg

(
η2 − ζ2

ζ2

)
=

3π

4

)

and that |η1 − ζ1| (resp. |η2 − ζ2|) is minimal. Let F1 (resp. F2)
denote the segment from η1 to ζ1 (resp. ζ2 to η2). Let F3 be the
(small) closed arc of the circle ∂B(0, 1 − h) from η2 to η1, oriented
in the negative sense. Then Ω is a rectifiable Jordan domain and
its boundary Γ consists of the rectifiable Jordan curve F0, the two
segments F1, F2 and the closed arc F3.

(4) For every ε ∈ (0, h/4) define the dilatation τε : E → E by

τε(z) := (1 − ε)z, z ∈ E.

Put

Ωε := τε(Ω) \ B(0, (1 + ε)(1 − h)).

Then Ωε is a rectifiable Jordan domain and its boundary Γε con-
sists of the rectifiable Jordan curve F0ε := τε(F0), a sub-segment
F1ε of τε(F1), a sub-segment F2ε of τε(F2), and a closed arc F3ε of
∂B(0, (1 + ε)(1 − h)).
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(5) Consider the projection τ : E \ {0} → ∂E given by τ(z) := z/|z|,
z ∈ E \ {0}. Notice that F0ε ∪ F1ε ∪ F2ε = Γε \ ∂B(0, (1 + ε)(1 − h))
for every ε ∈ (0, h/4). Then the two maps

F0ε ∪ F1ε ∪ F2ε ∋ ζ 7→ τ(ζ) ∈ ∂E,

F3ε ∋ ζ 7→ τ(ζ) ∈ ∂E,

are one-to-one. In addition, for any linearly measurable subset A
of Γε,

mes(A) ≤ 10mes(τ(A)).

(6) Ωε ր Ω as ε ց 0.
(7) For any closed Jordan curve C contained in Ω there is an ε > 0 such

that C ⊂ Ωε.
(8) mes(F \ ΩE) = 0.

Proof. All the assertions are proved by elementary geometric arguments.
Therefore, we leave the details to the reader. However, we give the proof that
Ω is a domain, which will clarify Definition 5.1.

In view of the condition on F and h given in Definition 5.1, we see that
the set {z ∈ Aπ/4(ζ) : |z| > 1 − h} is connected for any ζ ∈ ∂E, and

{z ∈ Aπ/4(ζ) : |z| > 1 − h} ∩ {z ∈ Aπ/4(η) : |z| > 1 − h} 6= ∅,
∀ζ, η ∈ ∂E : |ζ − η| < h < 1 −

√
2/2.

Hence, Ω is a domain.

Theorem 5.3. Let X be a complex manifold of dimension 1, D ⊂ X an
open set , and A a Jordan-measurable subset of ∂D such that A is of positive
length. Then, for any 0 ≤ ε < 1 and any connected component G of Dε :=
{z ∈ D : ω(z, A∗, D) < 1 − ε}, there are an open set U ⊂ X, a conformal
mapping Φ : E → X, and an angular Jordan domain Ω = Ω(F, h) such that

(i) U∩D is either a Jordan domain or the disjoint union of two Jordan
domains;

(ii) Φ maps E conformally onto one connected component of U ∩ D
(notice that , by (i), U ∩D has at most two connected components);

(iii) Φ(F ) ⊂ A ∩ A∗ ∩ GD and Φ(Ω) ⊂ G.

Proof. We have already shown in the proof of Theorem 4.9(iii) that there
is a sequence (Uk)

∞
k=1 of open sets in X such that Uk ∩D is either a Jordan

domain or the disjoint union of two Jordan domains, A ⊂ ⋃∞
k=1 ∂(Uk ∩ D),

and A ∩ A∗ ∩ GD is of positive length. Consequently, there is an index k0

such that

(5.1) A ∩ A∗ ∩ GD ∩ ∂(D ∩ U) is of positive length,

where U := Uk0
. Suppose without loss of generality that U ∩ D is a Jordan

domain. The case where U ∩D is the disjoint union of two Jordan domains
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may be proved in the same way. Let Φ be a conformal mapping from E onto
D∩U. By the Carathéodory theorem (see [4]), Φ extends to a homeomorphic

map (still denoted by) Φ from E onto D ∩ U. Hence, (i) and (ii) are satisfied.
On the other hand, it follows from (5.1) that

(5.2) mes(Φ−1(A ∩ A∗ ∩ GD ∩ ∂(D ∩ U))) > 0.

For any m ≥ 1, let

(5.3) Am := {η ∈ ∂E : A2,m(η) ⊂ Φ−1(G)},
where A2,m(η) is given by (4.5).

Using the geometric fact following (4.6), we see that Am is closed. On
the other hand, it is clear that

Φ−1(A ∩ A∗ ∩ GD ∩ ∂(D ∩ U)) ⊂
∞⋃

m=1

Am.

Therefore, by (5.2), there is an index m0 such that

mes(Am0
∩ Φ−1(A ∩ A∗ ∩ GD ∩ ∂(D ∩ U))) > 0.

Put h := 1/2m0. By the last inequality one can find a closed set F con-
tained in Am0

∩ Φ−1(A ∩ A∗ ∩ GD ∩ ∂(D ∩ U)) such that mes(F ) > 0 and
supx,y∈F |x − y| < h. Since h = 1/2m0, a geometric argument shows that

{z ∈ Aπ/4(ζ) : |z| > 1 − h} ⊂ A2,m0
(ζ), ζ ∈ ∂E.

This together with (5.3) implies that Ω = Ω(F, h) ⊂ Φ−1(G). Hence, (iii) is
verified.

The following uniqueness theorem will play a vital role.

Theorem 5.4. Let X be a complex manifold of dimension 1, D ⊂ X an
open set , and A, N two Jordan-measurable subsets of ∂D such that A is
of positive length and N is of zero length. Let 0 ≤ ε < 1 and G a connected
component of Dε := {z ∈ D : ω(z, A∗, D) < 1−ε}. If f ∈ O(G) has angular
limit 0 at every point of (A ∩ A∗ ∩ GD) \ N , then f ≡ 0.

Proof. Applying Theorem 5.3 we obtain an open set U in X, a conformal
mapping Φ from E onto D ∩U which extends homeomorphically to E, and
an angular Jordan domain Ω := Ω(F, h) satisfying assertions (i)–(iii) of that
theorem.

By hypothesis, f ◦Φ ∈ O(Ω) has angular limit 0 at a.e. point in F. Since
mes(F ) > 0, Privalov’s uniqueness theorem (see [4]) shows that f ◦ Φ ≡ 0
on Ω. Hence, f ≡ 0 on the subdomain Φ(Ω) of G, and so f ≡ 0.

5.2. Main result of this section. Let D, G ⊂ C be open discs and let A
(resp. B) be a measurable subset of ∂D (resp. ∂G) with mes(A) > 0 (resp.
mes(B) > 0). Let f be a function defined on W := X(A, B; D, G) with the
following properties:
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(i) f |A×B is measurable and there is a finite constant C with |f |W < C;
(ii) f ∈ Os(W

o);
(iii) there exist functions f1, f2 : A × B → C such that for any a ∈ A

(resp. b ∈ B), f(a, ·) (resp. f(·, b)) has angular limit f1(a, b) at b for
a.e. b ∈ B (resp. f2(a, b) at a for a.e. a ∈ A), and f1 = f2 = f a.e.
on A × B.

Let ω̃(·, A, D) (resp. ω̃(·, B, G)) be the conjugate harmonic function of
ω(·, A, D) (resp. ω(·, B, G)) such that ω̃(z0, A, D) = 0 (resp. ω̃(w0, B, G) = 0)
for a certain fixed point z0 ∈ D (resp. w0 ∈ G). Then we define the holo-
morphic functions g1(z) := ω(z, A, D) + iω̃(z, A, D), g2(w) := ω(w, B, G) +
iω̃(w, B, G), and

g(z, w) := g1(z) + g2(w), (z, w) ∈ D × G.

The function e−g1 (resp. e−g2) is bounded on D (resp. on G). Therefore,
in view of [4, p. 439], we may define e−g1(a) (resp. e−g2(b)) for a.e. a ∈ A
(resp. b∈B) to be the angular boundary limit of e−g1 at a (resp. e−g2 at b).

In view of (i), for each positive integer N, we define the Gonchar–
Carleman operator as follows:

(5.4) KN (z, w) = KN [f ](z, w)

:=
1

(2πi)2

\
A×B

e−N(g(a,b)−g(z,w)) f(a, b) da db

(a − z)(b − w)
, (z, w) ∈ D × G.

