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A note on the Nullstellensatz for 
-holomorphi
 fun
tionsby Maciej P. Denkowski (Kraków and Bordeaux)Abstra
t. We begin this arti
le with a graph theorem and a kind of Nullstellensatzfor weakly holomorphi
 fun
tions. This yields a general Nullstellensatz for 
-holomorphi
fun
tions on lo
ally irredu
ible sets. In Se
tion 2 some methods of Pªoski�Tworzewskipermit us to prove an e�e
tive Nullstellensatz for 
-holomorphi
 fun
tions in the 
ase of aproper interse
tion with the degree of the interse
tion 
y
le as exponent. We also extendthis result to the 
ase of isolated improper interse
tion, generalizing a result of E. Cygan.The last se
tion is devoted to some 
onsiderations on the dimension of the zero-sets of
-holomorphi
 mappings.1. Introdu
tion. Let A ⊂ Ω be an analyti
 set in an open set Ω ⊂ Cm.Re
all (see [R℄ where this notion was �rst introdu
ed and also [�℄, [Wh℄)that a fun
tion f : A → C is 
alled 
-holomorphi
 if it is 
ontinuous andthe restri
tion of f to the subset Reg A of regular points is holomorphi
. Wedenote by Oc(A) the ring of 
-holomorphi
 fun
tions on A. A mapping is 
-holomorphi
 i� all its 
omponents are 
-holomorphi
 fun
tions. The followingtheorem is fundamental for all we shall do (
f. [Wh, 4.5Q℄):Theorem 1.1. A mapping f : A → Cn is 
-holomorphi
 i� it is 
on-tinuous and its graph Γf := {(x, f(x)) | x ∈ A} is an analyti
 subset of
Ω × Cn.For a more detailed list of basi
 properties of 
-holomorphi
 mappingssee [Wh℄, [D℄. The notion of weakly holomorphi
 fun
tions (H. Cartan) ismu
h better known. We just re
all that it refers to fun
tions de�ned andholomorphi
 on Reg A and lo
ally bounded near the singularities (i.e. on thewhole of A). A mapping is 
alled weakly holomorphi
 if all its 
omponentsare weakly holomorphi
. We denote by Ow(A, Cn) the ring of weakly holo-morphi
 mappings and put Ow(A) := Ow(A, C). More details 
an be foundin [Wh℄.2000 Mathemati
s Subje
t Classi�
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220 M. P. DenkowskiWe just re
all that if A =
⋃

Aι is the de
omposition of A into irredu
ible
omponents, then a weakly holomorphi
 fun
tion f has a unique extensiononto Reg Aι for ea
h ι (and that works in fa
t for germs). Thus f is weaklyholomorphi
 i� it is so on ea
h irredu
ible 
omponent of A. Over a singularpoint a ∈ Sng A a weakly holomorphi
 fun
tion is multi-valued and takesat most as many values as the number of irredu
ible 
omponents of thegerm Aa.It may be useful to state expli
itly what we mean by proper interse
tion.Let X, Y be analyti
 sets in Ω ⊂ Cm of pure dimensions p and q respe
tively.The interse
tion X ∩ Y is 
alled proper if it has pure dimension p + q − m,i.e. at ea
h interse
tion point the dimension is the minimal possible. In theopposite 
ase the interse
tion is said to be improper .For the de�nition and properties of the interse
tion 
y
le X · Y we referthe reader to [Dr℄ (for the proper 
ase) and [T℄ (for the general 
ase, see also[ATW℄ for isolated improper interse
tion). We just re
all that if X∩Y =
⋃

Sιis the (lo
ally �nite) de
omposition into irredu
ible 
omponents, then theinterse
tion 
y
le is the formal sum
X · Y =

∑
i(X · Y, Sι)Sι,where i(X ·Y, Sι) is the interse
tion multipli
ity of X∩Y along the 
omponent

Sι 
omputed following [Dr℄ or [T℄.The degree of the 
y
le X · Y at a point a ∈ X ∩ Y is the number
dega(X · Y ) :=

