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Growth of coefficients of universal Dirichlet series

by O. Demanze and A. Mouze (Lille)

Abstract. We study universal Dirichlet series with respect to overconvergence, which
are absolutely convergent in the right half of the complex plane. In particular we obtain
estimates on the growth of their coefficients. We can then compare several classes of
universal Dirichlet series.

1. Introduction. Let f(s) =
∑

n≥1 ann−s be a Dirichlet series and let
σa(f) be its abscissa of absolute convergence, defined by

σa(f) = inf
{
σ ∈ R :

∑

n≥1

|an|n−σ converges
}
.

We define ‖∑
n≥1 ann−s‖σ =

∑
n≥1 |an|n−σ ∈ [0,∞] for all σ ∈ R. We

also define the abscissa of convergence σ(f) = inf{σ ∈ R :
∑

n≥1 ann−σ

converges}. If f is given by a finite sum as above, then we say that f is
a Dirichlet polynomial. We denote the pth partial sum of f by Sp(f) =∑p

n=1 ann−s. Let C+ be the half-plane of complex numbers with strictly
positive real part. We denote by Da(C+) the set of Dirichlet series which are
absolutely convergent on C+. This space, endowed with the topology given
by the family of seminorms ‖ · ‖σ, is a Fréchet space. In the following, we fix
a strictly decreasing sequence σ̃ = (σk)k≥0 of real numbers which converges
to 0.

Definition 1.1. Let K be a compact set included in C. This set is
admissible for Dirichlet series if C \ K is connected and K can be written
as K = K1 ∪ · · · ∪ Kd with each Ki contained in a strip Si = {z ∈ C : ai ≤
ℜ(z) ≤ bi} with bi − ai < 1/2 (ℜ means the real part), the strips Si being
disjoint.

We denote by C− the left half-plane {s ∈ C : ℜ(s) < 0}. We can now
give the version of Mergelyan’s theorem for Dirichlet series in Da(C+).
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Theorem 1.2 ([3]). Let K ⊂ C− be a compact set admissible for Dirich-

let series, f be a Dirichlet series in Da(C+), g be a continuous function on

K which is analytic in K̊ and σ, ε be two positive real numbers. Then there

exists a Dirichlet polynomial h such that

sup
z∈K

|h(z) − g(z)| < ε and ‖h − f‖σ < ε.

We also define the following sets Wa and W1 of universal Dirichlet series
from Da(C+). The set Wa has been introduced in [3].

Definition 1.3. We denote by Wa the set of all Dirichlet series h ∈
Da(C+) satisfying: for every admissible compact set K ⊂ C−, and every
function g, continuous on K and analytic in K̊, there exists a sequence
(λn)n≥0 of integers such that

sup
z∈K

|Sλn
(h)(z) − g(z)| −→

n→∞
0.

It is well-known that Wa is a dense Gδ set [3].

Definition 1.4. We denote by W1 the set of all Dirichlet series h ∈
Da(C+) satisfying: for every admissible compact set K ⊂ C−, and every
function g, continuous on K and analytic in K̊, there exists a sequence
(λn)n≥0 of integers such that

sup
z∈K

|Sλn
(h)(z) − g(z)| −→

n→∞
0.

The set W1 differs from Wa because the intersection of the compact sets
K with the imaginary axis is now empty. Obviously by using similar methods
one can show that W1 is also a dense Gδ set and Wa ⊂ W1. These sets are
similar to the sets of universal Taylor series defined in [8], [7] respectively.
We refer the reader to [6] for a survey and similar results. For other universal
Dirichlet series we refer to [5].

In this paper, we first obtain, as in the analytic case [7], estimates on
the growth of coefficients of universal Dirichlet series in the sense of Wa

(Theorem 2.2).

Theorem. Let
∑∞

n=1 ann−s be a Dirichlet series in Wa. Let (bn)n∈N be

a decreasing sequence such that
∑∞

n=2 bn/n log(n) < ∞. Then

lim sup
n∈N∗

n|an|
e
√

bn log(n)
= ∞.