We recall from Gonchar’s work [6] that the limit

(5.5) K(z, w) = K[f ](z, w) := lim
N→∞

KN (z, w)

exists for all (z, w) ∈ Ŵ o, and it is uniform on compact subsets of Ŵ o.

The boundary behavior of the Gonchar–Carleman operator is described
below.

Theorem 5.5. Under the above hypothesis and notation, let 0 < δ < 1
and w ∈ G be such that ω(w, B, G) < δ, and let U be any connected compo-
nent of

Dδ := {z ∈ D : ω(z, A, D) < 1 − δ}.
Then there is an angular Jordan domain Ω = Ω(F, h) such that Ω ⊂ U,
F ⊂ A ∩ A∗ ∩ UD, and the Gonchar–Carleman operator K[f ] (see formula
(5.4)–(5.5) above) satisfies

lim
z→a, z∈Aα(a)

K[f ](z, w) = f(a, w), 0 < α < π/2,

for a.e. a ∈ F.

The proof of this theorem will be given in Subsection 5.4 below.
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5.3. Preparatory results. For the proof of Theorem 5.5 we need the fol-
lowing results.

For every f ∈ L1(∂E, |dζ|), let C[f ] denote the Cauchy integral

C[f ](z) :=
1

2πi

\
∂E

f(ζ)

z − ζ
dζ, z ∈ E.

For a function F : E → C, the radial maximal function MradF : ∂E → [0,∞]
is defined by

(MradF )(ζ) := sup
0≤r<1

|F (rζ)|, ζ ∈ ∂E.

Now we are able to state the following classical result (see Theorem 6.3.1 in
Rudin’s book [14]):

Theorem 5.6 (Korányi–Vági type theorem). There is a constant C > 0
such that \

∂E

|MradC[f ](ζ)|2 |dζ| ≤ C
\

∂E

|f(ζ)|2 |dζ|

for every f ∈ L2(∂E, |dζ|).
We recall the definition of the Smirnov class Ep, p > 0, on rectifiable

Jordan domains.

Definition 5.7. Let p > 0 and Ω a rectifiable Jordan domain. A func-
tion f ∈ O(Ω) is said to belong to the Smirnov class Ep(Ω) if there exists
a sequence (Cn)∞n=1 of rectifiable closed Jordan curves in Ω, tending to the
boundary in the sense that Cn eventually surrounds each compact subdo-
main of Ω, such that\

Cn

|f(z)|p |dz| ≤ M < ∞, n ≥ 1.

Next, we rephrase some facts concerning the Smirnov class Ep, p > 0,
on rectifiable Jordan domains in the context of angular Jordan domains
Ω(F, h).

Theorem 5.8.

(1) Let Ω be a rectifiable Jordan domain. Then every f ∈ Ep(Ω) (p > 0)
has an angular limit f∗ a.e. on ∂Ω.

(2) Let Ω := Ω(F, h) be an angular Jordan domain and let Γ := ∂Ω. For
any 0 < ε < h/4, let Γε be the rectifiable closed Jordan curve defined
in Proposition 5.2(4). Then f ∈ Ep(Ω) if sup0<ε<h/4

T
Γε

|f(z)|p |dz|
< ∞. In addition, for every f ∈ Ep(Ω), p > 0,\

Γ

|f∗(z)|p |dz| ≤ sup
0<ε<h/4

\
Γε

|f(z)|p |dz|.
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(3) Every f ∈ E1(E) has a Cauchy representation f := C[f∗]. Con-
versely , if g ∈ L1(∂E, |dz|) and\

∂E

zng(z) dz = 0, n = 0, 1, 2, . . . ,

then f := C[g] ∈ E1(E) and g coincides with f∗ a.e. on ∂E.

Proof. For the proof of (1) and (3), see [4, pp. 438–441]. Taking into
account Proposition 5.2(6), (7), assertion (2) also follows from the results in
[4, pp. 438–441].

5.4. Proof of Theorem 5.5. We fix w0 ∈ G and 0 < δ0 < δ with
ω(w0, B, G) < δ0 and a connected component U of Dδ. Applying The-
orem 5.3, we find an angular Jordan domain Ω := Ω(F, h) ⊂ U such that
F ⊂ A ∩ A∗ ∩ UD. In the course of the proof, the letter C will denote a
positive constant that is not necessarily the same at each step.

Applying the Carleman theorem (see, for example, [1, p. 2]), we have

f(z, b) = lim
N→∞

1

2πi

\
A

e−N(g1(a)−g1(z)) f(a, b)

a − z
da, z ∈ D, b ∈ B,

f(a, b) = lim
r→1−

f(ra, b), a ∈ ∂D, b ∈ B.

Consequently, f |∂D×B is measurable. In addition, by (iii) it is bounded.
Therefore, for every N ∈ N we can define K∞,N (·, w0) : ∂D → C by

(5.6) K∞,N (a, w0) :=
1

2πi

\
B

eN(g2(w0)−g2(b)) f(a, b)

b − w0
db, a ∈ ∂D.

Since, in view of (ii)–(iii), f(a, ·) ∈ O(G) and |f(a, ·)|G < C for a ∈ A, it
follows from the Carleman theorem that

(5.7) lim
N→∞

K∞,N (a, w0) = f(a, w0), a ∈ A,

and the above convergence is uniform with respect to a ∈ A.

On the other hand, by (5.6) we see that K∞,N (·, w0) is measurable and
bounded. In addition, for any n = 0, 1, 2, . . . , taking (ii) into account, we
have\

∂D

K∞,N (a, w0)a
n da =

1

2πi

\
B

( \
∂D

f(a, b)an da
)eN(g2(w0)−g2(b))

b − w0
db = 0,

where the first equality follows from Fubini’s theorem and the second from
an application of Theorem 5.8(3) to f(·, b), b ∈ B. Consequently, by The-
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orem 5.8(3), we can extend K∞,N (·, w0) to D by setting

K∞,N (z, w0) := C[K∞,N (·, w0)](z)(5.8)

=
1

2πi

\
∂D

K∞,N (a, w0)

a − z
da, z ∈ D.

Then

(5.9) lim
z→a, z∈Aα(a)

K∞,N (z, w0) = K∞,N (a, w0), 0 < α < π/2,

for a.e. a ∈ ∂D.

Now we return to the angular Jordan domain Ω. We keep the notation
introduced in Proposition 5.2. For any 0 < ε < h/4 and any z ∈ Γε, applying
the Cauchy integral formula, we obtain

(5.10) K∞,N (z, w0) − KN (z, w0)

=
1

(2πi)2

\
∂D\A

\
B

eN(g1(z)−g1(a))+N(g2(w0)−g2(b)) f(a, b)

(a−z)(b−w0)
da db

= eN(g1(z)−(1−δ))
\

∂D

pN (a)

a − z
da.

Using the choice of U and the hypothesis on δ and δ0, it can be checked that

(5.11) |eN(g1(·)−(1−δ))|U ≤ 1, |pN |∂D ≤ Ce−N(δ−δ0).

Therefore, recalling the projection τ : E\{0} → ∂E (see Proposition 5.2(5)),
we estimate

(5.12)
\

Γε

|K∞,N (z, w0) − KN (z, w0)|2 |dz| ≤ C
\

Γε

|MradC[pN ](τ(z))|2 |dz|

≤ 10C
\

τ(F0ε∪F1ε∪F2ε)

|MradC[pN ](a)|2 |da| + 10C
\

τ(F3ε)

|MradC[pN ](a)|2 |da|

≤ 20C
\

∂E

|MradC[pN ](a)|2 |da| ≤ C
\

∂E

|pN (a)|2 |da| ≤ Ce−N(δ−δ0).

Here the first estimate follows from (5.10)–(5.11) and the definition of the
radial maximal function, the second and third are consequences of Propo-
sition 5.2(5), the fourth holds by Theorem 5.6, and the last one follows
from (5.11).

On the other hand, for any 0 < ε < h/4,

(5.13)
\

Γε

|KN+1(z, w0) − KN (z, w0)|2 |dz|

≤ 2
\

Γε

|AN (z, w0)|2 |dz| + 2
\

Γε

|BN (z, w0)|2 |dz| ≤ Ce−N(δ−δ0),
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where AN and BN are given by formula (6) in [6] and the latter estimate
follows from the same argument as in the proof of (5.10)–(5.12). We recall
from (5.5) that

lim
N→∞

KN (z, w0) = K(z, w0), z ∈ Γε.

This, combined with (5.12)–(5.13), implies that

(5.14)
\

Γε

|K∞,N (z, w0) − K(z, w0)|2 |dz| ≤ Ce−N(δ−δ0), 0 < ε < h/4.