∑
i(X · Y, Sι) dega Sι,where dega Sι stands for the 
lassi
al degree of the analyti
 set Sι at a (withthe 
onvention that dega Sι = 0 if a 6∈ Sι; thus the above sum is �nite).Finally, let U ⊂ Ck be open and 
onne
ted. If ϕ : A → U is a proper
-holomorphi
 mapping and A has pure dimension k, then π : Γϕ → U ,where π : Cm × Ck → Ck is the natural proje
tion, is a bran
hed 
overing(see e.g. [Dr℄, [Wh℄ or [�℄) and so has �nite multipli
ity (or 
overing number ,see e.g. [Dr℄). We 
all it the multipli
ity of ϕ.2. General Nullstellensatz for weakly holomorphi
 fun
tions.Let A be an analyti
 subset of some open set Ω ⊂ Cm.We begin with a useful and apparently not known graph theorem forweakly holomorphi
 fun
tions. It is a weakly holomorphi
 
ounterpart ofTheorem 1.1. Re
all that an analyti
ally 
onstru
tible subset of Ω is a setwhi
h 
an be written lo
ally in Ω as ⋃p
ι=1

⋂qj

j=1{Fιj∗ιj0}, where ∗ιj ∈ {=, 6=}and Fιj are holomorphi
 (see [�℄).Theorem 2.1. Let f : Reg A → Cn be a 
ontinuous mapping lo
allybounded on A. The following three 
onditions are then equivalent :
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(1) f ∈ Ow(A, Cn).
(2) The 
losure Γ f is an analyti
 subset of Ω × Cn.
(3) Γf is analyti
ally 
onstru
tible in Ω × Cn.Proof. First note that we may restri
t ourselves to the 
ase n = 1 sin
e

Γf =
⋂n

j=1 Γj , where
Γj := {(x, y1, . . . , yj−1, fj(x), yj+1, . . . , yn) | x ∈ Reg A, yι ∈ C}.We may as well assume that A has pure dimension k (using restri
tions tothe irredu
ible 
omponents of A) with 0 < k < m (otherwise, sin
e there areno singularities, there is nothing to do�
f. the analyti
 graph theorem).If we have (1)⇔(2), the equivalen
e (2)⇔(3) is quite immediate. Indeed,if Γ f is analyti
, then Γf = Γ f \ (Sng A×C) is the di�eren
e of two analyti
sets, and hen
e is analyti
ally 
onstru
tible. On the other hand, if Γf isanalyti
ally 
onstru
tible, then its 
losure is analyti
 and so f ∈ Ow(A).We now turn to proving (1)⇔(2). If Γ f is analyti
, then so is Γf in

(Ω \ Sng A) × C. Thus by the analyti
 graph theorem, f is holomorphi
 on
Reg A. Sin
e by assumption it is lo
ally bounded on A, we have f ∈ Ow(A).Now suppose that f ∈ Ow(A). The problem being lo
al, we may assumethat h ∈ O(Ω) is a global universal denominator for A (
f. Oka's theorem,see [�℄). Then we 
an �nd g ∈ O(Ω) su
h that fh = g on Reg A. Considernow the analyti
 set X := {(z, t) ∈ A × C | h(z)t = g(z)}. It remains toobserve that the set

Γf ∩ {(z, t) ∈ Ω × C | h(z) 6= 0}
= X ∩ (Reg A × C) ∩ {(z, t) ∈ Ω × C | h(z) 6= 0}
= X \ [(X ∩ (Sng A × C)) ∪ {(z, t) ∈ Ω × C | h(z) = 0}]is dense in Γf . Its 
losure in Ω × C is 
learly analyti
.Note also that by this theorem the zero-set of a weakly holomorphi
fun
tion is analyti
ally 
onstru
tible and so its 
losure is analyti
. It is morenatural, however, to 
onsider the interse
tion of the 
losure of the graph with

A × {0} as a substitute for the zero-set of a weakly holomorphi
 fun
tion.Now we turn to proving the general weakly holomorphi
 Nullstellensatz.Theorem 2.2. Let A ⊂ Cm be an analyti
 germ at zero and suppose that
g, f1, . . . , fn ∈ Ow(A) are su
h that

(1) 0 ∈ Γ f , where f := (f1, . . . , fn),
(2) (x, 0) ∈ Γ f ∩ (A × {0}n) implies Γ g ∩ ({x} × C) = {(x, 0)} for all xin some neighbourhood of zero.