In Section 3 we prove a decomposition theorem with estimates on the
coefficients for all series of Da(C+) (Theorem 3.6).

Theorem. Let f =
∑

n≥1 dnn−s be a Dirichlet series in Da(C+). Then

there exist g1 =
∑

n≥1 ann−s and g2 =
∑

n≥1 bnn−s in W1 such that f =
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g1 + g2 on C+ with

lim sup
n∈N∗

n|an| = lim sup
n∈N∗

n|bn| = lim sup
n∈N∗

n|dn|.

This is a version of Theorem 5.1 from [7] for Dirichlet series. As a con-
sequence, we conclude that W1 6= Wa.

Finally, in the universal set W1, a natural question is whether some uni-
versal Dirichlet series converge and are continuous on the imaginary axis. A
similar property is true for analytic functions on the unit disk (see [7]). To
prove this, A. Melas, V. Nestoridis and I. Papadoperakis study universality
in the Banach space A(D) of analytic functions on D, continuous on the
torus T. The universal Taylor series

∑
n≥0 bnzn with

∑
n≥0 |bn| < ∞ were

first investigated by L. Tomm and R. Trautner [10]. To obtain a result on
universal Dirichlet series in Section 4, we study universality in the Wiener–
Dirichlet algebra of Dirichlet series

∑
n≥0 ann−z satisfying

∑
n≥0 |an| < ∞.

We then prove the existence of universal Dirichlet series which are continu-
ous on the imaginary axis. Notice that Theorem 4.2 has been independently
obtained by V. Nestoridis and C. Papadimitropoulos in [9] with a different
approach.

2. Some properties of Wa. In this section, we study the growth of
the coefficients of universal Dirichlet series in Wa. Note that such series
converge nowhere on the imaginary axis. Taking as K a singleton {it0} with
t0 ∈ R, we see that every universal Dirichlet series diverges at every point
of the imaginary axis. Hence its abscissas of convergence and of absolute
convergence are both equal to 0. We obtain a more precise result on the
asymptotic behavior of the coefficients.

Lemma 2.1. Let
∑∞

n=1 ann−s be a Dirichlet series in Wa. Let (εn)n∈N be

a decreasing sequence of positive real numbers such that
∑∞

n=2 εn/n log(n)
< ∞. Then

∞∑

n=2

|an|
e
√

εn log(n)
= ∞.

Proof. We set δn = eεn for all n ∈ N. There exists an n0 ∈ N such that∑∞
n=n0

δn/n log(n) < 1/2. Let Hn be the 2iπ-periodic functions on iR given
by

Hn(it) =





n log(n)

δn
π for |t| <

δn

n log(n)
,

0 for
δn

n log(n)
≤ |t| ≤ π.
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We put f̂(m) = (2π)−1
Tπ
−π

f(it)mit dt. An easy calculation gives

Ĥn(1) =
1

2π

π\
−π

Hn(it) dt = 1,

Ĥn(m) =

sin

(
δn

n log(n)
log(m)

)

δn

n log(n)
log(m)

, m 6= 1.

Let N ≥ n0 be an integer. We can approximate the Dirichlet polynomial
1+

∑N−1
m=1 amm−s by a subsequence of partial sums of

∑∞
n=1 ann−s uniformly

on the compact set {it : t ∈ [−1/2, 1/2]}. Therefore there exists an integer

M > N such that |1 − ∑M
m=N amm−it| < 1/2 for all t ∈ [−1/2, 1/2]. Hence

1

2
≤ ℜ

( M∑

m=N

amm−it
)
.(1)

We define the convolution product f(it) = Hn0
∗ · · · ∗ HM (it), where

h ∗ g(it) =
1

2π

π\
−π

h(ix)g(it − ix) dx.