Since we have already shown that |K∞,N (·, w0)|D < ∞, in view of The-
orem 5.8(2), we deduce from (5.14) that K(·, w0)|Ω ∈ E2(Ω). For every
a ∈ ∂D, let K(a, w0) denote the angular limit of K(·, w0)|Ω at a (if the limit
exists). It follows from (5.14) and Theorem 5.8(2) that

lim
N→∞

\
Γ

|K∞,N (a, w0) − K(a, w0)|2 |da|

≤ sup
0<ε<h/4

\
Γε

|K∞,N (z, w0) − K(z, w0)|2 |dz| ≤ lim
N→∞

Ce−N(δ−δ0) = 0.

This, combined with (5.7) and 5.2(8), implies finally that

K(a, w0) = f(a, w0) for a.e. a ∈ F.

Hence, Theorem 5.5 has been proved.

6. Proof of Theorem A for the case where D and G are Jordan

domains. Using an exhaustion argument, a compactness argument and
conformal mappings, the case where D and G are Jordan domains can be
reduced to the following case:

(∗) We assume that D = G = E, and |f |W < 1.

Using hypotheses (i)–(iii) and (∗), we apply Theorem 5.5 to obtain a

function K[f ] ∈ O(Ŵ o). Consequently, we define the desired extension by

f̂ := K[f ].

In this section we will use repeatedly Theorem 4.6(3):

ω(·, A, Ω) = ω(·, A∗, Ω),

where Ω ⊂ C is an open set and A is a Jordan measurable subset of ∂Ω.

The remaining part of the proof is divided into several steps.

Step 1: Proof of the estimate |f̂ |
Ŵ o ≤ |f |W . Let (z0, w0) ∈ Ŵ o. Then

we can find δ ∈ (0, 1) such that 0 < ω(w0, B, G) < δ < 1−ω(z0, A, D). Let U
be the connected component of Dδ that contains z0. By Theorem 5.3 we find
an angular Jordan domain Ω := Ω(F, h) ⊂ U such that F ⊂ A ∩ A∗ ∩ UD.
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In addition, for every N ∈ N, applying Theorem 5.5 to fN , we obtain
K[fN ] ∈ O(Ŵ o) with

lim
z→a, z∈Aα(a)

K[fN ](z, w0) = f(a, w0)
N

= lim
z→a, z∈Aα(a)

(K[f ](z, w0))
N , 0 < α < π/2,

for a.e. a ∈ F. Consequently, an application of Theorem 5.4 gives

K[fN ](z0, w0) = (K[f ](z0, w0))
N , N ∈ N,

It follows that

(6.1) K[fN ](z, w) = (K[f ](z, w))N , N ∈ N, (z, w) ∈ Ŵ o.

Now we conclude the proof in the same way as in [6, p. 23]. More pre-
cisely, taking into account (6.1), one gets

|f̂N (z, w)| ≤ |K[fN ](z, w)|

≤ C|f |NW
(1 − |z|)(1 − |w|)(1 − e−(1−ω(z,w)))

, (z, w) ∈ Ŵ o.

Taking the Nth roots of both sides and letting N tend to ∞ yields the
estimate of Step 1.

Step 2: Proof that f̂ is the unique function in O(Ŵ o) which satisfies

property (1) of Theorem A. First we show that f̂ satisfies (1). Without loss

of generality, it suffices to prove that there is a subset B̃ of B∩B∗ such that
mes(B̃) = mes(B) and f̂ has angular limit f at every point of D × B̃.

For any a ∈ A put

Ba := {b ∈ B : f(a, ·) has an angular limit at b}.
By hypothesis (iii), we have mes(Ba) = mes(B), a ∈ A. Consequently, ap-
plying Fubini’s theorem, we obtain\

A

mes(Ba) |da| = mes(A) mes(B) =
\
B

mes({a ∈ A : b ∈ Ba}) |db|.

Hence,

(6.2) mes({a ∈ A : b ∈ Ba}) = mes(A) for a.e. b ∈ B.

The same reasoning also gives

(6.3) mes({a ∈ A : f(a, b) = f1(a, b)}) = mes(A) for a.e. b ∈ B.

Set

(6.4) B̃ := {b ∈ B ∩ B∗ : mes({a ∈ A : b ∈ Ba}) = mes(A) and

mes({a ∈ A : f(a, b) = f1(a, b)}) = mes(A)}.
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We deduce from (6.2)–(6.4) that

(6.5) mes(B̃) = mes(B).

Fix b0 ∈ B̃ and let (wn)∞n=1 be a sequence in G such that limn→∞ wn = b0

and wn ∈ Aα(b0) for some fixed 0 < α < π/2. Fix z0 ∈ D and let (zn)∞n=1

be any sequence in D such that limn→∞ zn = z0.
Clearly, we can find 0 < δ1 < 1 such that

(6.6) sup
n∈N

ω(zn, A, D) < 1 − δ1.

Fix δ2 such that 0 < δ2 < δ1. Since b0 is locally regular relative to B and
limn→∞ wn = b0 and wn ∈ Aα(b0), there is a sufficiently large number N0

with

(6.7) ω(wn, B, G) < δ2, n > N0.

Let U be the connected component of Dδ1 that contains z0 (see (6.6)).
Applying Theorem 5.3, we find an angular Jordan domain Ω := Ω(F, h) ⊂ U
such that F ⊂ A ∩ A∗ ∩ UD. Let V be a rectifiable Jordan domain with
Ω ⊂ V ⊂ U, w0 ∈ V , and V ∩ U = Ω ∩ U for some neighborhood U of the
base F of Ω.

In view of (6.7) and of the fact that V ⊂ U ⊂ Dδ, we obtain

(6.8) V × {wn} ⊂ Ŵ o, n > N0.

Consequently, Theorem 5.5 implies that for any n > N0,

(6.9) f(a, wn) = lim
z→a, z∈Aα(a)

f̂(z, wn), 0 < α < π/2,

for a.e. a ∈ F.
Next, for any n > N0 let

Fn := {a ∈ F : b0 ∈ Ba and f(a, wn) = lim
z→a, z∈Aα(a)

f̂(z, wn)},

F0 :=
∞⋂

n=N0+1

Fn.

It follows from (6.4), (6.9) and the fact that b0 ∈ B̃ that mes(Fn) = mes(F )
for n > N0. Hence

(6.10) mes(F0) = mes(F ) > 0.

In view of (6.8), consider the following holomorphic functions on V :

(6.11) hn(t) := f̂(t, wn) and h0(t) := f(t, b0), t ∈ V, n > N0.

Since we have already shown in Step 1 that |hn|V ≤ |f |X < ∞ for n > N0

or n = 0, applying Theorem 5.8(1), we find a subset ∆ of F0 with mes(∆) =
mes(F0) > 0 such that hn, n > N0, (resp. h0) has angular limit f1(t, wn)
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(resp. f1(t, b0)) at t ∈ ∆. Observe that by (6.4) and the fact that b0 ∈ B̃ we
have

lim
n→∞

f1(t, wn) = f1(t, b0) = f(t, b0) for a.e. t ∈ ∆.

Using this and (6.11), we can apply the Khinchin–Ostrowski theorem
(see [4, Theorem 4, p. 397]) to the sequence (hn)∞n=0. Consequently,

lim
n→∞

f̂(zn, wn) = f(z0, b0).

This shows that f̂ has angular limit f at every point of D × B̃. Hence, f̂
satisfies property (1).

It remains to show the uniqueness of f̂ . To do this, let ̂̂f ∈ O(Ŵ o) have

the following property: There is a subset ˜̃A (resp. ˜̃B) of A∩A∗ (resp. b∩B∗)

such that mes(A \ ˜̃A) = mes(B \ ˜̃B) = 0 and ̂̂f has angular limit f at every

point of ( ˜̃A × G) ∪ (D × ˜̃B). Fix (z0, w0) ∈ Ŵ o. Let U be the connected
component containing z0 of

{z ∈ D : ω(z, A, D) < 1 − ω(w0, B, G)}.

We deduce that both f̂(·, w0)|U and ̂̂f(·, w0)|U have angular limit f(·, w0)

at every point of Ã ∩ ˜̃A ∩ UD. Consequently, Theorem 5.4 yields f̂(·, w0) =
̂̂f(·, w0) on U. Hence, f̂(z0, w0) = ̂̂f(z0, w0). Since (z0, w0) ∈ Ŵ o is arbitrary,

the uniqueness of f̂ is established.

Step 3: Proof of (2) of Theorem A. Fix (z0, w0) ∈ Ŵ o. For every b ∈ B
we have

|f(a, b)| ≤ |f |A×B, a ∈ A, and |f(z, b)| ≤ |f |W , z ∈ D.