222 M. P. DenkowskiThen there exists an integer p ≥ 1 su
h that on Reg A,
gp =

n∑

j=1

hjfjfor some hj ∈ Ow(A), j = 1, . . . , n.Proof. Let ̺ : N → A be a lo
al normalization of A at zero (we 
onsider
A as an analyti
 subset of some neighbourhood of zero). Then g̃ := g ◦̺ and
f̃j := fj ◦ ̺ are holomorphi
 on the normal germ N .Observe now that g̃−1(0) ⊃ ⋂

j f̃−1
j (0). Indeed, if f̃j(x) = 0 for all j,then either ̺(x) ∈ Reg A, in whi
h 
ase ̺(x) ∈ ⋂

j f−1(0) and so g̃(x) = 0,or ̺(x) ∈ Sng A. If the latter o

urs, then we take a sequen
e of points
Reg A ∋ aν → ̺(x). The sequen
e xν := ̺−1(aν) has a subsequen
e {xνµ}
onverging to x (by the properness of ̺). Then fj(aνµ) → 0 for all j and so
(̺(x), 0) ∈ Γ f . But then g(aνµ) → 0, when
e g̃(x) = 0.Now we apply the holomorphi
 Nullstellensatz to g̃, f̃1, . . . , f̃n (see [�℄)obtaining holomorphi
 fun
tions h̃j su
h that for some p ≥ 1,
(#) g̃p =

n∑

j=1

h̃j f̃jin a neighbourhood of the �bre ̺−1(0). For simpli
ity assume for the timebeing that this holds on the whole of N (in any 
ase the matter is lo
al).De�ne hj(a) := h̃j(̺
−1(a)) for a ∈ Reg A. In this way we 
learly getsome holomorphi
 fun
tions hj : Reg A → C. But ̺ being proper, all hj arebounded near the singularities and so they are weakly holomorphi
.Indeed, �x j and take any point a ∈ Sng A. For an arbitrarily small
ompa
t neighbourhood U of a the set V := ̺−1(U) is 
ompa
t and so

|h̃j| is bounded on it. If the |hj| were unbounded on any su
h neighbourhood
U \Sng A, we would �nd a sequen
e Reg A ∋ aν → a su
h that |hj(aν)| → ∞.However, hj(aν) = h̃j(̺

−1(aν)) and so it 
annot be unbounded.To �nish the proof we just observe that (#) remains true if we omitthe tildes and restri
t ourselves to a neighbourhood of zero interse
ted with
Reg A. To be more pre
ise, as a neighbourhood in whi
h (#) holds we maytake an open set U of the form ⋃r

j=1 Uj , where r is the number of points in the�bre ̺−1(0) and the union is disjoint. We may also ask that for any j, Uj be
onne
ted. Clearly, V := ̺(U) is an open neighbourhood of zero in A. Thenon V \ Sng A the mapping ̺ is invertible and its inverse sends a 
onne
tedneighbourhood of a ∈ V \ Sng A (
ontained in V \ Sng A) into exa
tly oneof the Uj . There we have (#) whi
h be
omes the required formula in theneighbourhood of a after 
omposition with ̺−1.
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tions 223Example 2.3. Consider Whitney's umbrella A := {x2y = z2} ⊂ C3 andthe weakly holomorphi
 fun
tion g(x, y, z) = z/x de�ned on it. We have
Sng A = {0} × C × {0} and g has two possible values over any point of
Sng A \ {0}3, namely √

y and −√
y (properly understood in the 
omplexsense). On the other hand, g(0) is well de�ned and equals zero. In parti
ular

Γ g ∩ (A × {0}) = {0}4.Consider now f1(x, y, z) = z and f2(x, y, z) = x − y on A. The only
ommon zero of these fun
tions is the origin. They satisfy the assumptionsof our theorem and indeed
g3 = f1 − gf2.A somewhat less interesting example may be given using the fun
tions

f1(x, y, z) = x and f2(x, y, z) = y on A. In this 
ase g2 is just f2.Example 2.4. The assumption of univalen
e of g over the zeroes of f(i.e. over the set Γ f ∩ (A × {0}n)) is essential. To see this, 
onsider the set
A := {xy = 0} in C2 and, on Reg A, the fun
tions f(x, y) = x − y and
g(x, 0) = x2 (if x 6= 0), g(0, y) = 1 (if y 6= 0). Both are weakly holomorphi
on A and

