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A note on the Nullstellensatz for c-holomorphic functions

by MacieJ P. DENKOWSKI (Krakéw and Bordeaux)

Abstract. We begin this article with a graph theorem and a kind of Nullstellensatz
for weakly holomorphic functions. This yields a general Nullstellensatz for c-holomorphic
functions on locally irreducible sets. In Section 2 some methods of Ploski-Tworzewski
permit us to prove an effective Nullstellensatz for c-holomorphic functions in the case of a
proper intersection with the degree of the intersection cycle as exponent. We also extend
this result to the case of isolated improper intersection, generalizing a result of E. Cygan.
The last section is devoted to some considerations on the dimension of the zero-sets of
c-holomorphic mappings.

1. Introduction. Let A C {2 be an analytic set in an open set 2 C C™.
Recall (see |R] where this notion was first introduced and also [L]|, [Wh])
that a function f: A — C is called c-holomorphic if it is continuous and
the restriction of f to the subset Reg A of regular points is holomorphic. We
denote by O.(A) the ring of c-holomorphic functions on A. A mapping is c-
holomorphic iff all its components are c-holomorphic functions. The following
theorem is fundamental for all we shall do (cf. [Wh, 4.5Q)]):

THEOREM 1.1. A mapping f: A — C™ is c-holomorphic iff it is con-
tinuous and its graph I't := {(z, f(x)) | « € A} is an analytic subset of
2 xC",

For a more detailed list of basic properties of c-holomorphic mappings
see [Wh], [D]. The notion of weakly holomorphic functions (H. Cartan) is
much better known. We just recall that it refers to functions defined and
holomorphic on Reg A and locally bounded near the singularities (i.e. on the
whole of A). A mapping is called weakly holomorphic if all its components
are weakly holomorphic. We denote by Oy (A, C™) the ring of weakly holo-
morphic mappings and put Oy (A4) := Oy (A, C). More details can be found
in [Wh].
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We just recall that if A =J A, is the decomposition of A into irreducible
components, then a weakly holomorphic function f has a unique extension
onto Reg A, for each ¢ (and that works in fact for germs). Thus f is weakly
holomorphic iff it is so on each irreducible component of A. Over a singular
point a € Sng A a weakly holomorphic function is multi-valued and takes
at most as many values as the number of irreducible components of the
germ A,.

It may be useful to state explicitly what we mean by proper intersection.
Let X, Y be analytic sets in {2 C C™ of pure dimensions p and ¢ respectively.
The intersection X NY is called proper if it has pure dimension p + ¢ — m,
i.e. at each intersection point the dimension is the minimal possible. In the
opposite case the intersection is said to be improper.

For the definition and properties of the intersection cycle X - Y we refer
the reader to [Dr] (for the proper case) and |T] (for the general case, see also
[ATW] for isolated improper intersection). We just recall that if XNY = S,
is the (locally finite) decomposition into irreducible components, then the
intersection cycle is the formal sum

XY =) i(X-Y,5)S,

where i(X Y, S,) is the intersection multiplicity of XNY along the component
S, computed following [Dr] or [T].
The degree of the cycle X - Y at a point a € X NY is the number

deg, (X -Y) =) i(X -Y,S,)deg, 5.,

where deg, S, stands for the classical degree of the analytic set S, at a (with
the convention that deg, S, = 0 if a ¢ S,; thus the above sum is finite).

Finally, let U C C* be open and connected. If ¢: A — U is a proper
c-holomorphic mapping and A has pure dimension k, then w: I, — U,
where 7: C™ x C¥ — CF is the natural projection, is a branched covering
(see e.g. [Dr|, [Wh] or [L]) and so has finite multiplicity (or covering number,
see e.g. [Dr]). We call it the multiplicity of .

2. General Nullstellensatz for weakly holomorphic functions.
Let A be an analytic subset of some open set 2 C C™.

We begin with a useful and apparently not known graph theorem for
weakly holomorphic functions. It is a weakly holomorphic counterpart of
Theorem 1.1. Recall that an analytically constructible subset of (2 is a set
which can be written locally in {2 as [ J!_, ﬂj-j:l{FLj #,;0}, where *,; € {=,#}
and F,; are holomorphic (see [L]).