Therefore, the two-constant theorem (see Theorem 2.2 in [10]) implies that

(6.12) |f(z, b)| ≤ |f |1−ω(z,A,D)
A×B |f |ω(z,A,D)

W , z ∈ D, b ∈ B.

Let δ := ω(z0, A, D) and consider the δ-level set

Gδ := {w ∈ G : ω(w, B, G) < 1 − δ}.
Clearly, w0 ∈ Gδ.

Recall from Step 2 that B̃ ⊂ B ∩ B∗, mes((B ∩ B∗) \ B̃) = 0, and

(6.13) f(z0, b) = lim
w→b, w∈Aα(b)

f̂(z0, w), 0 < α < π/2, b ∈ B̃.

Consider the function h : Gδ ∪ B̃ → C defined by

(6.14) h(t) :=

{
f̂(z0, t), t ∈ Gδ,

f(z0, t), t ∈ B̃.

Clearly, h|Gδ
∈ O(Gδ).



176 P. Pflug and V.-A. Nguyên

On the other hand, in view of (6.14) and the result of Step 1, we have

(6.15) |h|Gδ
≤ |f̂ |

Ŵ o ≤ |f |W < ∞.

In addition, applying Corollary 4.11 and taking (6.13)–(6.14) into account
yields

|h(t)| ≤ |h|1−ωδ(t,A,D)

B̃
|h|ωδ(t,A,D)

Gδ
, t ∈ Gδ,

where, by Theorem 4.10,

ωδ(t, B, G) =
ω(t, B, G)

1 − ω(z0, A, D)
.

This, combined with (6.12)–(6.15), implies that

|f̂(z0, w0)| = |h(w0)| ≤ |f |1−ω(z0,A,D)−ω(w0,B,G)
A×B |f |ω(z0,A,D)+ω(w0,B,G)

W .

Hence (2) for the point (z0, w0) is proved.

Step 4: Proof of (3) of Theorem A. Let (a0, w0) ∈ A∗×G be such that
the following limit exists:

λ := lim
(a,w)→(a0,w0), (a,w)∈A×G

f(a, w).

We now show that f̂ has angular limit λ at (a0, w0).

For any 0 < ε < 1/2, we find an open neighborhood Aa0
of a0 in A and

a positive number r > 0 such that B(w0, r) ⋐ G and

(6.16) |f(a, w) − λ| < ε2, a ∈ Aa0
, |w − w0| ≤ r.

Put

(6.17) δ := sup
w∈B(w0,r)

ω(w, B, G).

Since a0 ∈ A∗, it is clear that mes(Aa0
) > 0. Next, consider the level set

Dδ := {z ∈ D : ω(z, Aa0
, D) < 1 − δ}.

In view of (6.17), we can define

(6.18) h(t, w) := f̂(t, w) − λ, t ∈ Dδ, w ∈ B(w0, r).

Clearly,

(6.19) |h|Dδ
≤ 2|f̂ |

Ŵ o = 2|f |W = 2.

By (6.18) and using the result of Step 2, we know that for every w ∈ B(w0, r)
the holomorphic function h(·, w)|Dδ

has angular limit f(a, w)−λ at a for a ∈
Ã ∩ Aa0

, where Ã is given in Step 2. Consequently, applying Corollary 4.11
and taking (6.16) and (6.19) into account, we see that

|h(t, w)| < ε2(1−ωδ(t,Aa0
,D))2ωδ(t,Aa0

,D), t ∈ Dδ.
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Let 0 < α < π/2. From Theorem 4.10 and the hypothesis that a0 ∈ A∗,
we deduce that limt→a0, t∈Aα(a0) ωδ(t, Aa0

, D) = 0. Consequently, there is an
rα > 0 such that

|f(z, w) − λ| = |h(z, w)| < ε, z ∈ Aα(a0) ∩ {|z − a0| < rα}, w ∈ B(w0, r).

This completes the proof of the above assertion.
Similarly, we can prove that f̂ has angular limit

lim
(z,b)→(z0,b0), (z,b)∈D×B

f(z, b)

at any point (z0, b0), if the limit exists.

Step 5: Proof of (4) of Theorem A. Let (a0, b0) ∈ A∗×B∗ be such that

λ := lim
(a,b)→(a0,b0), (a,b)∈A×B

f(a, b)

exists. We will show that f̂ has angular limit λ at (a0, b0).
Recall that |f |X < 1, and fix 0 < ε < 1/2. Since (a0, b0) ∈ A∗ × B∗, we

find an open neighborhood Aa0
of a0 in A (resp. an open neighborhood Bb0

of b0 in B) such that

(6.20) |f(a, b) − λ| < ε2, a ∈ Aa0
, b ∈ Bb0 .

It is clear that mes(Aa0
) > 0 and mes(Bb0) > 0.

Consider the function

(6.21) h(z, w) := f(z, w) − λ, (z, w) ∈ X(Aa0
, Bb0 ; D, G).

Clearly,

(6.22) |h(z, w)| ≤ 2, (z, w) ∈ X(Aa0
, Bb0 ; D, G).

Applying the results of Steps 1–3 to h, we obtain the function

(6.23) ĥ := K[h] on X̂
o(Aa0

, Bb0 ; D, G).

so that ĥ has angular limit h on (Ãa0
×G)∪ (D × B̃b0), where Ãa0

, B̃b0 are
given by Step 2. Clearly,

X̂(Aa0
, Bb0 ; D, G) ⊂ X̂(A, B; D, G).

Consequently, arguing as in Step 1 and taking into account the above men-
tioned angular limit of ĥ, we conclude that

ĥ = f̂ − λ on X̂(Aa0
, Bb0 ; D, G).

Consequently, applying Step 3 and taking into account (6.20)–(6.23) and
the inequality |f |X < 1, we see that

|f̂(z, w) − λ| = |ĥ(z, w)|
≤ |h|1−ω(z,Aa0

,D)−ω(w,Bb0
,G)

Aa0
×Bb0

(2|f |X)ω(z,Aa0
,D)+ω(w,Bb0

,G)

< ε2(1−ω(z,Aa0
,D)−ω(w,Bb0

,G))2ω(z,Aa0
,D)+ω(w,Bb0

,G).
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Therefore, for all (z, w) ∈ X̂(Aa0
, Bb0 ; D, G) satisfying

(6.24) ω(z, Aa0
, D) + ω(w, Bb0 , G) < 1/3,

we deduce from the last estimate that

(6.25) |f̂(z, w) − λ| < ε.

Since a0 (resp. b0) is locally regular relative to Aa0
(resp. Bb0), there is an

rα > 0 such that (6.24) holds for

(z, w) ∈ (Aα(a0) ∩ {|z − a0| < rα}) × (Aα(b0) ∩ {|w − b0| < rα}).
This, combined with (6.25), completes the proof.

Step 6: Proof of (5) of Theorem A. By Step 5, we only need to show

that f̂ has angular limit f on (A∗×G)∪ (D×B∗). To do this let (a0, w0) ∈
A∗ ×G and choose 0 < ε < 1. Fix a compact subset K of B ∩B∗ such that
mes(K) > 0 and a sufficiently large N such that

(6.26) εN(1−ω(w0,K,G))(2|f |X)ω(w0,K,G) < ε/2.

Using the hypothesis that f can be extended to a continuous function on
A∗ × B∗, we find an open neighborhood Aa0

of a0 in A∗ such that

(6.27) |f(a, b) − f(a0, b)| ≤ εN , a ∈ Aa0
∩ A∗

a0
, b ∈ K.

On the other hand,

(6.28) |f(a, w) − f(a0, w0)| ≤ 2|f |X < 2, a ∈ Aa0
∩ A∗

a0
, w ∈ G.

For a ∈ Aa0
∩ A∗

a0
, applying the two-constant theorem to the function

f(a, ·) − f(a0, ·) ∈ O(G) and taking (6.26)–(6.28) into account, we deduce
that

(6.29) |f(a, w0) − f(a0, w0)| ≤ εN(1−ω(w0,K,G))(2|f |X)ω(w0,K,G) < ε/2.

Since f(a, ·)|G is a bounded holomorphic function for a ∈ A, there is an
open neighborhood V of w0 such that

|f(a, w) − f(a, w0)| < ε/2, a ∈ A, w ∈ V.

This, combined with (6.29), implies that

|f(a, w) − f(a0, w0)| ≤ |f(a, w0) − f(a0, w0)| + |f(a, w) − f(a, w0)|
< ε/2 + ε/2 = ε, a ∈ Aa0

, w ∈ V.