Note that f is a non-negative 2iπ-periodic function satisfying f(it) = 0
for 1/2 < t ≤ π. Hence, multiplying both members of (1) by f(it) and
integrating, we obtain

1

2
≤

M∑

m=N

ℜ
(
am

π\
−π

f(it)m−it dt
)
.

By the triangle inequality we have

1

2
≤

M∑

m=N

|am| · |f̂(m)|.

Moreover, we can calculate

f̂(m) =
M∏

n=n0

sin

(
δn

n log(n)
log(m)

)

δn

n log(n)
log(m)

.

As (δn)n∈N is a decreasing sequence and the series
∑

n≥2 δn/n log(n) con-
verges, we must have limn→∞ δn = 0. Therefore, there exists an integer N
such that

δn0

n0 log(n0)
log(N) > e and δN < e.
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For every m ∈ {N, . . . , M}, we have

δn0

n0 log(n0)
log(m) ≥ δn0

n0 log(n0)
log(N) > e

and
δm

m log(m)
log(m) < δm ≤ δN < e.

Then there exists an integer k ∈ {n0, . . . , m − 1} such that

δk

k log(k)
log(m) ≥ e and

δk+1

(k + 1) log(k + 1)
log(m) < e.

Since the sequence δn is decreasing, we also obtain

|f̂(m)| ≤
k∏

n=n0

n log(n)

δn log(m)
≤

(
k log(k)

δk log(m)

)k+1−n0

≤
(

1

e

)k+1−n0

.

Moreover (k + 1)2 ≥ (k + 1) log(k + 1) >
δk+1

e
log(m) ≥ εm log(m) implies

k + 1 >
√

εm log(m). As a consequence, we find

M∑

m=N

|am| en0

e
√

εm log(m)
≥ 1

2
.

Since this holds for infinitely many pairs (N, M), the proof is complete.

Theorem 2.2. Let
∑∞

n=1 ann−s be a Dirichlet series in Wa. Let (bn)n∈N

be a decreasing sequence such that
∑∞

n=2 bn/n log(n) < ∞. Then

lim sup
n∈N∗

n|an|
e
√

bn log(n)
= ∞.

Proof. Assume that there exists a real number M such that |an| ≤
(M/n)e

√
bn log(n) for all n ≥ 1. We set

wn = max

(
bn,

1√
log(n)

)
and εn = (

√
wn +

√
bn)2.

Note that the sequence (εn)n∈N is decreasing. Moreover
∑

n≥2
εn

n log(n) con-

verges thanks to the hypothesis on (bn)n∈N and the Bertrand criterion. So,
by Lemma 2.1, we obtain

∞∑

n=1

|an|
e
√

εn log(n)
= ∞.(2)

But for every positive integer A we have

A∑

n=1

|an|
e
√

εn log(n)
≤ M

A∑

n=1

1

n

1

e
√

εn log(n)−
√

bn log(n)
= M

A∑

n=1

1

n

1

e
√

wn log(n)
.
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Since wn ≥ 1/
√

log(n), we deduce that

A∑

n=1

|an|
e
√

εn log(n)
≤ M

A∑

n=1

1

n

1

e

√√
log(n)

.

But the series ∑

n≥1

1

n

1

e

√√
log(n)

converges, which contradicts the equality (2) and completes the proof.

Corollary 2.3. Let
∑∞

n=1 ann−s be a Dirichlet series in Wa. Then,
for every integer k,

lim sup
n≥2

n|an|
[log(n)]k

= ∞.

Proof. Let (bn)n∈N be the sequence defined by

∀n ≥ 2, bn =
k2[log(log(n))]2

log(n)
.

This sequence is decreasing (for n large enough) and
∑∞

n=2 bn/n log(n) con-
verges. By Theorem 2.2, we deduce that

lim sup
n≥2

n|an|
e
√

k2(log(log(n)))2
= lim sup

n≥2

n|an|
[log(n)]k

= ∞.