THEOREM 2.1. Let f: RegA — C™ be a continuous mapping locally
bounded on A. The following three conditions are then equivalent:
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(1) feOx(ACM).
(2) The closure I'y is an analytic subset of 2 x C™.
(3) I is analytically constructible in §2 x C™.

Proof. First note that we may restrict ourselves to the case n = 1 since
n
I't = (Nj—1 Ij, where

I ={(z,y1,-. ., yj—1, [i(2),Yj+1,.. ., yn) | * € Reg A, y, € C}.

We may as well assume that A has pure dimension k (using restrictions to
the irreducible components of A) with 0 < k& < m (otherwise, since there are
no singularities, there is nothing to do—cf. the analytic graph theorem).

If we have (1)<(2), the equivalence (2)<(3) is quite immediate. Indeed,
if I'; is analytic, then I'y = I'y \ (Sng A x C) is the difference of two analytic
sets, and hence is analytically constructible. On the other hand, if I'; is
analytically constructible, then its closure is analytic and so f € Oy (A).

We now turn to proving (1)< (2). If I'y is analytic, then so is Iy in
(£2\ Sng A) x C. Thus by the analytic graph theorem, f is holomorphic on
Reg A. Since by assumption it is locally bounded on A, we have f € Oy (A).

Now suppose that f € Oy (A). The problem being local, we may assume
that h € O(£2) is a global universal denominator for A (cf. Oka’s theorem,
see [L]). Then we can find g € O(f?2) such that fh = g on Reg A. Consider
now the analytic set X := {(z,t) € A x C | h(2)t = g(2)}. It remains to
observe that the set

I'rn{(z,t) € 2 xC|h(z) # 0}
=XN(RegAxC)Nn{(z,t) € 2 xC|h(z)#0}
=X\[(XN(SngA xC))U{(z,t) € 2xC|h(z) =0}

is dense in I'y. Its closure in {2 x C is clearly analytic. =

Note also that by this theorem the zero-set of a weakly holomorphic
function is analytically constructible and so its closure is analytic. It is more
natural, however, to consider the intersection of the closure of the graph with
A x {0} as a substitute for the zero-set of a weakly holomorphic function.

Now we turn to proving the general weakly holomorphic Nullstellensatz.

THEOREM 2.2. Let A C C™ be an analytic germ at zero and suppose that
9y f1,- -, fn € Ow(A) are such that

(1) 0€ Iy, where f = (f1,..., fn)y _
(2) (2,0) € I'f N (A x {0}") implies I'y N ({x} x C) = {(x,0)} for all x

in some neighbourhood of zero.
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Then there exists an integer p > 1 such that on Reg A,

9= hifj
j=1

for some hj € Ow(A), j=1,...,n.

Proof. Let o: N — A be a local normalization of A at zero (we consider
A as an analytic subset of some neighbourhood of zero). Then g := go ¢ and
f;- := f; o o are holomorphic on the normal germ V.

Observe now that g—'(0) D N; fjfl(()). Indeed, if f](x) = 0 for all j,
then either o(z) € Reg A, in which case o(z) € ), f71(0) and so g(z) = 0,
or o(x) € Sng A. If the latter occurs, then we take a sequence of points
Reg A 5 a, — o(z). The sequence z,, := ¢~ '(a,) has a subsequence {z,, }
converging to = (by the properness of g). Then f;(a,,) — 0 for all j and so
(o(x),0) € I'y. But then g(a,,) — 0, whence g(z) = 0.

Now we apply the holomorphic Nullstellensatz to ﬁ,fl, .. .,f; (see [L])
obtaining holomorphic functions f~zj such that for some p > 1,

(#) 7= hif;
j=1

in a neighbourhood of the fibre p~!(0). For simplicity assume for the time
being that this holds on the whole of N (in any case the matter is local).

Define hj(a) = iNLj(Q_l(a)) for a € Reg A. In this way we clearly get
some holomorphic functions h; : Reg A — C. But ¢ being proper, all h; are
bounded near the singularities and so they are weakly holomorphic.

Indeed, fix j and take any point a € Sng A. For an arbitrarily small
compact neighbourhood U of a the set V := o~ 1(U) is compact and so
]7@] is bounded on it. If the |h;| were unbounded on any such neighbourhood
U\Sng A, we would find a sequence Reg A > a,, — a such that |h;(a,)| — oco.
However, hj(a,) = Ej(gfl(al,)) and so it cannot be unbounded.