Therefore, f is continuous at (a0, w0). Consequently, by Step 4, f̂ has angular

limit f(a0, w0) at (a0, w0). Similarly, we can also show that f̂ has angular
limit f(z0, b0) at every point (z0, b0) ∈ D × B∗.
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7. Preparatory results. We first develop some auxiliary results. This
will enable us to extend the results of Section 6 to the general case of The-
orem A.

Definition 7.1. Let Ω be a complex manifold of dimension 1 and
A ⊂ Ω. Define

ω(·, A, Ω) := sup{u : u ∈ SH(Ω), u ≤ 1 on Ω, u ≤ 0 on A}.
The function ω(·, A, Ω) is called the harmonic measure of A relative to Ω.
A point ζ ∈ A ∩ Ω is said to be a locally regular point relative to A if

lim
z→ζ

ω(z, A ∩ U, Ω ∩ U) = 0

for any open neighborhood U of ζ. If, moreover, ζ ∈ A, then ζ is said to be
a locally regular point of A. The set of all locally regular points relative to
A is denoted by A∗. A is said to be locally regular if A = A∗.

Proposition 7.2. Let X be a complex manifold of dimension 1, D ⊂ X
an open set and A ⊂ ∂D a Jordan measurable subset of positive length. Let
{aj}j∈J be a finite or countable subset of A with the following properties:

(i) for any j ∈ J, there is an open neighborhood Uj of aj such that
D∩Uj is either a Jordan domain or the disjoint union of two Jordan
domains;

(ii) A ⊂ ⋃
j∈J Uj .

For any 0 < δ < 1/2, define

Uj,δ := {z ∈ D ∩ Uj : ω(z, A∗ ∩ Uj , D ∩ Uj) < δ}, j ∈ J,

Aδ :=
⋃

j∈J

Uj,δ,

Dδ := {z ∈ D : ω(z, A∗, D) < 1 − δ}.
Then:

(1) A ∩ A∗ ⊂ AD
δ and Aδ ⊂ D1−δ ⊂ Dδ;

(2) ω(z, A∗, D) − δ ≤ ω(z, Aδ, D) ≤ ω(z, A∗, D), z ∈ D.

Proof. To prove (1), let a ∈ A∩A∗ and fix j ∈ J such that a ∈ Uj . Then

lim
z→a, z∈Aα(a)

ω(z, A∗ ∩ Uj , D ∩ Uj) = 0, 0 < α < π/2.

Consequently, for every 0 < α < π/2, there is an open neighborhood Vα ⊂ Uj

of a such that

ω(z, A∗ ∩ Uj , D ∩ Uj) < δ, z ∈ Aα(a) ∩ Vα.

This proves A ∩ A∗ ⊂ AD
δ .
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To prove the second assertion of (1), one applies the subordination prin-
ciple to obtain, for z ∈ Uj,δ,

(7.1) ω(z, A∗, D) ≤ ω(z, A∗ ∩ Uj , D ∩ Uj) < δ < 1 − δ.

Hence, z ∈ D1−δ. This implies that Aδ ⊂ D1−δ. In addition, since 0 < δ
< 1/2, it follows that D1−δ ⊂ Dδ. Hence, (1) is proved.

We turn to (2). Since Aδ is an open set and, by (1), A ∩ A∗ ⊂ AD
δ , it

follows from Definitions 4.8 and 7.1 that

ω(z, Aδ, D) ≤ ω(z, A ∩ A∗, D), z ∈ D.

Hence, Theorem 4.6 shows that

ω(z, Aδ, D) ≤ ω(z, A∗, D), z ∈ D,

which proves the second estimate of (2).
To complete the proof of (2), let z ∈ Aδ. Choose j ∈ J such that z ∈ Uj,δ.

We deduce from (7.1) that ω(z, A∗, D) − δ ≤ 0. Hence,

ω(z, A∗, D) − δ ≤ 0, z ∈ Aδ.

On the other hand, ω(z, A∗, D)−δ < 1 for all z ∈ D. Consequently, the first
estimate of (2) follows.

The main ingredient in the proof of Theorem A is the following mixed
cross theorem.

Theorem 7.3. Let X and Y be complex manifolds of dimension 1,
D ⊂ X and Ω ⊂ Y open subsets, and A ⊂ D and B ⊂ ∂Ω. Assume that
A =

⋃∞
k=1 Ak with Ak locally regular compact subsets of D, Ak ⊂ Ak+1,

k ≥ 1. In addition, assume that B ⊂ ∂Ω is a Jordan measurable subset of
positive length. For 0 ≤ δ < 1 put G := {w ∈ Ω : ω(w, B, Ω) < 1 − δ}.
Let W := X(A, B; D, G), W o := X

o(A, B; D, G), and (using the notation
ωδ(·, B, Ω) of Theorem 4.10)

Ŵ o = X̂
o(A, B; D, G) := {(z, w) ∈ D × G : ω(z, A∗, D) + ωδ(w, B, Ω) < 1}.

Let f : W → C be such that :

(i) f ∈ Os(W
o);

(ii) f is Jordan measurable and locally bounded on W ;
(iii) for any z ∈ A,

lim
w→η, w∈Aα(η)

f(z, w) = f(z, η), η ∈ B, 0 < α < π/2.

Then there is a unique function f̂ ∈ O(Ŵ o) such that f̂ = f on A × G and

lim
z→z0, w→η0, w∈Aα(η0)

f̂(z, w) = f(z0, η0), 0 < α < π/2,

for every z0 ∈ D and η0 ∈ B ∩ B∗. Moreover , |f̂ |
Ŵ o ≤ |f |W .
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Proof. First we prove the existence and uniqueness of f̂ . Fix f : W → C

which satisfies (i)–(iii) above.

Step I: Reduction to the case where D ⋐ X is an open hyperconvex
set (3), A is a locally regular compact subset of D and |f |W < ∞. Since X is
countable at infinity, we find an exhaustion sequence (Dk)

∞
k=1 of relatively

compact, hyperconvex open subsets Dk of D with Ak ⊂ Dk ր D (for
example, we can choose open subsets Dk of D with smooth boundary which
contain Ak). Similarly, since Y is countable at infinity, we find a sequence
(Ωk)

∞
k=1 of open subsets of Ω and a sequence (Bk)

∞
k=1 of Jordan measurable

subsets of B which satisfy the hypothesis of Proposition 4.7. Let Gk :=
{w ∈ Ωk : ω(w, Bk, Ωk) < 1 − δ}. Using a compactness argument, we see
that |f |X(Ak,Bk;Dk,Gk) < ∞.

By assumption, for each k there exists an f̂k ∈ O(X̂o(Ak, Bk; Dk, Gk))

such that f̂k has angular limit f |X(Ak,Bk∩B∗

k
;Dk,Gk) on X(Ak, Bk∩B∗

k; Dk, Gk).

We claim that f̂k+1 = f̂k on X̂
o(Ak, Bk; Dk, Gk). Indeed, fix k0 ≥ 1 and

(z0, w0) ∈ X̂
o(Ak0

, Bk0
; Dk0

, Gk0
). Let k ∈ N be such that k ≥ k0. Let D be

the connected component containing z0 of the open set

{z ∈ D : ω(z, Ak0
, Dk0

) < 1 − ωδ(w0, Bk, Ωk)}.

Observe that both f̂k0
(·, w0)|D and f̂k(·, w0)|D are holomorphic and

f̂k(z, w0) = fk(z, w0) = f̂k0
(z, w0), z ∈ Ak ∩ D.

Since Ak ∩ D is nonpolar, we deduce that f̂k0
(·, w0)|D = f̂k(·, w0)|D. Hence,

f̂k0
(z0, w0) = f̂k(z0, w0), which proves the above assertion.

On the other hand, by Proposition 4.7 one gets X̂
o(Ak, Bk; Dk, Gk)ր Ŵ o

as k ր ∞. Therefore, we can glue the f̂k together to obtain f̂ ∈ O(X̂o) with

angular limit f on W and f̂ = f on A × G. The uniqueness of f̂ can be
proved as in the previous paragraph.

Step II: The case where D ⋐ X is an open hyperconvex set, A is a
locally regular compact subset of D, and |f |W < ∞. Suppose without loss
of generality that |f |W < 1. We will apply Théorème 3.3 of [15] to the pair
of condensers (A, D). In the following, we use the notation from that work.

Let µ0 := µA,D and µ1 a B-admissible Lebesgue measure of D. Let H1 :=
L2

h(D, µ1), H0 := the closure of H1|A in L2(A, µ0), and let (bj)
∞
j=1 ⊂ H1 be

a system of doubly orthogonal bases in H1 and H0. Recall that ‖bj‖H0
= 1.