Remark 2.4. We know by construction that it is possible to build uni-
versal Dirichlet series

∑
j≥1 ajj

−s satisfying aj = o(j−r) for any r < 1 (see

[3]). Hence, in contrast to the analytic case [7], we have Wa ∩H2 6= ∅ where
H2 is the analogue of H2(D) for Dirichlet series (see for instance [2]).

3. Some properties of W1. We refer the reader to 1.4 for the definition
of W1. As mentioned in the introduction, W1 is a dense Gδ subset of Da(C+).
Moreover, note that such series have abscissas of convergence and absolute
convergence both equal to 0. To see that, just take as K any singleton {z0}
with ℜ(z0) < 0. But what happens on the imaginary axis?

Notation 3.1. Let (fj)j∈N be an enumeration of the Dirichlet polyno-
mials with coefficients in Q + iQ. We also consider a family {K̺}̺∈N of
admissible compact sets of C− such that for every admissible compact set
K ⊂ C−, there exists a nonnegative integer ̺0 with K ⊂ K̺0

(see [5]).

Finally, for a Dirichlet polynomial P (s) =
∑n0

n=1 ann−s with an0
6= 0 the

degree is defined to be deg(P ) = n0.

According to a suggestion of J.-P. Kahane, we easily obtain the following
proposition (see [8, Proposition 3.2]).
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Proposition 3.2. Let f be a Dirichlet series in Da(C+). Then there

exist g1 and g2 in W1 such that f = g1 + g2.

Here we give another version of this proposition with additional condi-
tions on the growth of coefficients. First of all we need a more precise version
of Mergelyan’s theorem for Dirichlet series.

Lemma 3.3. Let K be an admissible compact set included in C−. Let

also g be a continuous function on K, analytic in the interior of K , and ε, σ
be strictly positive real numbers. Then there exists a Dirichlet polynomial

h(s) =
∑

n≥1 hnn−s satisfying





sup
z∈K

|h(z) − g(z)| < ε,

‖h‖σ < ε,

∀n ∈ N∗, n|hn| < ε.

Proof. We use the notations of Lemma 2 from [3] in the special case
f = 0 ∈ Da(C+). We write K = K1∪· · ·∪Kd. Then there exist positive real
numbers σ1 < · · · < σd and natural numbers n1 < m1 < n2 < m2 < · · · <
nd < md such that the Dirichlet polynomial

h(s) =
d∑

l=1

ml∑

j=nl+1

b
(l)
j j−σlj−s =

∞∑

j=n1+1

hjj
−s

satisfies supz∈K |h(z) − g(z)| < ε and ‖h‖σ < ε. Notice that n1 can be
chosen arbitrarily large ([1]). Moreover, from the result of [1], the moduli of

the complex numbers b
(l)
j are upper bounded by 1. Therefore, we obtain, for

all j ∈ N∗,

|jhj | ≤ j|b(l)
j j−σl | ≤ j−σ1+1 ≤ n−σ1+1

1 .

We just have to choose an integer n1 satisfying n−σ1+1
1 < ε to complete

the proof, which is possible because the compact set does not intersect the
imaginary axis and therefore we can choose σ1 > 1 and have σ1 +K1 ⊂ {s ∈
C : 1/2 < ℜ(s) < 1}.

Remark 3.4. Note that we need the condition K ⊂ C− to obtain a
control on the coefficients n|hn| from the previous lemma, which is not
possible in the case of the set Wa.

Corollary 3.5. Let K be an admissible compact set included in C−.
Let also g be a continuous function on K, analytic in the interior of K , ε, σ
be strictly positive real numbers, and λ be a strictly positive integer. Then
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there exists a Dirichlet polynomial h(s) =
∑

n≥1 hnn−s satisfying




sup
s∈K

|g(s) − λ−sh(s)| < ε,

‖λ−sh(s)‖σ < ε,

∀n ∈ N∗, nλ|hn| < ε.