To finish the proof we just observe that (#) remains true if we omit
the tildes and restrict ourselves to a neighbourhood of zero intersected with
Reg A. To be more precise, as a neighbourhood in which (#) holds we may
take an open set U of the form U;Zl Uj, where r is the number of points in the
fibre 071(0) and the union is disjoint. We may also ask that for any j, U; be
connected. Clearly, V := p(U) is an open neighbourhood of zero in A. Then
on V' \ Sng A the mapping o is invertible and its inverse sends a connected
neighbourhood of @ € V'\ Sng A (contained in V' \ Sng A) into exactly one
of the U;. There we have (#) which becomes the required formula in the

neighbourhood of a after composition with o~ !. m
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EXAMPLE 2.3. Consider Whitney’s umbrella A := {22y = 22} C C? and
the weakly holomorphic function g(z,y,z) = z/z defined on it. We have
Sng A = {0} x C x {0} and g has two possible values over any point of
Sng A \ {0}%, namely ,/y and —,/y (properly understood in the complex
sense). On the other hand, g(0) is well defined and equals zero. In particular
T,y (A % {0}) = {0}

Consider now fi(z,y,z) = z and fo(x,y,2) = ¢ —y on A. The only
common zero of these functions is the origin. They satisfy the assumptions
of our theorem and indeed

9> =H—gf.

A somewhat less interesting example may be given using the functions
fi(z,y,2) =z and fo(z,y,z) =y on A. In this case g2 is just fo.

EXAMPLE 2.4. The assumption of univalence of g over the zeroes of f
(i.e. over the set I'y N (A x {0}")) is essential. To see this, consider the set
A := {2y = 0} in C? and, on Reg A, the functions f(x,y) = = — y and
g(z,0) = 2% (if z # 0), g(0,y) = 1 (if y # 0). Both are weakly holomorphic
on A and

F7H0) = {0}* = Ty n (A x {0}),

while I'; N (A x C) = {(0,0), (0,1)}. A straightforward computation shows
that within the class of weakly holomorphic functions, no power of g can be
divisible by f in any neighbourhood of zero. If g = hf for some p € N, then
|h| must be unbounded near zero on the component {x = 0} C A.

We derive from the theorem above a general c-holomorphic Nullstellen-
satz on locally irreducible analytic sets.

COROLLARY 2.5. Let A be a locally irreducible analytic set and suppose
that g, f1,..., fr € Oc(A) are such that g~1(0) D N; fj_l(O). Then for each
a € ﬂj fj_l(()) there is an integer p > 1 and some c-holomorphic functions
hj in a neighbourhood of a such that

k
g’ = Z h;f;
j=1
in this neighbourhood.

Proof. For simplicity let a = 0. The set A being locally irreducible, we
have O.(A) = Oyw(A). We now apply the preceding theorem, since our as-
sumptions imply both hypotheses (1) and (2). The assertion follows by con-
tinuity or by applying the identity principle as in the last section of this
paper. =
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3. Proper intersection effective Nullstellensatz. In what follows,
E denotes the unit disc in C. The first result comes from observing that one
can easily prove Lemma 1.1 from [PT] in the c-holomorphic setting:

LEMMA 3.1. Let X be a pure k-dimensional analytic set in an open set
2 C C™ and let ¢ = (p1,...,01): X — E* be a proper c-holomorphic
mapping. Denote by d its multiplicity and fix | € {1,...,k}. Then for each

g € Oc(X) such that g71(0) D {z € X | p1(z) = --- = pi(x) = 0} there
exist hy,...,h € Oc(X) such that g¢ = Zé‘:1 hjp;.

Proof. We consider the set I' := {(¢(z),g9(x)) € E¥ x C | z € X}. It is
easy to see that it is a pure k-dimensional analytic set.