(3) An open set D ⊂ X is said to be hyperconvex if it admits an exhaustion function
which is bounded subharmonic.
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Putting γj := ‖bj‖H1
, j ∈ N, we have

(7.2)

∞∑

j=1

γ−ε
j < ∞, ε > 0.

For any w ∈ B, we have f(·, w) ∈ H1 and f(·, w)|A ∈ H0. Hence

(7.3) f(·, w) =
∞∑

j=1

cj(w)bj,

where

(7.4) cj(w) =
1

γ2
j

\
D

f(z, w) bj(z) dµ1(z) =
\
A

f(z, w) bj(z) dµ0(z), j ∈ N.

Taking the hypotheses (i)–(iii) into account and applying Lebesgue’s domi-
nated convergence theorem, we see that the formula

(7.5) ĉj(w) :=
\
A

f(z, w) bj(z) dµ0(z), w ∈ G ∪ B, j ∈ N;

defines a bounded function which is holomorphic in G. Moreover, by (iii)
and (7.4)–(7.5) it follows that

(7.6) lim
w→η, w∈Aα(η)

ĉj(w) = ĉj(η) = cj(η), η ∈ B, 0 < α < π/2.

Using (7.4)–(7.6), we obtain the estimates

log |ĉj(w)|
log γj

≤ log
√

µ0(A)

log γj
, w ∈ G, j ∈ N,

lim sup
w→η, w∈Aα(η)

log |ĉj(η)|
log γj

≤ log
√

µ1(D)

log γj
− 1, η ∈ B, 0 < α < π/2, j ∈ N.

This shows that for any ε > 0, there is an N such that for all j ≥ N,

(7.7)
log |ĉj|
log γj

≤ ωδ(·, B, Ω) + ε − 1 on G.

Take a compact set K ⋐ D and let 1 > α = α(K) > maxK ω(·, A, D).
Choose an ε = ε(K) > 0 so small that α + 2ε < 1. Consider the open set

GK := {w ∈ G : ωδ(·, B, Ω) < 1 − α − 2ε}.
By (7.7) there is a constant C ′(K) such that

(7.8) |ĉj |Gj
≤ C ′(K)γ

ωδ(·,B,Ω)+ε−1
j ≤ C ′(K)γ−α−ε

j , j ≥ 1.

Now we show that

(7.9)

∞∑

j=1

ĉj(w)bj(z)
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converges locally uniformly in Ŵ o. Indeed, by (7.2) and (7.8),

∞∑

j=1

|ĉj|GK
|bj |K ≤

∞∑

j=1

C ′(K)γ−α−ε
j C(K, α)γα

j(7.10)

≤ C ′(K)C(K, α)
∞∑

j=1

γ−ε
j < ∞,

which gives the normal convergence on K × GK . Since K and ε > 0 are

arbitrary, the series in (7.9) converges uniformly on compact subsets of Ŵ o;

call the limit function f̂ .

Fix z0 ∈ D and η0 ∈ B ∩ B∗. We choose a compact K0 ⋐ D so that K0

is a neighborhood of z0. Let ε0 > 0.

By (7.10), there is an N0 such that

(7.11)
∞∑

j=N0+1

|ĉj|GK0
|bj|K0

< ε0/2.

On the other hand, by (7.3)–(7.6), we can find, for any 0 < α < π/2, an
open neighborhood Vα of η0 such that

∣∣∣
N0∑

j=1

ĉj(w)bj(z) −
N0∑

j=1

cj(η0)bj(z)
∣∣∣ < ε0/2, z ∈ K0, w ∈ Aα(η0) ∩ Vα.

This, combined with (7.9) and (7.11), implies that

lim sup
z→z0, w→η0, w∈Aα(η0)

|f̂(z, w) − f(z0, η0)| < ε0, 0 < α < π/2.

We conclude that

lim
z→z0, w→η0, w∈Aα(η0)

f̂(z, w) = f(z0, η0), (z0, η0) ∈ D×(B∩B∗), 0 < α < π/2.

To complete the proof of Step II, it remains to show that f̂ = f on
A × G. To do this, fix (z0, w0) ∈ A × G. Let G be the connected compo-
nent of G containing w0. Recall that G = {w ∈ Ω : ω(w, B, Ω) < 1 − δ}.
Observe that both f̂(z0, ·)|G and f(z0, ·)|G have the same angular limit f

on B ∩ GΩ. Consequently, Theorem 5.4 shows that f̂(z0, ·)|G = f(z0, ·)|G.

Hence, f̂(z0, w0) = f(z0, w0), which proves the above assertion.

It remains to prove the estimate |f̂ |
Ŵ o ≤ |f |W . Assume for contradiction

that |f̂(z0)| > |f |W for some z0 ∈ Ŵ o. Put α := f̂(z0) and consider the
function

(7.12) g(z) :=
1

f(z) − α
, z ∈ W.
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It can be checked that g satisfies hypotheses (i)–(iii) of Theorem 7.3. Hence

the first assertion of the theorem shows that there is exactly one ĝ ∈ O(Ŵ o)
with ĝ = g on A × G. Therefore, by (7.12) we have g(f − α) ≡ 1 on A × G.

Thus ĝ(f̂ − α) ≡ 1 on Ŵ o. In particular,

0 = ĝ(z0)(f̂(z0) − α) = 1;

a contradiction.

We conclude this section with two uniqueness results.

Proposition 7.4. Let X, Y be two complex manifolds of dimension 1,
D ⊂ X, G ⊂ Y two open sets and A ⊂ ∂D, B ⊂ ∂G two Jordan measurable
subsets of positive length. Let D̃ ⊂ X be an open set with D ∩ D̃ 6= ∅, and

let Ã ⊂ ∂D̃ be a Jordan measurable subset of positive measure. Put

Ŵ o := X̂
o(A, B; D, G),

̂̃
W o := X̂

o(Ã, B; D̃, G).

Let f̂ ∈ O(Ŵ o),
̂̃
f ∈ O(

̂̃
W o), and z0 ∈ D ∩ D̃ be such that both f̂ and

̂̃
f

have the same angular limit at (z0, b) for a.e. b ∈ B. Then f̂(z, w) =
̂̃
f(z, w)

for every (z, w) ∈ Ŵ o ∩ ̂̃
W o.

Proof. Fix w0 ∈ G such that (z0, w0) ∈ Ŵ o ∩ ̂̃
W o. Choose 0 < ε < 1 so

that

(z0, w0) ∈ D1−ε × Gε ∩ D̃1−ε × Gε,

where we have used the notation of level sets introduced in Section 4. Ap-

plying Theorem 5.4 to f̂(z0, ·)|Gε and
̂̃
f(z0, ·)|Gε shows that

̂̃
f(z0, w0) =

f̂(z0, w0).

Now we are able to prove the uniqueness stated in Theorem A.

Corollary 7.5. Under the hypotheses and the notation of Theorem A,
there is at most one f̂ ∈ O(Ŵ o) which satisfies property (1) of Theorem A.

Proof. This follows immediately from Proposition 7.4.

8. Proof of Theorem A. Recall that by Corollary 7.5, the function f̂
satisfying (1) of Theorem A is uniquely determined (if it exists). We only
give the proof of (1). We then conclude the proof of (2)–(5) of Theorem A
in exactly the same way as we did in Section 6 starting from Step 2 of that
section. The proof is divided into two steps.

Step 1: Proof of Theorem A for the case where G is a Jordan do-
main. By Proposition 7.2, let {aj}j∈J be a finite or countable subset of
A with the following properties:
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• for any j ∈ J, there is an open neighborhood Uj of aj such that D∩Uj

is either a Jordan domain or the disjoint union of two Jordan domains
(according to the type of aj);

• A ⊂ ⋃
j∈J Uj .

For any 0 < δ < 1/2, define

Uj,δ := {z ∈ D ∩ Uj : ω(z, A∗ ∩ Uj , D ∩ Uj) < δ}, j ∈ J,

Aδ :=
⋃

j∈J

Uj,δ,

Gδ := {w ∈ G : ω(w, B, G) < 1 − δ}.
Moreover, for every j ∈ J let

(8.1)

Wj := X(∂(D ∩ Uj) ∩ A, B; D ∩ Uj , G),

Ŵ o
j := X̂

o(∂(D ∩ Uj) ∩ A, B; D ∩ Uj , G),

f̃j := f |Wj
.