Proof. Using the notations of Lemma 3.3, for each ε1 there exists a
Dirichlet polynomial h such that sups∈K |g(s)λs−h(s)| < ε1, ‖h‖σ < ε1 and
n|hn| < ε1. Therefore,

( inf
s∈K

|λs|)(sup
s∈K

|g(s) − λ−sh(s)|) < ε1.

We just have to choose ε1 such that max(ε1/ infs∈K |λs|, λε1) < ε.

We can now use the main ideas from [7] to obtain the following result.

Theorem 3.6. Let f =
∑

n≥1 dnn−s be a Dirichlet series in Da(C+).

There exist g1 =
∑

n≥1 ann−s and g2 =
∑

n≥1 bnn−s in W1 such that f =
g1 + g2 on C+ with

lim sup
n∈N

n|an| = lim sup
n∈N

n|bn| = lim sup
n∈N

n|dn|.

Proof. First we study the case lim supn∈N n|dn| = ∞. By Proposition
3.2, there exist g1 and g2 in Wa ⊂ W1 satisfying f = g1 +g2. The conclusion
is given by Corollary 2.3.

Case lim supn∈N n|dn| < ∞. We have a countable family (K̺i
, fji

). Fix
λ1 = 1. By Corollary 3.5, there exists a Dirichlet polynomial P1(s) =∑

n≥1 p1,nn−s such that

sup
s∈K̺1

|fj1(s) − λ−s
1 P1(s)| < 1, ‖λ−s

1 P1(s)‖σ1
< 1,

∀n ∈ N, nλ1|p1,n| < 1.

We choose µ1 > λ1 + deg(P1) ≥ λ1 such that

lim sup
n∈N

n|dn| − max{l|dl| : µ1 > l > λ1 + deg(P1)} < 1.

Then define the Dirichlet polynomial

R1(s) =

µ1−1∑

n=λ1

dnn−s − λ−s
1 P1(s).

By Corollary 3.5, there exists a Dirichlet polynomial Q1(s) =
∑

n≥1 q1,nn−s

satisfying

sup
s∈K̺1

|fj1(s) − R1(s) − µ−s
1 Q1(s)| < 1, ‖µ−s

1 Q1‖σ1
< 1,

∀n ∈ N, nµ1|q1,n| < 1.
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Let λ2 be an integer satisfying λ2 > µ1 + deg(Q1) ≥ µ1 > λ1 and

lim sup
n∈N

n|dn| − max{l|dl| : λ2 > l > µ1 + deg(Q1)} < 1.

We set

F1(s) =

λ2−1∑

n=µ1

dnn−s − µ−s
1 Q1(s).

We construct the sequences λ̃ = (λk)k≥1 and µ̃ = (µk)k≥1 step by step.
Assume that we have

1 = λ1 < µ1 < λ2 < µ2 < · · · < λk−1 < µk−1 < λk

and that the Dirichlet polynomials Pi, Qi, Ri and Fi are constructed for i =
1, . . . , k − 1. By Corollary 3.5, there exists a Dirichlet polynomial Pk(s) =∑

n≥1 pk,nn−s such that

sup
s∈K̺k

∣∣∣fjk
(s) −

k−1∑

j=1

(λ−s
j Pj(s) + Fj(s)) − λ−s

k Pk(s)
∣∣∣ < 1/k2,

‖λ−s
k Pk(s)‖σk

≤ 1/k2 and ∀n ∈ N, nλk|pk,n| < 1/k2.

Further, we determine µk > λk + deg(Pk) such that

lim sup
n∈N

n|dn| − max{l|dl| : µk > l > λk + deg(Pk)} < 1/k2

and we set

Rk(s) =

µk−1∑

n=λk

dnn−s − λ−s
k Rk(s).