For the generic w € E* one has exactly d distinct points in the fibre
¢ Y(w) = {z1,...,24}. For such points w which moreover do not lie in the
analytic set (Sng X) € E¥ we may define

(t —g(z;) = t* + ar (W)t 4 - + ag(w),

E&

P(w,t) :=
j=1
where aj(w) = (—1)7 Zl§i1<---<ij§dg(‘ril) ---g(x;;) are obviously continu-
ous. It is also clear that outside an analytic proper subset of EF these coeffi-
cients are holomorphic, whence by Riemann’s theorem they are holomorphic
on EF. Furthermore, P~1(0) = I" and
I'n ({0} x EFt x ©) = {0} x EF=! x {0},

whence aj|((oyixmr—1y = 0 for all j. This in turn obviously means that for
all j, aj(w) = yra;1(w) + - + yiaj(w), where w = (y, 2) € E! x EF~! and
ajs € OEF), s=1,...,1.

Finally, we obtain the result sought for from P(p(x),g(z)) =0. =

We now turn to generalizing the effective Nullstellensatz to the c-holo-

morphic case using Lemma 3.1 and the methods of [PT].

Let A be a pure k-dimensional analytic set in an open set {2 C C™ and
let f1,..., fn € Oc(A) be such that for f = (f1,..., fn) the set f71(0) is of
pure dimension k — n (then the intersection of I'y with {2 x {0}" is proper
in 2 x C"). We denote by Z¢ the (Draper) cycle defined by

Zp = Iy (2 x {0}").

THEOREM 3.2. In the above setting, for any g € O.(A) such that g=1(0)
D f7Y0) and for all a € A, there exists a neighbourhood U > a in 2 and
functions hy, ..., hy € Oc(UN A) such that

g8 25 = Z hijf; onUNA.
1

j=
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Proof. Fix a € A. For convenience we may assume that a = 0.
Suppose also that the coordinates in C™ are chosen in such a way that
{0}F=m x € (=7 realizes deg, Zy, i.e. their proper isolated intersection at
zero has multiplicity d := degy Z;. In particular 0 is isolated in the fibre
©~1(0), where p: A > = — (f(z),21,...,2x_p) € CF is c-holomorphic.
Thus, for some neighbourhood V' =UNA 3 0, the restriction ¢|y: V — ¢(V)
is proper, ¢~1(0) NV = {0} and obviously ¢(V) is open. We may assume
that ¢(V) = EF. By Lemma 3.1 it suffices to check that the multiplicity of
@ at zero is equal to d.

It is easy to check that the multiplicity of ¢ is equal to the multiplicity
(at zero) of the projection

T UXC 3 (1, Ty Yls -3 Yn) = YLy oo oy Yy T1y -+ Te) € CF

when restricted to the set I" := I'y N (U x C™). But this is the multiplicity
of proper isolated intersection of I" with 771(0) at zero.
It remains to observe that by [TW, Theorem 2.2] we have

r-x71(0) = (I (U x {0}") -uwqopr ({037 x €= (m)
= Zp - ({0} x €™y = d{0}. u

EXAMPLE 3.3. The coefficients h; in the Nullstellensatz formula of The-
orem 3.2 may well be strictly c-holomorphic (i.e. have no holomorphic ex-
tension onto any neighbourhood of a in C™). To see this consider the fol-
lowing simple example. Let A := {(z,y) € C? | 4? = 23}, f(z,y) = y/x
for (z,y) € A\ {(0,0)} and f(0,0) = 0. Then f € O.(A) and it cannot be
the restriction of a holomorphic function in any neighbourhood of zero in C?
(see [Wh] or [D]). We compute (see e.g. [D])

Zy =i(Iy - (C* x {0}); 0){0}* = mo(f){0}* = ordo(f 0 7){0}?,
where mg(f) is the geometric multiplicity of f at zero and ~(t) = (t2,t%) is
the Puiseux parametrization of A. Thus degy Zy = 1.

Now take g(x,y) = x restricted to A. Then g = hf on A with h = f

and h is uniquely determined since one can just divide g/ f (as ordg(go~y) >
ordo(f o)) to obtain h.

4. Isolated improper intersection effective Nullstellensatz. Let A
and f be as in the previous section but suppose now f~1(0) = {0}™ C A (in
particular n > k). The intersection I'yN(§2x{0}") may not be proper (unless
n = k). In this case degy Zy = i(I'y - (£2 x {0}");0), where the intersection
multiplicity is calculated according to [ATW]. Thus in fact degy Zy = mo(f)
where the latter is the geometric multiplicity of f at zero. The following
theorem generalizes to c-holomorphic functions one of the results of [Cg].
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THEOREM 4.1. In the above setting, for any g € O(A) such that

g9(0) =0, there is a neighbourhood U of zero and functions hy,..., h, €
O.(UNA) such that

gmo(f) :Zhjfj on UNA.
j=1

Proof. As in the proof of Theorem (2.6) from [D] we may assume that (2
is small enough to have f(A) analytic in a neighbourhood of 0 € C™. Fix any
linear mapping @ € L(C™, CF) of rank k satisfying Ker 8N Cy(f(A)) = {0}".