Using the hypotheses on f, we conclude that f̃j , j ∈ J, satisfies (i)–(iii) of
Theorem A. Moreover, since G is a Jordan domain and D ∩ Uj , j ∈ J, is
either a Jordan domain or the disjoint union of two Jordan domains, we can

apply the result of Section 6 to f̃j . Consequently, for each j ∈ J , we obtain

a unique function f̂j ∈ O(Ŵ o
j ), a subset Aj of ∂(D ∩ U) ∩ A, and a subset

Bj of B such that

(8.2)

Aj ⊂ A∗
j ,

(∂(D ∩ U) ∩ A) \ Aj and B \ Bj are of zero length,

f̂j has angular limit f on ((∂(D ∩ Uj) ∩ Aj) × G) ∪ (D × Bj).

Put

Ã :=
⋂

j∈J

Aj , B̃ :=
⋂

j∈J

Bj ,

Wδ := X(Aδ, B̃; D, Gδ), Ŵ o
δ := X̂

o(Aδ, B̃; D, Gδ).

(8.3)

By Proposition 7.4, the family (f̂j |Uj,δ×Gδ
)j∈J yields a function ˜̃f δ ∈

O(Aδ × Gδ).

Next, consider the function f̃δ : Wδ → C given by

(8.4) f̃δ :=

{ ˜̃f δ on Aδ × Gδ,

f on D × (B̃ ∩ B̃∗).

From (8.1)–(8.4), we deduce that

(8.5) A \ Ã and B \ B̃ are of zero length,
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and

(8.6)

lim
z→z0, w→b0, w∈Aα(b0)

f̃δ(z, w) = f(z0, b0),

0 < α < π/2, z0 ∈ D, b0 ∈ B̃ ∩ B̃∗,

lim
z→a0, z∈Aα(a0), w→w0

f̃δ(z, w) = f(a0, w0),

0 < α < π/2, a0 ∈ Ã, w0 ∈ Gδ.

By (8.4)–(8.6), f̃δ satisfies hypotheses (i)–(iii) of Theorem 7.3. Applying this

theorem to f̃δ, we obtain, for every 0 < δ < 1/2, a function f̂δ ∈ O(Ŵ o
δ). By

(8.6), we see that

(8.7)

f̂δ = f̃δ on Aδ × Gδ,

lim
z→z0, w→b0, w∈Aα(b0)

f̂δ(z, w) = f(z0, b0),

0 < α < π/2, z0 ∈ D, b0 ∈ B̃ ∩ B̃∗,

lim
z→a0, z∈Aα(a0), w→b0

f̂δ(z, w) = f(a0, w0),

0 < α < π/2, a0 ∈ Ã, w0 ∈ Gδ.

We are now in a position to define the desired extension f̂ . Indeed, one
glues (f̂δ)0<δ<1/2 together to obtain f̂ in the following way:

(8.8) f̂ := lim
δ→0

f̂δ on Ŵ o = X̂
o(A, B; D, G).

One has to check that the limit (8.8) exists and has all the required proper-
ties. This will be an immediate consequence of the following

Lemma 8.1. For any (z, w) ∈ Ŵ o put

(8.9) δ(z,w) :=
1 − ω(z, A∗, D) − ω(w, B∗, G)

2
.

Then f̂(z, w) = f̂δ(z, w) for all 0 < δ ≤ δ(z,w).

Proof. Fix (z0, w0)∈ X̂
o(A, B; D, G) and let δ0 := δ(z0,w0). Let 0 < δ ≤ δ0.

Then ω(w0, B
∗, G) < 1 − δ0 and

ω(z0, Aδ, D) + ωδ0(w0, B, G) ≤ ω(z0, A
∗, D) +

ω(w0, B
∗, G)

1 − δ0

≤ ω(z0, A
∗, D) + ω(w0, B

∗, G)

1 − δ0
< 1,

where the last estimate follows from (8.9). Consequently,

(8.10) (z0, w0) ∈ X̂
o(Aδ, B; D, Gδ0).
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On the other hand, by Proposition 7.2(1), it is clear that

(8.11) X̂
o(Aδ, B; D, Gδ0) ⊂ X̂

o(Aδ, B; D, Gδ) ∩ X̂
o(Aδ0 , B; D, Gδ0).

Moreover, in view of (8.4) and (8.7), we have

(8.12) f̂δ = ˜̃f δ = f̂δ0 on Aδ × Gδ0 .

Next, let D be the connected component containing z0 of the open set

{z ∈ D : ω(z, Aδ, D) < 1 − ωδ0(w0, B, G)}.
By (8.10)–(8.11), both f̂δ|D and f̂δ0 |D are holomorphic and D ∩ Aδ is a

nonempty open set. Therefore, (8.12) yields f̂δ = f̂δ0 on D. Hence, f̂δ(z0, w0)

= f̂δ0(z0, w0).

We now complete the proof of (1) as follows. An immediate consequence

of Lemma 8.1 is that f̂ ∈ O(Ŵ o). Next, applying Lemma 8.1, (8.4)–(8.9)

and the fact that Ŵ o
δ → Ŵ o as δ ց 0 we conclude that f̂ satisfies the

conclusion of (1).

Step 2: Proof of Theorem A for the general case. We proceed using
Step 1 in exactly the same way as we proved Step 1 using the result of
Section 6.

We conclude this section with the following remark. Using the above
proof, one can also derive Gonchar’s theorem (Theorem 1) from Drużkow-
ski’s theorem (Theorem 3). Indeed, in Step 1 above, let {aj}j∈J be a finite
or countable subset of A with the following properties:

• for any j ∈ J, there is an open neighborhood Uj of aj such that D∩Uj

is a Jordan domain and A ∩ Uj is an open arc;
• A ⊂ ⋃

j∈J Uj .

Then we repeat Step 1 (B is only one open arc) and Step 2 (the general
case) above using Drużkowski’s theorem, and Gonchar’s theorem follows.

9. Proof of Theorem B. We will give the proof for the case when D
and G are the unit disc E. The general case can be proved using the scheme
of Sections 6 and 8. The proof is divided into two steps.

Step 1: Proof of Theorem B when f(a, ·)|G and f(·, b)|D are bounded
for every a ∈ A and b ∈ B. For any N ∈ N let

(9.1) AN := {a ∈ A : |f(a, ·)|G ≤ N}, BN := {b ∈ B : |f(·, b)|D ≤ N}.
Then

(9.2) AN ր A and BN ր B as N ր ∞.



188 P. Pflug and V.-A. Nguyên

Now we show that for every N ∈ N,

AN is a closed subset of A and f |AN×G ∈ C(AN × G),

BN is a closed subset of B and f |D×BN
∈ C(D × BN ).

(9.3)

To do this fix N ∈ N and let (an)∞n=1 ⊂ AN with limn→∞ an = a0 ∈ AN .
Then, by hypothesis (i),

(9.4) lim
n→∞

f(an, t) = f(a0, t), t ∈ B.

On the other hand, by the hypothesis of Step 1,

|f(an, ·)|G ≤ N and |f(a0, ·)|G < ∞.

Now the Khinchin–Ostrowski theorem (see [4, Theorem 4, p. 397]) shows
that the sequence (f(an, ·)|G)∞n=1 ⊂ O(G) converges uniformly on compact
subsets of G to f(a0, ·). This completes the proof of (9.3).

On the other hand, by hypothesis (ii), the holomorphic function f(a, ·)
has angular limit f(a, b) at b ∈ B. It follows that f |AN×BN

is measur-
able. Moreover, by (9.1), |f |X(AN ,BN ;D,G) ≤ N for every N ∈ N. In ad-
dition, in view of (9.2), there exists an N0 such that mes(AN ) > 0 and
mes(BN ) > 0 for N ≥ N0. Consequently, Theorem A applied to the re-
struction of f to the cross X(AN , BN ; D, G) for N ≥ N0 yields a function

f̂N ∈ O(X̂o(AN , BN ; D, G)) and a subset ÃN (resp. B̃N ) of AN (resp. BN ),
for N ≥ N0, such that

(9.5)
mes(AN \ ÃN ) = mes(BN \ B̃N ) = 0,

f̂N has angular limit f on (ÃN × G) ∪ (D × B̃N ).

Put

(9.6) Ã :=
∞⋃

N=N0

ÃN , B̃ :=
∞⋃

N=N0

B̃N .

Applying (9.2), (9.5), and Corollary 7.5, we obtain

(9.7) f̂N = f̂N+1 on X̂
o(ÃN , B̃N ; D, G), N ≥ N0.

Therefore, the f̂N glue together to yield the desired extension as

(9.8) f̂ = lim
N→∞

f̂N on Ŵ o := X̂
o(A, B; D, G).