By Corollary 3.5, there exists a Dirichlet polynomial Qk(s) =
∑

n≥1 qk,nn−s

satisfying

sup
s∈K̺k

∣∣∣fjk
(s) −

k−1∑

j=1

(µ−s
j Qj(s) + Rj(s)) − Rk(s) − µ−s

k Qk(s)| < 1/k2,

‖µ−s
k Qk‖σk

< 1/k2 and ∀n ∈ N, nµk|qk,n| < 1/k2.

Let λk+1 be an integer satisfying λk+1 > µk + deg(Qk) ≥ µk > λk and

lim sup
n∈N

n|dn| − max{l|dl| : λk+1 > l > µk + deg(Qk)} < 1/k2.

We set

Fk(s) =

λk+1−1∑

n=µk

dnn−s − µ−s
k Qk(s).

Since ‖λ−s
k Pk(s)‖σk

< 1/k2 and ‖µ−s
k Qk(s)‖σk

< 1/k2, the two Dirichlet
series

∑
k≥1 λ−s

k Pk(s) and
∑

k≥1 µ−s
k Qk(s) are in Da(C+) (the terms with
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index n appear only once, moreover the sequence σ̃ is decreasing, therefore
the associated seminorms increase). As the Dirichlet series f is absolutely
convergent on C+, so does

∞∑

k=1

λk+1−1∑

n=µk

dnn−s

(by construction the sums are disjoint). Therefore the Dirichlet series

∑

k≥1

λ−s
k Pk(s) +

∞∑

k=1

λk+1−1∑

n=µk

dnn−s −
∑

k≥1

µ−s
k Qk(s) =

∑

k≥1

(λ−s
k Pk(s) + Fk(s))

is an element of Da(C+). We denote by
∑

k≥1 ann−s the development of this
function. For N = λk + deg(Pk), we have

N∑

n=1

ann−s = λ−s
1 P1(s) + F1(s) + · · · + λ−s

k−1Pk−1(s) + Fk−1(s) + λ−s
k Pk(s).

Similarly, we define another Dirichlet series in Da(C+),

−
∑

k≥1

λ−s
k Pk(s) +

∞∑

k=1

µk−1∑

n=λk

dnn−s +
∑

k≥1

µ−s
k Qk(s) =

∑

k≥1

(Rk(s) + µ−s
k Qk(s)),

and we denote by
∑

n≥1 bnn−s the development of this function. By con-
struction, we have the relation

∀n ≥ 1, dn = an + bn.

Moreover, by Corollary 3.5, we know that all the coefficients which appear
in the decomposition of λ−s

k Pk(s) =
∑

n≥1 pk,n(λkn)−s and µ−s
k Qk(s) =∑

n≥1 qk,n(µkn)−s (denoted by (rk,n) and (sk,n) respectively) satisfy

λkn|rk,λkn| = λkn|pk,n| ≤ 1/k2, µkn|sk,µkn| = µkn|qk,n| ≤ 1/k2.

Hence, the coefficients tn of the series
∑

k≥1 λ−s
k Pk(s) − ∑

k≥1 µ−s
k Qk(s)

satisfy n|tn| → 0. Therefore, we have the following estimates:

lim sup
n∈N

n|an| ≤ lim sup
n∈N

n|dn| and lim sup
n∈N

n|bn| ≤ lim sup
n∈N

n|dn|.

Further, for l satisfying µk + deg(Qk) < l < λk+1, we have dl = al and

lim sup
n∈N

n|dn| − max{l|dl| : µk + deg(Qk) < l < λk+1} < 1/k2.

As an easy consequence, we have lim supn∈N n|dn| = lim supn∈N n|an|. Sim-
ilarly, lim supn∈N n|dn| = lim supn∈N n|bn|. To conclude the proof, we have
to show that the two elements

∑
n≥1 ann−s and

∑
n≥1 bnn−s belong to W1.

Let K be an admissible compact set in C− and h be a continuous function
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on K, analytic in the interior of K. Let ε > 0 and v be a natural number.
We shall find N > v such that

sup
s∈K

∣∣∣h(s) −
N∑

n=1

ann−s
∣∣∣ < ε.