f−1(0) = {0}2 = Γ g ∩ (A × {0}),while Γ g ∩ (A × C) = {(0, 0), (0, 1)}. A straightforward 
omputation showsthat within the 
lass of weakly holomorphi
 fun
tions, no power of g 
an bedivisible by f in any neighbourhood of zero. If gp = hf for some p ∈ N, then
|h| must be unbounded near zero on the 
omponent {x = 0} ⊂ A.We derive from the theorem above a general 
-holomorphi
 Nullstellen-satz on lo
ally irredu
ible analyti
 sets.Corollary 2.5. Let A be a lo
ally irredu
ible analyti
 set and supposethat g, f1, . . . , fk ∈ Oc(A) are su
h that g−1(0) ⊃ ⋂

j f−1
j (0). Then for ea
h

a ∈ ⋂
j f−1

j (0) there is an integer p ≥ 1 and some 
-holomorphi
 fun
tions
hj in a neighbourhood of a su
h that

gp =
k∑

j=1

hjfjin this neighbourhood.Proof. For simpli
ity let a = 0. The set A being lo
ally irredu
ible, wehave Oc(A) = Ow(A). We now apply the pre
eding theorem, sin
e our as-sumptions imply both hypotheses (1) and (2). The assertion follows by 
on-tinuity or by applying the identity prin
iple as in the last se
tion of thispaper.
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tion e�e
tive Nullstellensatz. In what follows,
E denotes the unit dis
 in C. The �rst result 
omes from observing that one
an easily prove Lemma 1.1 from [PT℄ in the 
-holomorphi
 setting:Lemma 3.1. Let X be a pure k-dimensional analyti
 set in an open set
Ω ⊂ Cm and let ϕ = (ϕ1, . . . , ϕk) : X → Ek be a proper 
-holomorphi
mapping. Denote by d its multipli
ity and �x l ∈ {1, . . . , k}. Then for ea
h
g ∈ Oc(X) su
h that g−1(0) ⊃ {x ∈ X | ϕ1(x) = · · · = ϕl(x) = 0} thereexist h1, . . . , hl ∈ Oc(X) su
h that gd =

∑l
j=1 hjϕj.Proof. We 
onsider the set Γ := {(ϕ(x), g(x)) ∈ Ek × C | x ∈ X}. It iseasy to see that it is a pure k-dimensional analyti
 set.For the generi
 w ∈ Ek one has exa
tly d distin
t points in the �bre

ϕ−1(w) = {x1, . . . , xd}. For su
h points w whi
h moreover do not lie in theanalyti
 set ϕ(Sng X) ( Ek we may de�ne
P (w, t) :=

d∏

j=1

(t − g(xj)) = td + a1(w)td−1 + · · · + ad(w),

where aj(w) = (−1)j
∑

1≤i1<···<ij≤d g(xi1) · · · g(xij ) are obviously 
ontinu-ous. It is also 
lear that outside an analyti
 proper subset of Ek these 
oe�-
ients are holomorphi
, when
e by Riemann's theorem they are holomorphi
on Ek. Furthermore, P−1(0) = Γ and
Γ ∩ ({0}l × Ek−l × C) = {0}l × Ek−l × {0},when
e aj |({0}l×Ek−l) ≡ 0 for all j. This in turn obviously means that forall j, aj(w) = y1aj,1(w) + · · · + ylaj,l(w), where w = (y, z) ∈ El × Ek−l and

aj,s ∈ O(Ek), s = 1, . . . , l.Finally, we obtain the result sought for from P (ϕ(x), g(x)) = 0.We now turn to generalizing the e�e
tive Nullstellensatz to the 
-holo-morphi
 
ase using Lemma 3.1 and the methods of [PT℄.Let A be a pure k-dimensional analyti
 set in an open set Ω ⊂ Cm andlet f1, . . . , fn ∈ Oc(A) be su
h that for f = (f1, . . . , fn) the set f−1(0) is ofpure dimension k − n (then the interse
tion of Γf with Ω × {0}n is properin Ω × Cn). We denote by Zf the (Draper) 
y
le de�ned by
Zf = Γf · (Ω × {0}n).Theorem 3.2. In the above setting , for any g ∈ Oc(A) su
h that g−1(0)