Take any g € O;(A) vanishing at zero. Then by Theorem 3.2 applied to
the mapping @ o f, we find a neighbourhood U of zero and c-holomorphic
functions h; in U N A such that

gl Zrer =3 "Ry (Do f); onUNA.
j=1

We have deg, Zgor = i(Ipos - (£2 x {0}¥);0) and we check exactly as in the
proof of Theorem (2.6) from [D] (see also [S]) that the latter is equal to
i(I'y - (£2 x {0}™);0), which is mqg(f).

It remains to observe that since (®o f); = ®;0 f and D;(y) = Yo ady,
where of € C, we obtain @; o f = " o f, and so we may put

hj =Y afh, € O(UNA)
k=1

in order to get the assertion. =

5. On the dimension. We end this paper with a useful remark (answer-
ing a question of Piotr Tworzewski) which is not at all obvious at first glance.
It concerns the proper intersection of analytic sets and may be treated as a
commentary to [D].

PROPOSITION 5.1. Let A be a pure k-dimensional analytic set in an open
set 2 C C™ and let fi,...,fn € Oc(A) be such that for f = (fi,..., fn)
the set f=1(0) has pure dimension k —n. Then for all | € {1,...,n} the set
0221 fj_l(O) has pure dimension k — .

To prove this we shall need two lemmata:

LEMMA 5.2. Let A be an irreducible analytic set in an open set 2 C C™
and let f € O.(A). If there is an open set U such that f =0 on UN A # 0,
then f = 0.

Proof. This follows easily from the identity principle. Indeed, since Reg A
is a connected manifold and U N Reg A is a non-empty and open subset in
it on which the holomorphic function f|rega vanishes, we have f = 0 on
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Reg A. By the continuity of f and the density of regular points the assertion
follows. m

Using this lemma we obtain

LEMMA 5.3. Let A be an irreducible k-dimensional analytic set in an
open set 2 C C™ and let f € O.(A) be non-constant. Then f~1(0) is either
empty or has pure dimension k — 1.

Proof. Tf f=1(0) is not empty, then since
F71(0) x {0} = Iy 1 (2 x {0)) # A x {0},
one clearly has at each point a € f~1(0) the inequalities
k—1=k+m—(m+1)<dim, f10) <k
and so dim, f~1(0) = k — 1 (remember A is irreducible). m

REMARK 5.4. It is worth noting that the above result does not hold in
the weakly holomorphic case (the zero-set is then replaced by the intersection
of the closure of the graph with A x {0}). To see this consider the function
g from Example 2.3.

Proof of Proposition 5.1. In view of the upper semicontinuity of the di-
mension it suffices to consider the problem locally. Therefore we restrict
ourselves to a point a € 07]12—11 fj_l(O) and we may assume that a = 0.

From now on we consider the f; as function germs at zero. We put Z; :=
{fj =0} (as germs at zero).

Let Ag = A1 U---U A, be the decomposition of the germ A into irre-
ducible components. If f1|4, # 0 for all j then Z; has pure dimension k — 1
by Lemma 5.3. On the other hand, if f1|4, = 0 for some j, then Z1NA; = A;
and the dimension at zero of the zero-set of f2|Aj is not less than k—1. Thus,
the zero-set of f3|z,n4; has dimension at least k — 2 (since the irreducible
components at zero of the analytic germ Z3 M A; have dimension not smaller
than k& —1).

Continuing this procedure we conclude that the dimension of the inter-
section germ Z,N---NZyNA; = Z,N---NZ1NA; must be at least k—n+1,
contrary to our assumptions. Thus Z; is of dimension k—1,i.e. Z1NA; C A;
for all j.

We now repeat the argument for fa|z, and the irreducible components
of Z; concluding that Z; N Zs has dimension k — 2. =
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