Moreover, by (9.5)–(9.8), we infer that

(9.9)
mes(A \ Ã) = mes(B \ B̃) = 0,

f̂ has angular limit f on (Ã × G) ∪ (D × B̃).

Next, for every N ≥ N0, in view of (9.2)–(9.3) and (9.5), one can find a
sequence (FN,n)∞n=1 (resp. (HN,n)∞n=1) of compact subsets of ∂D (resp. ∂G)



Boundary cross theorem 189

such that

(9.10)

FN,n ⊂ FN,n+1 ⊂ A, HN,n ⊂ HN,n+1 ⊂ B,

mes(FN,n) > 0, mes(HN,n) > 0,

mes
(
ÃN \

∞⋃

n=1

FN,n

)
= 0, mes

(
B̃N \

∞⋃

n=1

HN,n

)
= 0.

Moreover, for any k ∈ N, k ≥ 1, and for any m ∈ N, put

(9.11)

ANnmk := {a ∈ AN : |f(a, ζ) − f(a, η)| ≤ 1/2k2,

∀ζ, η ∈ HN,n : |ζ − η| < 1/m},

BNnmk := {b ∈ BN : |f(ζ, b) − f(η, b)| ≤ 1/2k2,

∀ζ, η ∈ FN,n : |ζ − η| < 1/m}.
Since, by hypothesis (i), f ∈ Cs(A × B), we deduce from (9.10) and (9.11)
that ANnmk (resp. BNnmk) is a closed subset of AN (resp. BN ) and

(9.12) ANnmk ր AN and BNnmk ր BN as m ր ∞, k ≥ 1.

Consequently, there is an m0 := m0(N, n, k) such that mes(ANnmk ∩ FN,n)
> 0 and mes(BNnmk∩HN,n) > 0 for any m > m0. Now we apply Theorem A
to the restriction of f to X(ANnmk ∩ FN,n, BNnmk ∩ HN,n; D, G). Using

(9.7)–(9.9) and Corollary 7.5, we then obtain exactly the restriction of f̂ to

X̂o(ANnmk ∩ FN,n, BNnmk ∩ HN,n; D, G). Let (4)

ÃNnmk := (ANnmk ∩ FM,n) ∩ (ANnmk ∩ FN,n)∗,

B̃Nnmk := (BNnmk ∩ HM,n) ∩ (BNnmk ∩ HN,n)∗,
(9.13)

Taking (9.11)–(9.13) into account and arguing as in Step 5 of Section 6, we
can show that

(9.14)

mes(ÃNnmk \ FN,n) = 0, mes(B̃Nnmk \ HN,n) = 0,

lim sup
(z,w)→(a,b), z∈Aα(a), w∈Aα(b), (z,w)∈X̂o

|f̂(z, w) − f(a, b)| < 1/k,

for any 0 < α < π/2, and (a, b) ∈ ÃNnmk × B̃Nnmk. Now it suffices to put

Ã :=

∞⋂

k=1

∞⋃

N=N0

∞⋃

n=1

∞⋃

m=m0(N,n,k)

ÃNnmk, B̃ :=

∞⋂

k=1

∞⋃

N=N0

∞⋃

n=1

∞⋃

m=m0(N,n,k)

B̃Nnmk.

Combining this and (9.14), (9.12), (9.9) and (9.2), we can check that all the
conclusions of Theorem B are satisfied.

(4) Recall from Subsection 2.2 that for a boundary subset T, T ∗ denotes the set of
locally regular points relative to T.
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Step 2: The general case. We begin with the following

Definition 9.1. For a closed subset F of ∂E and n ∈ N with n > 1,
define the following open set:

∆ = ∆(F, n) :=
⋃

ζ∈F

{z ∈ Aπ/4(ζ) : |z| ≥ 1 − 1/n} ∪ B(0, 1 − 1/n).

The reader should compare this definition with Definition 5.1. Below we
list some properties of such open sets.

Proposition 9.2. Let F be a closed subset of ∂E.

(1) ∆(F, n) is a rectifiable Jordan domain and F ⊂ ∂∆(F, n).
(2) ∆(F, n) ր E as n ր ∞.
(3) If f : E ∪ F → C is locally bounded , then |f |∆(F,n) < ∞ for every

n > 1.
(4) ω(z, F, E) = limn→∞ ω(z, F, ∆(F, n)) for all z ∈ E.

Proof. (1) is shown as in the proof of Proposition 5.2; (2) is an immediate
consequence of Definition 9.1; (3) follows immediately from the compactness
of F ; and the proof of Proposition 4.7 with the obvious changes yields (4).

Now we are in a position to complete Step 2. Indeed, first suppose that
both A and B are closed, and consider the sequences (Dn)∞n=2 and (Gn)∞n=2

of rectifiable Jordan domains given by

Dn := ∆(A, n), Gn := ∆(B, n), n ≥ 2.

For n ≥ 2 let fn := f |X(A,B;Dn,Gn). By Proposition 9.2, we can apply the

result of Step 1 to fn to obtain a function f̂n ∈ X̂
o(A, B; Dn, Gn). We then

glue the f̂n together to obtain the desired extension

f̂ = lim
n→∞

f̂n on Ŵ o = X̂
o(A, B; D, G).

Proposition 9.2 shows that f̂ satisfies all the assertions of Theorem B.

The case when A and B are only measurable is similar. It suffices to
find a sequence (Am)∞m=1 of subsets of A such that Am is compact and
mes(A \ ⋃∞

m=1 Am) = 0, and a similar sequence (Bm)∞m=1 for B. Then

we apply the previous discussion to f |X(Am,Bm;D,G) to obtain f̂m ∈
X̂

o(Am, Bm; D, G), and define the desired extension by f̂ := limm→∞ f̂m

on Ŵ o.

10. Examples and concluding remarks. The following examples of
Drużkowski [2] show the optimality of Theorems A and B. Let D = G = E,
A = B = {t ∈ ∂E : Re t > 0}, W := X(A, B; D, G), and T := (D ∪ A) ×
(G ∪ B).
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Example 1. Define h : T → C by

h(z, w) :=





exp

(
−[Log (1 − z) + Log (1 − w)] Log

2 + zw

3

)
,

z 6= 1, w 6= 1,

0, z = 1 or w = 1.

where Log is the principal branch of the logarithm. Put f := h|W . As in
[2] observe that f is measurable, f ∈ Cs(W ) ∩ Os(W

o), |f |W < ∞, but

f |A×B is not continuous at (1, 1). Since h|
Ŵ o ∈ O(Ŵ o), using the uniqueness

established in Theorem A, we conclude that the solution f̂ provided by
Theorems A and B satisfies f̂ = h|

Ŵ o . In addition, for 0 < α < π/2, the

angular limit of f̂ at (1, 1) does not exist. Thus the condition in assertion (3)

of Theorem A is necessary. Moreover, the sets Ã, B̃ given by Theorem B do
depend on f.

Example 2. Define h : T → C by

h(z, w) :=

{
exp

(
−(z − λ) Log2 3 + w

1 − w

)
, w 6= 1,

0, w = 1

where (z, w) ∈ T, 0 < λ ≤
√

2/2. Define f := h|W . Then f̂ = h|
Ŵ o . As in [2]

observe that f |A×B is continuous, f ∈ Cs(W )∩Os(W
o), but f is not locally

bounded on W.

In addition, for π/3 < α < π/2, consider the functions zα,λ, wα :
[0, 1] → C given by

wα(t) := 1 + tei(π−9α/10),

zα,λ(t) := λ +

(
ReLog2 3 + wα(t)

1 − wα(t)

)−1

+ iλ, t ∈ [0, 1].

We can prove that there is a tα,λ > 0 and a neighborhood Uα,λ of λ + iλ in
C such that

(zα,λ(t), wα(t)) ∈





((Aα(λ + iλ) ∩ Uα,λ) ×Aα(1)) ∩ Ŵ o,

0 < t < tα,λ, λ =
√

2/2,

(Uα,λ ×Aα(1)) ∩ Ŵ o, 0 < t < tα,λ, 0 < λ <
√

2/2.

In addition, it can be checked that

lim
t→0

(zα,λ(t), wα(t)) = (λ + iλ, 1), lim
t→0

|f̂(zα,λ(t), wα(t))| = ∞.

This shows that the assumption of the local boundedness of f is necessary
in Theorem A.

We conclude the article with some remarks and open questions.
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1. It can be proved that Ŵ o provided by Theorem A is the maximal
domain of holomorphic extension of f (see [12]).

2. Does Theorem A still hold if we omit the assumption (ii) that f |A×B

is Jordan-measurable?
3. Does Theorem B still hold if we omit the assumption that f |A×B ∈

Cs(A × B)?
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