⊃ f−1(0) and for all a ∈ A, there exists a neighbourhood U ∋ a in Ω andfun
tions h1, . . . , hn ∈ Oc(U ∩ A) su
h that
gdega Zf =

n∑

j=1

hjfj on U ∩ A.
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tions 225Proof. Fix a ∈ A. For 
onvenien
e we may assume that a = 0.Suppose also that the 
oordinates in Cm are 
hosen in su
h a way that
{0}k−n × Cm−(k−n) realizes deg0 Zf , i.e. their proper isolated interse
tion atzero has multipli
ity d := deg0 Zf . In parti
ular 0 is isolated in the �bre
ϕ−1(0), where ϕ : A ∋ x 7→ (f(x), x1, . . . , xk−n) ∈ Ck is 
-holomorphi
.Thus, for some neighbourhood V = U∩A∋ 0, the restri
tion ϕ|V : V →ϕ(V )is proper, ϕ−1(0) ∩ V = {0} and obviously ϕ(V ) is open. We may assumethat ϕ(V ) = Ek. By Lemma 3.1 it su�
es to 
he
k that the multipli
ity of
ϕ at zero is equal to d.It is easy to 
he
k that the multipli
ity of ϕ is equal to the multipli
ity(at zero) of the proje
tion

π : U × Cn ∋ (x1, . . . , xm, y1, . . . , yn) 7→ (y1, . . . , yn, x1, . . . , xk−n) ∈ Ckwhen restri
ted to the set Γ := Γf ∩ (U × Cn). But this is the multipli
ityof proper isolated interse
tion of Γ with π−1(0) at zero.It remains to observe that by [TW, Theorem 2.2℄ we have
Γ · π−1(0) = (Γ · (U × {0}n)) ·U×{0}n ({0}k−n × Cm−(k−n))

= Zf · ({0}k−n × Cm−(k−n)) = d{0}.Example 3.3. The 
oe�
ients hj in the Nullstellensatz formula of The-orem 3.2 may well be stri
tly 
-holomorphi
 (i.e. have no holomorphi
 ex-tension onto any neighbourhood of a in Cm). To see this 
onsider the fol-lowing simple example. Let A := {(x, y) ∈ C2 | y2 = x3}, f(x, y) = y/xfor (x, y) ∈ A \ {(0, 0)} and f(0, 0) = 0. Then f ∈ Oc(A) and it 
annot bethe restri
tion of a holomorphi
 fun
tion in any neighbourhood of zero in C2(see [Wh℄ or [D℄). We 
ompute (see e.g. [D℄)
Zf = i(Γf · (C2 × {0}); 0){0}2 = m0(f){0}2 = ord0(f ◦ γ){0}2,where m0(f) is the geometri
 multipli
ity of f at zero and γ(t) = (t2, t3) isthe Puiseux parametrization of A. Thus deg0 Zf = 1.Now take g(x, y) = x restri
ted to A. Then g = hf on A with h = fand h is uniquely determined sin
e one 
an just divide g/f (as ord0(g ◦γ) ≥

ord0(f ◦ γ)) to obtain h.4. Isolated improper interse
tion e�e
tive Nullstellensatz. Let Aand f be as in the previous se
tion but suppose now f−1(0) = {0}m ⊂ A (inparti
ular n ≥ k). The interse
tion Γf∩(Ω×{0}n) may not be proper (unless
n = k). In this 
ase deg0 Zf = i(Γf · (Ω × {0}n); 0), where the interse
tionmultipli
ity is 
al
ulated a

ording to [ATW℄. Thus in fa
t deg0 Zf = m0(f)where the latter is the geometri
 multipli
ity of f at zero. The followingtheorem generalizes to 
-holomorphi
 fun
tions one of the results of [Cg℄.



226 M. P. DenkowskiTheorem 4.1. In the above setting , for any g ∈ Oc(A) su
h that
g(0) = 0, there is a neighbourhood U of zero and fun
tions h1, . . . , hn ∈
Oc(U ∩ A) su
h that

gm0(f) =

n∑

j=1

hjfj on U ∩ A.Proof. As in the proof of Theorem (2.6) from [D℄ we may assume that Ωis small enough to have f(A) analyti
 in a neighbourhood of 0 ∈ Cn. Fix anylinear mapping Φ ∈ L(Cm, Ck) of rank k satisfying KerΦ∩C0(f(A)) = {0}n.Take any g ∈ Oc(A) vanishing at zero. Then by Theorem 3.2 applied tothe mapping Φ ◦ f , we �nd a neighbourhood U of zero and 
-holomorphi
fun
tions h̃j in U ∩ A su
h that
gdega ZΦ◦f =

n∑

j=1

h̃j · (Φ ◦ f)j on U ∩ A.