There exists a sequence fλ (λ = 1, 2, . . .) such that

sup
s∈K

|h(s) − fλ| < ε/2.

Moreover, there exists a sequence (̺p)p≥0 such that K ⊂ K̺p and we can
consider the set {(K̺, fλ + q) : q ∈ Q, 0 < q < ε/4} to conclude as in
Theorem 5.1 of [7].

Corollary 3.7. We have the strict inclusion Wa  W1.

Proof. We just have to apply Theorem 3.6 with dn ≡ 1/n or dn ≡ 0.
Corollary 2.3 implies that g1 and g2 cannot be in Wa.

In the universal set W1, a natural problem is the existence of universal
series which converge on the imaginary axis and are continuous. In the case
of Taylor series this is proved by the study of universality on the Banach
space A(D) of analytic functions on D, continuous on the torus T (see [7]).
In the next section we also give a positive answer in the Dirichlet case, by
introducing universal series in the Wiener–Dirichlet algebra.

4. Universality in the Wiener–Dirichlet algebra. The classical
Wiener algebra of absolutely convergent Taylor series in one variable is
the set of functions f(z) =

∑∞
n=0 anzn such that

∑∞
n=0 |an| < ∞. Simi-

larly, we can define the Wiener–Dirichlet algebra, denoted in the follow-
ing by Dw. A Dirichlet series f(s) =

∑
n≥1 ann−s belongs to the Wiener–

Dirichlet algebra Dw if ‖f‖ =
∑∞

n=1 |an| < ∞. Endowed with this norm,
Dw is obviously a Banach algebra. These two algebras are not completely
similar. Indeed, it is well-known that the spectrum of the Wiener alge-
bra is D, the closed unit disk. For the Wiener–Dirichlet algebra, using the
classical Bohr’s viewpoint [4], we can prove that its spectrum is D

∞
. Fi-

nally, we can easily see that the Wiener–Dirichlet algebra is a subset of
Da(C+).

Definition 4.1. We denote by Uwd the set of all Dirichlet series h ∈ Dw

satisfying: for every admissible compact set K ⊂ C− and every function g,
continuous on K and analytic in K̊, there exists a sequence (λn)n≥0 of
natural numbers such that

sup
z∈K

|Sλn
(h)(z) − g(z)| −→

n→∞
0.

Theorem 4.2. Uwd is a dense Gδ in Dw.
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In [9] a short proof of Theorem 4.2 has been given independently and
simultaneously. We only give the steps of our proof. Using the notations
of 3.1 we observe that the family of Dirichlet polynomials (fj)j∈N is dense
in Dw. Using again the notation of 3.1 we recall that K̺, ̺ = 1, 2, . . . , are
admissible compact sets in C− absorbing all other such sets. For positive
integers ̺, j, n, s we define

Ow(̺, j, s, n) = {g ∈ Dw : sup
z∈K̺

|Sn(g)(z) − fj(z)| < 1/s}.

Then we show

Uwd =
∞⋂

̺=1

∞⋂

j=0

∞⋂

s=1

∞⋃

n=1

Ow(̺, j, s, n).

We also show that the set Ow(̺, j, s, n) is open in Dw. Finally, using a version
of Lemma 2 from [3] (see also [1]), which allows σ = 0 when the compact
set K is included in C−, we prove that

⋃∞
n=1 Ow(̺, j, s, n) is dense in Dw.

Then the completeness of Dw allows the use of Baire’s category theorem,
which yields Theorem 4.2.

As a consequence of our main result, we obtain information on the uni-
versal set W1. Moreover, we specify the strict inclusion Wa  W1.

Corollary 4.3. We have the inclusion Wa ⊂ W1 ∩ Uc
wd.

Proof. Every series from Wa converges nowhere on the imaginary axis.
Therefore Wa ∩ Uwd = ∅.
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