We have dega ZΦ◦f = i(ΓΦ◦f · (Ω × {0}k); 0) and we 
he
k exa
tly as in theproof of Theorem (2.6) from [D℄ (see also [S℄) that the latter is equal to
i(Γf · (Ω × {0}n); 0), whi
h is m0(f).It remains to observe that sin
e (Φ◦f)j = Φj ◦f and Φj(y) =

∑n
ι=1 αj

ιyι,where αj
ι ∈ C, we obtain Φj ◦ f =

∑n
ι αj

ιfι and so we may put
hj :=

n∑

κ=1

ακ
j h̃κ ∈ Oc(U ∩ A)in order to get the assertion.5. On the dimension. We end this paper with a useful remark (answer-ing a question of Piotr Tworzewski) whi
h is not at all obvious at �rst glan
e.It 
on
erns the proper interse
tion of analyti
 sets and may be treated as a
ommentary to [D℄.Proposition 5.1. Let A be a pure k-dimensional analyti
 set in an openset Ω ⊂ Cm and let f1, . . . , fn ∈ Oc(A) be su
h that for f = (f1, . . . , fn)the set f−1(0) has pure dimension k − n. Then for all l ∈ {1, . . . , n} the set⋂l

j=1 f−1
j (0) has pure dimension k − l.To prove this we shall need two lemmata:Lemma 5.2. Let A be an irredu
ible analyti
 set in an open set Ω ⊂ Cmand let f ∈ Oc(A). If there is an open set U su
h that f ≡ 0 on U ∩ A 6= ∅,then f ≡ 0.Proof. This follows easily from the identity prin
iple. Indeed, sin
e Reg Ais a 
onne
ted manifold and U ∩ Reg A is a non-empty and open subset init on whi
h the holomorphi
 fun
tion f |Reg A vanishes, we have f ≡ 0 on
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Reg A. By the 
ontinuity of f and the density of regular points the assertionfollows.Using this lemma we obtainLemma 5.3. Let A be an irredu
ible k-dimensional analyti
 set in anopen set Ω ⊂ Cm and let f ∈ Oc(A) be non-
onstant. Then f−1(0) is eitherempty or has pure dimension k − 1.Proof. If f−1(0) is not empty, then sin
e

f−1(0) × {0} = Γf ∩ (Ω × {0}) 6= A × {0},one 
learly has at ea
h point a ∈ f−1(0) the inequalities
k − 1 = k + m − (m + 1) ≤ dima f−1(0) < kand so dima f−1(0) = k − 1 (remember A is irredu
ible).Remark 5.4. It is worth noting that the above result does not hold inthe weakly holomorphi
 
ase (the zero-set is then repla
ed by the interse
tionof the 
losure of the graph with A × {0}). To see this 
onsider the fun
tion

g from Example 2.3.Proof of Proposition 5.1. In view of the upper semi
ontinuity of the di-mension it su�
es to 
onsider the problem lo
ally. Therefore we restri
tourselves to a point a ∈ ⋂n−1
j=1 f−1

j (0) and we may assume that a = 0.From now on we 
onsider the fj as fun
tion germs at zero. We put Zj :=
{fj = 0} (as germs at zero).Let A0 = A1 ∪ · · · ∪ Ar be the de
omposition of the germ A0 into irre-du
ible 
omponents. If f1|Aj

6≡ 0 for all j then Z1 has pure dimension k − 1by Lemma 5.3. On the other hand, if f1|Aj
≡ 0 for some j, then Z1∩Aj = Ajand the dimension at zero of the zero-set of f2|Aj

is not less than k−1. Thus,the zero-set of f3|Z2∩Aj
has dimension at least k − 2 (sin
e the irredu
ible
omponents at zero of the analyti
 germ Z2∩Aj have dimension not smallerthan k − 1).Continuing this pro
edure we 
on
lude that the dimension of the inter-se
tion germ Zn∩· · ·∩Z2∩Aj = Zn∩· · ·∩Z1∩Aj must be at least k−n+1,
ontrary to our assumptions. Thus Z1 is of dimension k−1, i.e. Z1∩Aj ( Ajfor all j.We now repeat the argument for f2|Z1

and the irredu
ible 
omponentsof Z1 
on
luding that Z1 ∩ Z2 has dimension k − 2.
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